• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling

    2023-02-25 13:42:10MnnniColliniArefi
    Defence Technology 2023年2期

    S.Mnnni , L.Collini , M.Arefi ,*

    a Department of Solid Mechanic, Faculty of Mechanical Engineering, University of Kashan, Kashan, 87317-51167, Iran

    b Department of Engineering and Architecture, University of Parma, Parco Area Delle Scienze 181/A, 43124, Parma, Italy

    Keywords:Principle of virtual work Thickness-stretched and shear deformable model Stress and strain analyses Cylindrical pressure vessel

    ABSTRACT In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending, shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results, a comparison between the present results with the available results of literature is presented.As an important output, effect of micro-scale parameter is studied on the static stress and strain distribution.

    1.Introduction

    Analysis of pressure vessels have great importance in the context of mechanical engineering because of their vast applications in various situations.The cylindrical shells are used in various industrial applications such as chemical reactors, weapon instruments and aerospace technologies.Analysis of pressure vessels are performed using the Newtonian and Lagrangian methods and also using the technical codes proposed by important associations[1].The Newtonian methods are applied through plane elasticity theory and are mostly valid for long cylindrical shells.The Lagrangian methods based on principle of virtual work and Hamilton’s principle are used for more generalized formulation of the cylindrical shells with variable thickness and short length cylinder with axial boundary conditions.There are some applications of cylindrical shells in the various situations subjected to combination of mechanical, thermal and electrical loads [1-6]A review on the recent works is presented to justify significance of this paper.

    Lori Dehsaraji et al.[7]formulated a higher-order thickness stretched piezoelectric nanoshell through Eringen nonlocal elasticity theory and shear and normal deformation theory.Decomposition of radial displacement into bending, shear and thickness stretching portions was used for kinematic relations.Justification of the results was performed through comparison with some lower order theories and also 3D results.Rezaiee-Pajand et al.[8]employed a higher order element including seven parameters to study nonlinear analysis of various thickness shell of revolution.Thickness stretching was accounted based on the employed element through finite element formulation.Zhang et al.[9]developed an experimental study on the fracture analysis of bituminous coal.Qiu et al.[10]studied effect of thermal load on the mechanical behavior of cylindrical shell as an energy storage.

    Accounting concurrent geometric nonlinearity and thickness stretched model was employed by Amabili[11]for large amplitude vibration analysis of a doubly curved shell where all in-plane and transverse nonlinear terms were included in the formulation.The third-order thickness stretching formulation was used for analysis of laminated shell.The results were compared with those higherorder and refined theories that ignored thickness stretching.Lori Dehsaraji et al.[12]developed a modified couple stress model for electroelastic vibration analysis of cylindrical micro and nano shell subjected to electromechanical loading through Hamilton’s principle and a thickness stretching modeling.Patel et al.[13]investigated dynamic responses of elliptical shell made from functionally graded materials through higher-order modeling considering thickness stretching.To satisfy field consistency and avoid shear as well as membrane locking, the finite element approach was used for formulation.Ganapathi et al.[14]extended higher-order shear deformation theory to dynamic responses of laminated thick cylindrical shell with application in modeling the variation of the in/out of plane displacement and sudden discontinuity in the slope.Finite element method and time integration technique were employed for numerical investigation of the problem.Simo et al.[15]extended shell theory including finite thickness stretch as well as initial variable thickness for analysis of the problems including finite membrane strains, contact, delamination and concentrated surface loads.The numerical results were presented to investigate influence of thickness stretch on the responses of thin shell.Static,dynamic and stability analyses of a composite laminated shell was studied by Zenkour and Fares [16]based on Hamilton-Reissner's mixed variational principle.Polit et al.[17]studied effect of graphene nanoplatelets reinforcement and porosity on the static and stability analyses of curved beam based on higher-order model considering thickness stretching terms.Hamilton’s principle and Navier’s technique were employed for derivation of motion equations and solution procedure.Effect of thermal and fatigue loading was studied on the structural behavior of new materials and structures[18,19].

