徐成昊,趙金星,林蘇
(200093 上海市 上海理工大學(xué) 機(jī)械工程學(xué)院)
高速永磁電機(jī)高速運(yùn)行時(shí),由于繞組內(nèi)的電流變化頻率較高,在鐵心和繞組中將會(huì)產(chǎn)生大量的交流損耗。而且隨著電機(jī)轉(zhuǎn)速的提升,不僅會(huì)加劇繞組內(nèi)的趨膚效應(yīng)與鄰近效應(yīng)現(xiàn)象,增加繞組的交流損耗,還會(huì)使得轉(zhuǎn)子的渦流損耗增大[1-3]。
Hu 等[4]研究了2.5 kHz 的電流引起的趨膚效應(yīng)和鄰近效應(yīng)對(duì)一款150 kr/min-3 kW 內(nèi)置式永磁同步電機(jī)的繞組銅耗的影響。為了能夠準(zhǔn)確地計(jì)算出高速電機(jī)的損耗結(jié)果,國(guó)內(nèi)外對(duì)于高速電機(jī)的溫升與損耗方面展開了大量的研究。Bogletti 等[5]通過鐵損分離模型的研究表明,電機(jī)在中低速時(shí),鐵損中主要是磁滯損耗;在高速運(yùn)轉(zhuǎn)時(shí),渦流損耗在鐵損的占比會(huì)增大很多;Dan 等[6]利用改進(jìn)后的鐵耗模型對(duì)高速電機(jī)的鐵損進(jìn)行計(jì)算分析。通過不斷改變頻率大小,研究鐵損中渦流損耗、磁滯損耗的變化規(guī)律,最終驗(yàn)證改進(jìn)后的鐵耗模型具備更高的計(jì)算精度;Robert 等[7]提出利用解析計(jì)算法和有限元分析法,綜合分析高頻繞組的趨膚效應(yīng)和鄰近效應(yīng)帶來的銅損變化;Zhu 等[8]將解析法和有限元法相結(jié)合,對(duì)一臺(tái)額定轉(zhuǎn)速為14 kr/min 的高速永磁電機(jī)繞組之間的鄰近損耗進(jìn)行研究分析。
本文首先研究導(dǎo)體的趨膚效應(yīng)與鄰近效應(yīng)的影響因素及其嚴(yán)重程度的評(píng)價(jià)指標(biāo)變化,在此基礎(chǔ)上建立一款100 kr/min-10 kW 高速永磁電機(jī)的有限元仿真模型,考慮高頻電流在永磁體、護(hù)套以及繞組中產(chǎn)生的渦流損耗,仿真研究了趨膚效應(yīng)和鄰近效應(yīng)對(duì)繞組損耗的影響。
高頻繞組損耗的產(chǎn)生主要是由于電機(jī)的轉(zhuǎn)速很高,高頻率的基波在繞組中流過,進(jìn)而產(chǎn)生大量的交流損耗。繞組的交流損耗通常包括直流損耗和渦流損耗,其中渦流損耗又可細(xì)分為趨膚損耗和鄰近損耗,可用式(1)表示:
式中:Pac——交流損耗;Pdc——直流損耗;Psk——趨膚損耗;Ppr——鄰近損耗;Peddy——渦流損耗。
渦流效應(yīng)會(huì)使導(dǎo)體內(nèi)的電流無法均勻分布在導(dǎo)體截面,導(dǎo)致導(dǎo)體的實(shí)際有效截面積減小,進(jìn)而增大導(dǎo)體的等效電阻值[9]。當(dāng)電流頻率較高時(shí),這種效應(yīng)將會(huì)更加明顯,此時(shí)導(dǎo)線的實(shí)際電阻會(huì)隨著頻率的增加而顯著增加。
在趨膚效應(yīng)中,電流密度的數(shù)值表現(xiàn)為由表面向內(nèi)部逐漸減少的特性,通常用導(dǎo)體的趨膚深度表示,導(dǎo)體趨膚深度的計(jì)算公式為
式中:δ——導(dǎo)體的趨膚深度;f——電流頻率;μ——導(dǎo)體的磁導(dǎo)率;σ——導(dǎo)體的電導(dǎo)率。
除了在導(dǎo)體中存在趨膚效應(yīng),在永磁體中也同樣存在趨膚效應(yīng),即永磁體的磁力在永磁體磁面上周邊的磁力比極面中心的磁力大的一種特性,與電流的趨膚效應(yīng)是相似的[10]。