    Arefi et al.[20]employed two-variable sinusoidal shear deformation theory for static bending analysis of a double curved shell with accounting shear and normal deformation theory.Generalized Hooke’s law was used to derive governing equations.After derivation of the governing equations using principle of virtual work and solution using the analytical method, it was shown that accounting thickness stretching leads to a 4% improvement in the results.Amabili et al.[21]developed a new nonlinear model for nonlinear vibration characteristics of a shell made from hyperelastic material with incompressibility including nine parameters.The model was applicable for analysis of a Neo-Hookean material and biomechanics of soft tissues.Capability of the proposed model was justified through comparison of the results with those results without thickness stretching.Amabili[22]studied nonlinear forced vibration analysis of laminated cylindrical shell using the new higher-order shear deformation theory and Lagrange equations in which a harmonic point excitation along the radial direction was applied.Pseudo-arclength continuation method and bifurcation analysis were used to derive governing equations of motion.The accuracy of the proposed formulation was justified using reduction of the formulation to von K′arm′an formulation and Novozhilov theory.Chu [23]studied large amplitude vibration analysis of thin shell using a higher order shear deformable model and considering nonlinear strain components.Merodioand Haughton [24]studied bifurcation analysis of thick-walled cylindrical shell subjected to Marfan’s syndrome.Bert and Birman [25]studied dynamic instability analysis of a cylindrical shell subjected to axial excitation made from orthotropic material reinforced with different fibers.Alsubari et al.[26]studied effect of humidity and thermal loads on the static analysis of anisotropic shell using generalized plane strain assumption and the Murakami zigzag function.There are some important works for referring the basic relations of this work[27-33,47-66].

    Ganapathi et al.[34]used a new higher-order displacement field for dynamic responses of a thick multi-layered shell subjected to thermal and mechanical loads.Kumar et al.[35]employed a higherorder zigzag theory for finite element formulation of composite and sandwich shell.The failure criteria have been examined for the shell subjected to mechanical loadings.Ye et al.[36]combined a higher-order shear deformation theory and a semi-analytical method for formulation and numerical solution of a composite laminated shell using three-dimensional theory of elasticity.Shariyat and Eslami [37]studied dynamic buckling and postbuckling analyses of imperfect cylindrical shell in thermal environment using 3D thermoelasticity relations.Loy and Lam [38]presented higher-order dynamic formulation of a thick cylindrical shell based on elastodynamic relations.Third-order shear deformation theory was used in the framework of motion equations for free vibration responses of a cylindrical shell by Saad et al.[39].The accuracy of the results was confirmed through comparison with finite element results.Desai and Kant[40]studied effect of sinusoidal higher order shear deformation theory on the bending behaviours of the cylindrical shell.Wavelet transform was used as a mathematical method for analysis of the engineering processes and applications[41-43].For better and more accurate modeling the shear strains along the thickness direction, Bhimaraddi [44]used lower and higher order shear deformation theories for dynamic analysis of the cylindrical shells.McDaniel and Ginsberg[45]concurrently accounted higherorder shear deformation theory and Ritz expansions for vibration responses of the cylindrical shells.Hirano and Hirashima[46]used infinite power series along the radial direction for three dimensional dynamic analysis of a cylindrical shell based on a higherorder model.There are some applications [47-53]of new materials and technologies in the mechanical engineering such as reinforced materials.

    Investigating related works on the recent published papers of cylindrical shells in various environments and using various theoretical formulation and kinetic relations has been performed in the literature survey.It is deduced that stress and deformation analysis of higher-order shear deformable cylindrical pressure vessels are important for more accurate analysis of the shells and should be accounted in new works.The importance of shear stress is confirmed in this paper specially at both ends.Two-variable sinusoidal shear deformation theory is used for description of kinematic relations and the principle of virtual work is used for derivation of the governing equations of motion.

    2.Thickness stretching included formulation

    An axisymmetric pressurized cylindrical pressure vessel is formulated in this section based on higher-order sinusoidal shear deformation theory and accounting thickness stretching.Based on the axisymmetric model,two axialuxand radialwzdisplacements are assumed in the framework of higher-order shear deformation theory accounting thickness stretching term are assumed as[65,66].

    in which,f(z)=z-h/πsin(πz/h) andg(z) = 1-f'(z).Furthermore,wb,ws,χ are bending, shear and stretching parts of transverse deflection,respectively.Using the kinematic relations in the cylindrical coordinate system, the strain components are derived as [65,66].

    The behavioural relations are derived as [7,9,12]

    where, normal (shear) stress and strain components are denoted with σij(τxz)and εij(γij).Furthermore,E, ? are Young’s modulus and Poisson’s ratio,respectively.

    Strain energy variation of a cylindrical shell is expressed as[26-30,61,62,67].

    Through definition of resultant components, we will have the strain energy in the updated form as

    where the resultant components are defined as [7,9,12,67]:

    Integration by part leads to

    The resultant components are defined in terms of displacement functions as

    where the integration constants are computed in Appendix A.

    The external work due to internal and external pressures and an outer Pasternak’s foundation is computed as follows[34-36,40-42].

    Substitution of transverse displacement into above relations leads to

    The governing equations are derived as

    Finally, the governing equations in terms of primary functions are developed as

    3.Numerical results

    Numerical solution procedure is explained in this section for simply-supported boundary conditions.The solution of governing equations is expressed based on trigonometric functions as

    Table 1Comparison between the dimensionless transverse deflection w between present results and those results of Refs.[31-33].

    A validation through comparison of the present results with those results available in literature is presented.Listed in Table 1 is comparison between the dimensionless transverse deflection of the present results and those results of Refs.[31-33].A good agreement between present results with literature results is observed.

    The results including displacements, strains and stresses components are plotted along the axial and axial and radial directions.The results are presented for two different geometries of cylindrical shell.The first case is a long cylindrical shell:R= 1 m,L= 5 m,t=0.05 m and the second case is a short cylindrical shell:R=1 m,L= 2 m,t= 0.1 m.

    Fig.1. Changes of axial displacement u along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Axial displacement is shown in Fig.1 along the radial and axial directions for a pressurized cylindrical pressure vessel.The results of Fig.1(a) and Fig.1(b) are presented forR= 1 m,L= 5 m,t=0.02 m andR=1 m,L=2 m,t=0.1 m respectively.It is observed that for a long cylindrical pressure vessel,the axial displacement is approximately unchanged along the thickness direction.Unlike this case,the results of figure b are computed for a short and thick shell in which the radial displacement is changed along the thickness direction.It is confirmed that the higher-order shear deformation theory and thickness stretching leads to an efficient result for short and thick shells.

    Fig.2. Changes of transverse deflection w along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Fig.3. Changes of axial strain εx along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Shown in Fig.2(a), Fig.2(b) are two dimensional changes of radial displacements along the thickness and axial directions for cylindrical pressure vessel.The results are presented for two geometric cases.A significant decrease in the radial displacement is observed for a short length cylindrical shellR= 1 m,L= 2 m,t= 0.1 m respect to a long shellR= 1 m,L= 5 m,t= 0.05 m.

    Two-dimensional variation of axial strain εxalong the radial and axial directions is presented in Fig.3(a), Fig.3(b) for a pressurized cylindrical shell for two geometries.A decrease in axial strain εxis observed for a thick and short cylindrical shell.The maximum values of axial strain are observed at middle length of cylindrical shell due maximum bending moment at same section.Fig.4,Fig.5(a), Fig.5(b) show two dimensional variation of radial εzand circumferential εtstrain components along the radial and axial directions.The results show that the radial strain is zero at both ends of cylindrical shell as well as middle surface.

    Fig.4. Changes of radial strain εz along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Fig.5. Changes of hoop strain εt along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Fig.6. Changes of shear strain γxz along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Two dimensional variation of shear strain is presented in Fig.6(a), Fig.6(b) along the radial and axial directions.It is confirmed that the shear strain is zero at top and bottom surfaces.This condition has been justified using the proposed shear deformation theory.

    Fig.7. Changes of non-dimensionless axial stress along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Fig.8. Changes of non-dimensionless hoop stress along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Fig.9. Changes of non-dimensionless shear stress along the radial and axial directions: (a) R = 1 m, L = 5 m, t = 0.05 m; (b) R = 1 m, L = 2 m, t = 0.1 m.