基于有限元仿真計(jì)算方法研究導(dǎo)體的趨膚效應(yīng)與電流頻率和導(dǎo)體半徑之間的關(guān)系。以一根半徑為2 mm的導(dǎo)體為例,在通入有效值為1 A的電流下,將導(dǎo)體置于不同頻率下,分析電流在導(dǎo)體表面的密度分布。頻率為2 000,3 000,4 000,5 000 Hz 的電流密度分布結(jié)果分別如圖1 所示。
圖1 不同頻率下的電流密度分布Fig.1 Distribution of current density at different frequencies
分析圖1 可知,隨著電流頻率的增加,電流密度向?qū)w外表面靠攏的趨勢(shì)更加明顯,而且電流密度的最大值也不斷增大。由式(2)可知,趨膚深度隨著電流頻率增大不斷減小,因此導(dǎo)體內(nèi)電流密度最大值會(huì)隨著電流頻率增加而逐漸增大,與有限元分析結(jié)果保持一致。綜合分析可知,趨膚效應(yīng)在導(dǎo)體中會(huì)隨著電流頻率增加不斷加劇。
通過仿真分析計(jì)算導(dǎo)體在不同頻率(0~50 kHz)電流下的銅損,如圖2 所示。由圖2 可知,隨著電流頻率的增加,總的銅損耗不斷增加。
圖2 不同頻率下的銅損結(jié)果Fig.2 Results of copper loss at different frequencies
為了研究趨膚效應(yīng)與導(dǎo)體半徑之間的關(guān)系,現(xiàn)將半徑分別為10,20,30,40 mm 的導(dǎo)體通入有效值為1 A、頻率為1 000 Hz 的電流。通過仿真分析,不同半徑導(dǎo)體的電流密度分布如圖3 所示。
分析圖3 可知,導(dǎo)體內(nèi)的電流密度分布將隨著導(dǎo)體半徑增加,呈現(xiàn)出向外表面靠攏趨勢(shì)。說明在通入相同大小和頻率的電流時(shí),導(dǎo)體的趨膚效應(yīng)隨著導(dǎo)體半徑的增加不斷加強(qiáng)。最終,將導(dǎo)體半徑在0~100 mm 范圍下的銅損耗進(jìn)行計(jì)算分析,具體變化規(guī)律如圖4 所示。由圖4 可知,隨著導(dǎo)體半徑增加,總的銅損急劇下降,最后趨于平穩(wěn)。
圖3 不同半徑下的電流密度分布Fig.3 Distribution of current density at different radius
圖4 不同導(dǎo)體半徑下的銅損結(jié)果Fig.4 Results of copper loss at different conductor radius
為了能夠研究導(dǎo)體內(nèi)趨膚效應(yīng)和鄰近效應(yīng)的嚴(yán)重程度,通常采用交流損耗與直流損耗的比值k 進(jìn)行分析,其中k值可表示為
式中:Pac——交流損耗;Pdc——直流損耗。
k 值越大,表示導(dǎo)體的渦流損耗在總銅損中占比越大,此時(shí)導(dǎo)體內(nèi)的趨膚效應(yīng)和鄰近效應(yīng)更加嚴(yán)重;k 值越小,表示導(dǎo)體內(nèi)渦流損耗占比也越小?;贘MAG 對(duì)不同電流頻率與導(dǎo)體半徑下的k 值進(jìn)行研究,計(jì)算結(jié)果如圖5 所示。
圖5 k 值與導(dǎo)體半徑和頻率的關(guān)系Fig.5 Value k relative to the radius and frequency of the conductor