    Shown in Fig.7(a), Fig.7(b) are two dimensional variation of non-dimensional axial stress along the radial and axial directions.It is observed that the maximum stresses are occurred at the middle of the shell and the top and bottom surfaces.Existence of maximum normal stress at middle length of the shell is due to maximum bending moment at same section.

    Shown in Fig.8(a), Fig.8(b) are changes of non-dimensional circumferential stressalong the radial and axial directions for both long and short cylindrical shells.The maximum circumferential stress is occurred at the middle length of the shell where the maximum deflection is occurred.Small change of circumferential stress is observed along the thickness direction.

    Shown in Fig.9(a), Fig.9(b) are changes of non-dimensionless shear stressalong the radial and axial directions for both long and short cylindrical shells.It is observed that the shear stress is zero at top and bottom surfaces.Furthermore,the maximum shear stress is occurred at the middle surface.

    4.Conclusions

    Higher-order shear deformable model and thickness stretching formulation are employed in this research for mechanical stress,strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads resting on Pasternak’s foundation.The transverse deflection of the shell is assumed as the combination of bending, shear and stretching functions, in which the last term is responsible for variation of deflection along the thickness direction.After derivation of the governing equations through the principle of virtual work, the analytical solution is developed for stress and strain analyses.The mechanical stress, strain and deformation are presented along the length and thickness directions for two long and short cylindrical shells.A sinusoidal shape function is used for exact and accurate modeling of the shear stress along the thickness direction.The main results of this paper are classified as follows:

    · The changes of results along the thickness direction indicates that there is no significant changes for all stress and strain components except shear stress and strain the are changed significantly.

    · The results show that the transverse shear stress and strains are satisfied zero stress conditions at top and bottom surfaces.

    · The results indicate that the main stress is hoop stress that should be accounted in design procedure.

    · Based on the outputs, it is concluded that the shear strain and stress become very important for short cylindrical shells.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Appendix A

    Appendix B.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.dt.2022.07.003.

    两性午夜刺激爽爽歪歪视频在线观看 | 国产伦理片在线播放av一区| 一夜夜www| tocl精华| 久久影院123| 一边摸一边抽搐一进一出视频| 999精品在线视频| 久久狼人影院| 色精品久久人妻99蜜桃| 色综合欧美亚洲国产小说| 亚洲欧美一区二区三区久久| 涩涩av久久男人的天堂| 黑丝袜美女国产一区| 午夜精品久久久久久毛片777| 国产精品一区二区在线不卡| 五月天丁香电影| 婷婷成人精品国产| 亚洲熟妇熟女久久| 欧美日韩视频精品一区| 看免费av毛片| 好男人电影高清在线观看| 亚洲熟妇熟女久久| 国产成人av教育| 啦啦啦在线免费观看视频4| 国产精品98久久久久久宅男小说| 午夜精品国产一区二区电影| 亚洲成人免费av在线播放| 国产不卡av网站在线观看| 欧美日本中文国产一区发布| 最近最新免费中文字幕在线| 欧美大码av| 水蜜桃什么品种好| kizo精华| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 精品一区二区三区视频在线观看免费 | 欧美大码av| 久热爱精品视频在线9| 亚洲欧美色中文字幕在线| 久久中文字幕人妻熟女| 午夜老司机福利片| 一本久久精品| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 久久午夜亚洲精品久久| 男男h啪啪无遮挡| 老熟妇仑乱视频hdxx| 国产一区二区三区综合在线观看| 一区二区av电影网| 一区二区三区乱码不卡18| 老熟女久久久| cao死你这个sao货| 成年女人毛片免费观看观看9 | 757午夜福利合集在线观看| 国产精品一区二区精品视频观看| 国产高清视频在线播放一区| 久久亚洲精品不卡| 丝袜美腿诱惑在线| 免费观看a级毛片全部| 高清在线国产一区| 又黄又粗又硬又大视频| 国产高清视频在线播放一区| 久热这里只有精品99| 亚洲熟妇熟女久久| 亚洲七黄色美女视频| 国产成人影院久久av| 热99re8久久精品国产| 可以免费在线观看a视频的电影网站| 淫妇啪啪啪对白视频| 免费在线观看视频国产中文字幕亚洲| 超碰97精品在线观看| 久久狼人影院| 国产在线视频一区二区| 色94色欧美一区二区| 亚洲av日韩精品久久久久久密| 国产精品av久久久久免费| 欧美精品一区二区大全| 在线观看免费日韩欧美大片| 日本撒尿小便嘘嘘汇集6| 成人18禁在线播放| 天堂8中文在线网| 国产精品久久久久成人av| 亚洲欧美精品综合一区二区三区| 欧美日韩黄片免| 国产精品久久久av美女十八| 国产一区二区三区综合在线观看| 亚洲久久久国产精品| 99国产精品一区二区三区| 不卡av一区二区三区| 在线观看66精品国产| av线在线观看网站| 99国产极品粉嫩在线观看| 国产精品免费一区二区三区在线 | 欧美 日韩 精品 国产| av视频免费观看在线观看| videosex国产| 欧美亚洲 丝袜 人妻 在线| 亚洲精品乱久久久久久| 色视频在线一区二区三区| 午夜福利影视在线免费观看| 在线观看www视频免费| 日韩成人在线观看一区二区三区| 国产三级黄色录像| 亚洲人成电影观看| 国产亚洲欧美精品永久| 中文字幕高清在线视频| 人妻久久中文字幕网| 在线看a的网站| 久久精品国产亚洲av高清一级| 欧美久久黑人一区二区| 欧美乱码精品一区二区三区| 丰满饥渴人妻一区二区三| 丁香欧美五月| 成人亚洲精品一区在线观看| 大香蕉久久成人网| 婷婷丁香在线五月| 国产精品电影一区二区三区 | 夜夜骑夜夜射夜夜干| 老司机靠b影院| avwww免费| 国产成人精品在线电影| 一级片免费观看大全| 欧美激情高清一区二区三区| 色在线成人网| 日韩欧美一区二区三区在线观看 | 国产精品亚洲一级av第二区| av欧美777| 大陆偷拍与自拍| 香蕉国产在线看| 亚洲avbb在线观看| 91精品国产国语对白视频| 麻豆成人av在线观看| 亚洲第一av免费看| 色94色欧美一区二区| 欧美日韩成人在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 丁香六月欧美| 一区二区三区激情视频| 欧美在线黄色| 露出奶头的视频| 亚洲熟女精品中文字幕| 国产精品一区二区免费欧美| 精品少妇一区二区三区视频日本电影| 午夜福利乱码中文字幕| 欧美激情高清一区二区三区| 婷婷丁香在线五月| 国产亚洲av高清不卡| 久久久精品免费免费高清| 中亚洲国语对白在线视频| 91老司机精品| 日本欧美视频一区| 欧美日韩一级在线毛片| 国产精品久久久久久精品电影小说| kizo精华| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 午夜免费成人在线视频| 18在线观看网站| 日日摸夜夜添夜夜添小说| 在线观看人妻少妇| 