由圖5 可知,隨著電流頻率和導(dǎo)體半徑的增加,k 值(交流損耗與直流損耗比值)均不斷增加。主要由2 個(gè)原因造成:(1)在相同導(dǎo)體半徑條件下,隨著電流頻率的增加,導(dǎo)體中的渦流損耗出現(xiàn)明顯提升,但直流損耗幾乎保持不變,故交流損耗與直流損耗的比值增大;(2)保持在相同的電流頻率下,隨著導(dǎo)體半徑的增加,雖然直流損耗和渦流損耗均出現(xiàn)減小,但是直流損耗降低得更為明顯,同樣導(dǎo)致交流損耗與直流損耗的比值呈現(xiàn)增大的趨勢(shì)。綜合分析可知,隨著電流頻率的增加和導(dǎo)體半徑在0~100 mm 范圍內(nèi)不斷增加,渦流損耗在總銅損的占比逐漸增大。
基于JMAG 對(duì)導(dǎo)體半徑為2 mm、正弦電流與外磁場(chǎng)同時(shí)作用下的電流密度展開仿真分析,電流密度分布情況如圖6 所示。由圖6 可知,導(dǎo)體在1 000 Hz的正弦電流和外磁場(chǎng)同時(shí)作用下,外表面電流密度明顯大于導(dǎo)體內(nèi)部,即存在嚴(yán)重的趨膚效應(yīng)。在正弦電流與外部磁場(chǎng)共同作用下,通過不斷改變正弦電流的頻率與導(dǎo)體的半徑,導(dǎo)體的交流損耗計(jì)算結(jié)果如圖7 所示。分析圖7 可知,在相同半徑的導(dǎo)體中,交流損耗隨著電流頻率的增加而增加;在相同電流頻率下,交流損耗隨著導(dǎo)體半徑的增大而增加。
圖6 正弦電流與外部磁場(chǎng)作用下的電流密度分布Fig.6 Distribution of current density under sinusoidal current and external magnetic field
圖7 總銅損與導(dǎo)體半徑、頻率之間關(guān)系Fig.7 Relationship between total copper loss and conductor radius and frequency
導(dǎo)體在通入高頻交變電流時(shí),相互靠近的導(dǎo)體不僅受到自身電流的電磁場(chǎng)影響,還會(huì)受到相鄰導(dǎo)體產(chǎn)生的電磁場(chǎng)影響,使其內(nèi)部的電流分布發(fā)生不同程度的改變,這種現(xiàn)象稱為鄰近效應(yīng)[11]。
現(xiàn)基于JMAG-Designer 對(duì)導(dǎo)體之間的鄰近效應(yīng)進(jìn)行仿真分析。首先對(duì)兩根半徑為2 mm、間距為0.1 mm 的導(dǎo)體,均施加頻率1 000 Hz、有效值為1 A 的電流。通過仿真分析,兩根導(dǎo)體的電流密度和損耗密度的分布云圖如圖8 所示。
圖8 鄰近導(dǎo)體電流密度和損耗密度分布云圖Fig.8 Nephogram of current density and loss density distribution of adjacent conductors
由圖8 可以看出,2 根導(dǎo)體在相互靠近時(shí),各自的電流密度和損耗密度分布均受到相鄰導(dǎo)體的磁場(chǎng)影響,與單獨(dú)一根導(dǎo)體的情況相比,導(dǎo)體電流密度和損耗密度的最大值均發(fā)生不同程度的增大;導(dǎo)體電流密度和損耗密度的最小值發(fā)生不同程度的減小。由此可證明,高頻的交流電在通入導(dǎo)體時(shí),在相鄰的導(dǎo)體之間將會(huì)產(chǎn)生顯著的鄰近效應(yīng)。
為了探究導(dǎo)體的鄰近效應(yīng)與電流頻率之間的關(guān)系,對(duì)導(dǎo)體施加不同頻率的電流。其中在頻率為2 000,3 000,4 000,5 000 Hz 時(shí),導(dǎo)體的電流密度分布如圖9 所示。不同頻率下的銅損結(jié)果如圖10 所示。