国产欧美日韩一区二区精品| 一边摸一边抽搐一进一出视频| 黄片小视频在线播放| 日本一区二区免费在线视频| 欧美精品亚洲一区二区| 19禁男女啪啪无遮挡网站| 桃花免费在线播放| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 国产一区二区三区视频了| 99国产综合亚洲精品| 久久久精品94久久精品| 亚洲美女黄片视频| 国产色视频综合| 久久精品国产综合久久久| 精品视频人人做人人爽| 在线观看免费午夜福利视频| 黄色成人免费大全| 亚洲性夜色夜夜综合| 色尼玛亚洲综合影院| 欧美 日韩 精品 国产| 性色av乱码一区二区三区2| 国产片内射在线| 在线亚洲精品国产二区图片欧美| 麻豆av在线久日| 久久 成人 亚洲| 日韩免费av在线播放| 51午夜福利影视在线观看| 91大片在线观看| 丝瓜视频免费看黄片| 纵有疾风起免费观看全集完整版| 最近最新中文字幕大全电影3 | 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲 欧美一区二区三区| 亚洲少妇的诱惑av| 久9热在线精品视频| 老司机深夜福利视频在线观看| 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| 自线自在国产av| 一级片免费观看大全| 国产1区2区3区精品| 久久狼人影院| 日本wwww免费看| 黑人巨大精品欧美一区二区mp4| 午夜福利免费观看在线| 久久热在线av| 久久亚洲精品不卡| 久久久久视频综合| 乱人伦中国视频| 久久免费观看电影| 啦啦啦在线免费观看视频4| 不卡一级毛片| 色94色欧美一区二区| 黄色片一级片一级黄色片| 国产成人精品久久二区二区免费| 日韩欧美三级三区| 午夜老司机福利片| 一区二区三区乱码不卡18| av电影中文网址| 黄色a级毛片大全视频| 少妇 在线观看| 欧美黑人精品巨大| 国产精品久久久久久人妻精品电影 | 欧美中文综合在线视频| 日韩一区二区三区影片| 在线天堂中文资源库| 99精品久久久久人妻精品| 色视频在线一区二区三区| 丝袜在线中文字幕| 女人久久www免费人成看片| 99久久国产精品久久久| 99久久99久久久精品蜜桃| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 国产亚洲欧美精品永久| 成年人午夜在线观看视频| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 免费少妇av软件| 99精品久久久久人妻精品| 水蜜桃什么品种好| 在线看a的网站| 在线观看免费高清a一片| 国产精品国产av在线观看| 最黄视频免费看| 女性被躁到高潮视频| 国产在线免费精品| 我的亚洲天堂| 亚洲精品一二三| 十分钟在线观看高清视频www| 999久久久精品免费观看国产| 亚洲七黄色美女视频| 50天的宝宝边吃奶边哭怎么回事| 在线永久观看黄色视频| 亚洲国产中文字幕在线视频| 欧美精品高潮呻吟av久久| 别揉我奶头~嗯~啊~动态视频| 国产精品1区2区在线观看. | 嫁个100分男人电影在线观看| 国产成+人综合+亚洲专区| 国产淫语在线视频| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 亚洲午夜理论影院| 精品少妇黑人巨大在线播放| 久久人妻av系列| 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 9色porny在线观看| 美女午夜性视频免费| 国产成人av教育| 精品国产超薄肉色丝袜足j| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 亚洲精品粉嫩美女一区| 丰满迷人的少妇在线观看| 精品国产一区二区三区四区第35| 成人国产av品久久久| 国产精品成人在线| 一级黄色大片毛片| 午夜福利在线观看吧| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦视频在线资源免费观看| 宅男免费午夜| 在线播放国产精品三级| 久久亚洲精品不卡| 亚洲国产中文字幕在线视频| 国产淫语在线视频| 国产成人欧美在线观看 | 亚洲成av片中文字幕在线观看| 免费久久久久久久精品成人欧美视频| 国产真人三级小视频在线观看| 国产精品秋霞免费鲁丝片| 丝袜在线中文字幕| 一区在线观看完整版| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 91大片在线观看| 精品人妻在线不人妻| 91麻豆av在线| 搡老岳熟女国产| 日本撒尿小便嘘嘘汇集6| 999久久久国产精品视频| 国产精品偷伦视频观看了| 国产精品一区二区精品视频观看| 满18在线观看网站| 热99国产精品久久久久久7| 露出奶头的视频| 一级毛片精品| 视频区欧美日本亚洲| 脱女人内裤的视频| 国产午夜精品久久久久久| 午夜免费鲁丝| 99re6热这里在线精品视频| 国产片内射在线| av欧美777| 成人三级做爰电影| av欧美777| 欧美日韩亚洲国产一区二区在线观看 | 在线 av 中文字幕| 高清黄色对白视频在线免费看| 在线观看舔阴道视频| 午夜福利免费观看在线| 一区二区三区国产精品乱码| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 免费看a级黄色片| 人人妻人人澡人人看| 999精品在线视频| 中文欧美无线码| 日韩中文字幕欧美一区二区| 91国产中文字幕| 建设人人有责人人尽责人人享有的| 麻豆av在线久日| 九色亚洲精品在线播放| 一级片免费观看大全| 老司机在亚洲福利影院| 色精品久久人妻99蜜桃| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看| 亚洲三区欧美一区| 欧美乱妇无乱码| 在线观看www视频免费| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲一级av第二区| 两性夫妻黄色片| 一区二区三区激情视频| 久久久国产成人免费| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成电影免费在线| 精品一区二区三区视频在线观看免费 | 韩国精品一区二区三区| 亚洲国产av新网站| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡动漫免费视频| 涩涩av久久男人的天堂| av又黄又爽大尺度在线免费看| 丁香欧美五月| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲| www.精华液| 日韩欧美一区视频在线观看| 亚洲精品国产色婷婷电影| 考比视频在线观看| 久久热在线av| 19禁男女啪啪无遮挡网站| 91老司机精品| 女性生殖器流出的白浆| 亚洲av片天天在线观看| 91av网站免费观看| 手机成人av网站| 99国产精品一区二区蜜桃av | 成年动漫av网址| 女人精品久久久久毛片| 成人av一区二区三区在线看| 这个男人来自地球电影免费观看| 亚洲专区字幕在线| 蜜桃在线观看..| 久久久精品国产亚洲av高清涩受| 欧美性长视频在线观看| 国产主播在线观看一区二区| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 亚洲精品粉嫩美女一区| www.熟女人妻精品国产| 精品亚洲成国产av| 麻豆国产av国片精品| 黄色视频在线播放观看不卡| 国产免费现黄频在线看| 欧美国产精品一级二级三级| 99国产极品粉嫩在线观看| 久久九九热精品免费| 国产精品国产高清国产av | 男女之事视频高清在线观看| 日日爽夜夜爽网站| 久久精品aⅴ一区二区三区四区| 国产成人免费观看mmmm| 黑人操中国人逼视频| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 男女边摸边吃奶| 一边摸一边做爽爽视频免费| 美女主播在线视频| 国产在线一区二区三区精| 一本—道久久a久久精品蜜桃钙片| 国产一区有黄有色的免费视频| 大片电影免费在线观看免费| 欧美老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 少妇裸体淫交视频免费看高清 | 夫妻午夜视频| 精品乱码久久久久久99久播| 国产免费视频播放在线视频| 肉色欧美久久久久久久蜜桃| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 精品国产超薄肉色丝袜足j| 中文字幕人妻熟女乱码| 色在线成人网| 国产精品 欧美亚洲| 1024香蕉在线观看| 91精品国产国语对白视频| 亚洲九九香蕉| 成年版毛片免费区| 亚洲五月婷婷丁香| 午夜精品国产一区二区电影| 久久久久视频综合| 一进一出好大好爽视频| av国产精品久久久久影院| 国产免费现黄频在线看| 欧美激情久久久久久爽电影 | 日韩欧美国产一区二区入口| 自拍欧美九色日韩亚洲蝌蚪91| 国产av一区二区精品久久| 老熟妇仑乱视频hdxx| 午夜老司机福利片| 欧美av亚洲av综合av国产av| 国产高清videossex| 亚洲精品美女久久久久99蜜臀| 男男h啪啪无遮挡| 一夜夜www| 少妇 在线观看| 久9热在线精品视频| 97在线人人人人妻| 国产精品欧美亚洲77777| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区久久| 