綜合分析圖9 與圖10 可知,隨著電流頻率的增加,小電流密度的區(qū)域占比越來越大,即鄰近效應(yīng)更加明顯,而且最終使得導(dǎo)體總的銅損耗顯著增加。
圖9 不同頻率下的電流密度分布Fig.9 Distribution of current density at different frequencies
圖10 不同頻率下導(dǎo)體的銅損結(jié)果Fig.10 Results of conductor copper loss at different frequencies
除了交變電流的頻率之外,鄰近效應(yīng)通常還受到導(dǎo)體半徑以及相鄰導(dǎo)體之間距離的影響。為了研究導(dǎo)體半徑對(duì)鄰近效應(yīng)的影響,將2 根導(dǎo)體的距離 0.1 mm 和電流頻率1 000 Hz 均保持不變,同時(shí)改變2 根導(dǎo)體的半徑。通過仿真分析,導(dǎo)體的交流損耗與直流損耗的比值k 隨導(dǎo)體半徑變化的情況如圖11 所示。
由圖11 可知,在保持導(dǎo)體間距離相同的條件下,隨著導(dǎo)體半徑的增加,k 值出現(xiàn)先減小后增大的趨勢(shì)。由此可以推斷,在導(dǎo)體半徑為0~1.0 mm 時(shí),導(dǎo)體內(nèi)部幾乎不存在鄰近效應(yīng);在導(dǎo)體半徑達(dá)到1.0 mm后,隨著導(dǎo)體半徑不斷增加,值也不斷增大,表明導(dǎo)體內(nèi)的鄰近效應(yīng)不斷加強(qiáng)。
圖11 不同導(dǎo)體半徑下的k 值變化Fig.11 Variation of k at different conductor radius
接下來,針對(duì)2 根導(dǎo)體之間的距離對(duì)鄰近效應(yīng)的影響展開研究。為了能夠清晰地觀察到導(dǎo)體之間距離對(duì)鄰近效應(yīng)的影響,現(xiàn)將電流頻率由原來的1 000 Hz 增加至5 000 Hz,導(dǎo)體半徑保持不變?;贘MAG對(duì)2根導(dǎo)體之間的距離展開參數(shù)化分析,導(dǎo)體之間距離在0.1,1.0,2.0,3.0 mm 下的電流密度分布結(jié)果如圖12 所示。
圖12 不同導(dǎo)體間距下的電流密度分布Fig.12 Distribution of current density at different conductor spacing
通過分析圖12 可知,隨著導(dǎo)體之間的距離不斷擴(kuò)大,電流密度分布變得更加均勻,由此表明導(dǎo)體的鄰近效應(yīng)不斷減弱。因此,導(dǎo)體的渦流損耗也將隨著導(dǎo)體間距的增加而逐漸減小。
通過上述分析,建立了一款100 kr/min-10kW高速永磁電機(jī)的有限元仿真模型。該模型假設(shè)電機(jī)槽內(nèi)的磁場(chǎng)均平行于槽底,忽略導(dǎo)體流入電流時(shí)產(chǎn)生的磁場(chǎng)對(duì)槽內(nèi)磁場(chǎng)的影響[12],則槽內(nèi)導(dǎo)體的渦流損耗可表示為
式中:d——導(dǎo)體的直徑;l——導(dǎo)體的長(zhǎng)度;ρc——導(dǎo)體的電阻率;B——磁密幅值;ω——磁密角速度。
永磁電機(jī)有復(fù)雜的工作原理和結(jié)構(gòu),很難用解析法對(duì)電機(jī)定子槽內(nèi)的渦流損耗進(jìn)行準(zhǔn)確計(jì)算[13],因此選擇有限元軟件JMAG-Designer 對(duì)高速永磁電機(jī)繞組的交流損耗進(jìn)行計(jì)算分析,綜合分析電機(jī)的電磁性能。