电影成人av| 妹子高潮喷水视频| e午夜精品久久久久久久| av欧美777| 人人澡人人妻人| 一个人免费在线观看的高清视频| 美女国产高潮福利片在线看| 亚洲五月婷婷丁香| 十八禁高潮呻吟视频| 亚洲精品国产一区二区精华液| 精品乱码久久久久久99久播| 精品国产国语对白av| 精品福利永久在线观看| 悠悠久久av| 色婷婷av一区二区三区视频| 久久亚洲精品不卡| 日日夜夜操网爽| 中文字幕人妻丝袜制服| 在线观看免费视频日本深夜| 女警被强在线播放| 日韩精品免费视频一区二区三区| 黄色怎么调成土黄色| 亚洲九九香蕉| 在线观看66精品国产| 精品熟女少妇八av免费久了| 波多野结衣av一区二区av| 亚洲欧洲精品一区二区精品久久久| www.999成人在线观看| 丝袜美足系列| 亚洲av第一区精品v没综合| 国产日韩欧美视频二区| 精品一区二区三区四区五区乱码| 久热这里只有精品99| 亚洲色图综合在线观看| 高清黄色对白视频在线免费看| 国产日韩欧美视频二区| 性少妇av在线| 两个人免费观看高清视频| 国精品久久久久久国模美| 欧美激情高清一区二区三区| 亚洲三区欧美一区| 国产区一区二久久| 一进一出好大好爽视频| 亚洲av片天天在线观看| 中国美女看黄片| 久久人人97超碰香蕉20202| 91麻豆av在线| 捣出白浆h1v1| 女性被躁到高潮视频| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 在线播放国产精品三级| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 精品国产一区二区久久| 久久亚洲精品不卡| 成人精品一区二区免费| 中亚洲国语对白在线视频| 男人舔女人的私密视频| 国产精品欧美亚洲77777| 五月开心婷婷网| 老司机在亚洲福利影院| 日本一区二区免费在线视频| 欧美黑人精品巨大| 丝袜美足系列| 日韩大码丰满熟妇| 极品少妇高潮喷水抽搐| 欧美精品av麻豆av| 国产精品av久久久久免费| 国产日韩欧美视频二区| 久久久久久亚洲精品国产蜜桃av| 久久av网站| 中文字幕精品免费在线观看视频| 欧美成狂野欧美在线观看| 亚洲美女黄片视频| 天堂8中文在线网| 久久人妻熟女aⅴ| 国产一区二区三区视频了| 日韩中文字幕视频在线看片| 美女高潮喷水抽搐中文字幕| 不卡av一区二区三区| 一区在线观看完整版| 精品国产一区二区三区四区第35| 亚洲精品av麻豆狂野| 国产福利在线免费观看视频| 悠悠久久av| 国产男女内射视频| 91成年电影在线观看| 麻豆成人av在线观看| av片东京热男人的天堂| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲熟妇少妇任你| 最黄视频免费看| 一区二区日韩欧美中文字幕| 美女福利国产在线| 日韩大码丰满熟妇| 免费黄频网站在线观看国产| 精品少妇久久久久久888优播| 高清黄色对白视频在线免费看| 999精品在线视频| 久久久国产一区二区| 女人久久www免费人成看片| 一级a爱视频在线免费观看| 日本vs欧美在线观看视频| 1024香蕉在线观看| 亚洲自偷自拍图片 自拍| 国产熟女午夜一区二区三区| av欧美777| 亚洲av成人一区二区三| 久久性视频一级片| 亚洲国产毛片av蜜桃av| 怎么达到女性高潮| 电影成人av| 免费看a级黄色片| 青青草视频在线视频观看| 亚洲av第一区精品v没综合| 国产精品免费视频内射| 欧美日韩视频精品一区| 欧美日韩精品网址| 免费少妇av软件| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 久久人妻av系列| av有码第一页| 一本综合久久免费| 最近最新免费中文字幕在线| 变态另类成人亚洲欧美熟女 | 免费在线观看影片大全网站| 国产精品秋霞免费鲁丝片| 国产在线观看jvid| √禁漫天堂资源中文www| 午夜福利,免费看| 啦啦啦视频在线资源免费观看| 国产有黄有色有爽视频| 欧美日韩av久久| 免费观看a级毛片全部| 涩涩av久久男人的天堂| 国产亚洲午夜精品一区二区久久| 国产伦理片在线播放av一区| 99国产精品99久久久久| 性色av乱码一区二区三区2| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 在线观看一区二区三区激情| 国产高清videossex| 国产午夜精品久久久久久| 亚洲专区字幕在线| 最新的欧美精品一区二区| 久久久久久久国产电影| 成年女人毛片免费观看观看9 | 亚洲少妇的诱惑av| 午夜成年电影在线免费观看| 老汉色av国产亚洲站长工具| 黑人操中国人逼视频| 亚洲黑人精品在线| 国精品久久久久久国模美|