基于建立的高速永磁電機(jī)的有限元仿真模型計(jì)算得到的電流密度分布云圖,如圖13 所示。由圖可知,高頻電流不僅僅只是分布在繞組中,在永磁體的護(hù)套上也產(chǎn)生了渦流分布。由圖13(a)可知,高頻電流通入導(dǎo)體時(shí)由于受到趨膚效應(yīng)和鄰近效應(yīng)的綜合影響,電流并未均勻分布在導(dǎo)體內(nèi)部,實(shí)際的電流密度由內(nèi)向外逐漸增大。定子槽內(nèi)不同導(dǎo)體的電流密度分布也存在差異,其中在靠近槽口位置的導(dǎo)體中,趨膚效應(yīng)與鄰近效應(yīng)也更加明顯,這是因?yàn)椋劭谔庪x氣隙較近,滲透漏磁影響大,槽底離氣隙遠(yuǎn),滲透漏磁影響小。
圖13 電流密度分布云圖Fig.13 Nephogram of current density distribution
由仿真結(jié)果可知,建立的高速永磁電機(jī)有限元模型能夠準(zhǔn)確地考慮高頻電流在永磁體、護(hù)套以及繞組中產(chǎn)生的渦流現(xiàn)象和相應(yīng)的損耗。如圖14 所示,在100 kr/min 時(shí),計(jì)算得到的電機(jī)總銅損約為176 W,其中繞組損耗結(jié)果不僅包括趨膚效應(yīng)和鄰近效應(yīng)引起的高頻損耗,也包括導(dǎo)體內(nèi)部直流損耗。
圖14 高速永磁電機(jī)的銅損結(jié)果Fig.14 Copper loss results of high-speed permanent magnet motor
圖15 是考慮渦流損耗的銅損結(jié)果與未考慮時(shí)的銅損結(jié)果對(duì)比。由此可知,在高速永磁電機(jī)中,由于定子鐵心開槽以及高頻電流,在電機(jī)的繞組和轉(zhuǎn)子護(hù)套中均會(huì)產(chǎn)生較大的渦流損耗,因此在對(duì)高速永磁電機(jī)進(jìn)行建模仿真時(shí),必須要考慮渦流損耗,否則在計(jì)算電機(jī)損耗與效率時(shí)將會(huì)產(chǎn)生較大的誤差。
圖15 考慮渦流損耗前后的銅損對(duì)比Fig.15 Comparison of copper loss before and after considering eddy current loss
本文研究了高速永磁電機(jī)在運(yùn)轉(zhuǎn)時(shí)的繞組渦流損耗,并通過引入交流損耗與直流損耗的比值來輔助分析導(dǎo)體的趨膚效應(yīng)與鄰近效應(yīng)對(duì)銅損的影響。根據(jù)上述分析,建立了高速永磁電機(jī)有限元模型。研究結(jié)果表明:
(1)k 值在導(dǎo)體中會(huì)隨著電流頻率和導(dǎo)體半徑增加不斷增加??傘~損隨著電流頻率的增加而增加,隨著導(dǎo)體半徑的增加而急劇下降,最后趨于平穩(wěn)。而當(dāng)總銅損減去直流損耗后,導(dǎo)體的渦流損耗隨著半徑增大出現(xiàn)先增大后減小的趨勢(shì)。
(2)電流頻率的增加會(huì)使鄰近效應(yīng)更加明顯,導(dǎo)體總銅耗顯著增加。在保持導(dǎo)體間距離相同的條件下,隨著導(dǎo)體半徑的增加,k 值出現(xiàn)先減小后增大的趨勢(shì)。而當(dāng)導(dǎo)體之間的距離不斷擴(kuò)大后,導(dǎo)體的鄰近效應(yīng)不斷減弱,渦流損耗也逐漸減小。
(3)對(duì)于建立的高速永磁電機(jī)的有限元仿真模型在100 kr/min 時(shí),計(jì)算得到的電機(jī)總銅損約為176 W。計(jì)算結(jié)果表明對(duì)高速永磁電機(jī)進(jìn)行電機(jī)損耗與效率計(jì)算時(shí),必須要考慮渦流損耗。