• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transfer Learning-Based Image Recognition of Nitrogen and Potassium Nutrient Stress in Rice

    2023-02-20 02:30:34CHENLisu,LIWei,FENGDaolun
    Rice Science 2023年2期

    Nitrogen (N) and potassium (K) are essential elements for rice growth.When N and K are in deficient rice,specific symptoms appear on the leaves that are similar and difficult to distinguish with the naked eye.To identify the category and degree of N and K nutrient stress in rice leaves as early as possible,we investigated two convolutional neural networks (CNNs) by scanned rice leaf images under nine nutrient stress degrees,including four different degrees of N stress [the concentration of N1 to N4 as 0,28.6,57.2 and 85.7 mg/L,respectively,with the concentration of K (K2SO4) as 89.3 mg/L],and four different degrees of K stress [the concentration of K1 to K4 as 0,22.3,44.7 and 67.0 mg/L,respectively,with the concentration of N (NH4NO3) as 114.3 mg/L],as well as a control group [CK,with the concentration of N (NH4NO3) as 114.3 mg/L and K (K2SO4) as 89.3 mg/L] under a normal condition.We chose the advanced EfficientNet-B0 model and the widely used Inception-V3 model,which are first trained separately by transfer learning,and then fused to form EVI(EfficientNet-V3 Integration) model to obtain more accurate results.In this study,the classification effects of the models were compared before and after transfer learning,and the effects of the two models after using transfer learning were also compared with the effects of EVI fusion model separately.The results proved that the use of transfer learning was effective,and the EVI model obtained a good accuracy of 97.1% on the category of rice leaf nutrient stress,which was 3.7% and 1.5%better than the Inception-V3 and EfficientNet-B0 models,and a good accuracy of 94.0% on the degree of rice leaf nutrient stress,which was 3.3% and 1.1% better than the Inception-V3 and EfficientNet-B0 models,respectively,effectively identifying the category and degree of nutrient stress in rice leaves.

    Identifying and diagnosing rice nutrient deficiencies is an integral part of scientific fertilizer application,and plays an important role in the management and decision-making of agricultural production.If nutrient stress is present,identifying the category of nutrient stress and determining the degree of nutrient stress before irreversible damage developed would effectively improve planting efficiency.Both N and K are major nutrients for rice growth and are involved in the physiological and biochemical metabolic activities of rice in different ways (Ma et al,2022).N deficiency is characterized by slow plant growth,short plant height,long and thin stem,and small and yellowing leaf.Leaf yellowing starts at the leaf tip and extends along the midrib to the base of the leaf.K is an activator of many enzymes in plants.Rice under low K stress starts with slow growth and later the leaves begin to yellow with burnt leaf tips and margins,sometimes with irregularly distributed necrotic spots on the leaves.As N deficiency,symptoms of K stress appear firstly on older leaves.In order to meet the needs of modern agricultural production,it is imperative to study an automatic observation method for the early determination of N and K nutrient deficiencies in crops.Most traditional machine learning methods focus on pre-computing key points and features of domain-specific image,and then training classifiers in the corresponding representation space (Sun et al,2018;Chen et al,2019;Saleem et al,2019;Jeyaraj et al,2022).However,these methods have some limitations,such as hand-crafted features for specific categories of data,which may not work for different tasks.In recent years,deep learning-based detection methods have entered the agricultural sector (Porikli et al,2018;Jeyaraj et al,2022),with CNN being one of the most common methods,such as plant disease damage prediction (Liu et al,2020;Krishnamoorthy et al,2021),plant disease image recognition(Ghosal et al,2018;Chen et al,2020;Sethy et al,2020;Gui et al,2021),fruit counting (Bhattarai and Karkee,2022),plant tassel stage observation (Bai et al,2018),plant species identification (W?ldchen and M?der,2018;Jeyaraj et al,2022),and nutritional defect (Ferentinos et al,2019).In the production of field,sometimes rice would appear similar symptoms under N and K stress,which affects agricultural workers to judge the growth status of rice with the experience.Therefore,this study first used deep learning to identify the types of rice stress,and then on this basis,identified the stress levels under each type.

    Fig.1.Analysis of nitrogen (N) and potassium (K) nutrient stress in rice leaves based on different models.

    When growing rice,the supply of N and K fertilizer is usually essential.However,when rice is slightly stressed by N or K,it shows similar symptoms.It is difficult to distinguish the nutritional status of rice at this time and give correct nutritional supplies only through expert experience.Therefore,to enhance the accuracy of the model for the identification of rice nutritional status,rice samples were cultivated by hydroponics under nine nutrient stress degrees,with four different degrees of N stress (N1 to N4) and K stress (K1 to K4)from extreme to slight deficiency,and a control group (CK)under normal conditions (Figs.1-A and S1;Table S1).The top-four leaves under nine nutrition levels,totaling 4 495 samples,were collected on July to September of 2013,2015 and 2016.A total of 1 930 rice leaf samples under four different N levels,2 031 samples under four different K levels and 534 samples with normal nutrition levels were collected to build the diagnosis rules and the identification models.

    All the samples were analyzed in the laboratory.First,the leaves were placed on a scanner (EPSON GT20000,Seiko Epson Corporation,Suwa,Nagano-ken,Japan) with a maximum scanning area of 11.7 × 17.0 inches and an RGB/BK color CCD line sensor.The resolution was set to 300 dpi (dots per inch). Since the number of acquired leaf images was relatively small compared to other deep learning datasets and the number of healthy leaf images was much lower than the number subjected to N and K nutrient stress,image enhancement(random scaling,flipping,rotating and mirroring) was performed on this dataset to increase the overall number with the data enhancement model in Python (Fig.S2) The Inception-V3 model was slightly weaker and slower than the EfficientNet-B0 model (Fig.1-B),probably because the EfficientNet-B0 model adjusted the network depth,width and resolution of the input network,whereas the Inception-V3 model only adjusted the depth of the network,which was less effective than the EfficientNet-B0 model.The EVI fusion model was better than the two models trained separately at identifying the category of nutrient stress and the degree of stress in rice (Fig.S3),indicating that the EVI fusion model is a best-of-breed model that can well find the optimal weight parameter matrix of the two CNN models,which was selected to fuse and obtain the final prediction results.The EVI fusion model can achieve high recognition and classification accuracy with good discriminative ability for the enhanced dataset (Fig.S2).As shown in Fig.1-B,CK leaves and leaves stressed by K deficiency were easily confused and interfered with the results,but the EVI model integrated the best results of the other two models,so it still could maintain a high discrimination ability,and the EVI model had lower misclassification results compared with the other two models.In terms of specificity,the EVI model always had a high accuracy rate,which indicated that the EVI model can accurately identify and classify most leaf nutrient stress categories,which is the most important factor to diagnosis the growth status of rice in the field.From the above three evaluation criteria (accuracy,sensitivity and specificity),it can be seen that the EVI model had good recognition and classification abilities,and its performance was superior in all aspects.

    In this enhanced rice leaf dataset,the models were trained in two ways,one directly and the other based on transfer learning,and the recognition of each category gradually improved with increasing time.Taking the rice leaf nutrient stress category as an example (Fig.1-C),the accuracies of the directly trained models were both lower than those of the models using transfer learning,and the losses of the directly trained models were both higher than those of the models using transfer learning,with the directly trained Inception-V3 model having the lowest accuracy and the highest loss score for rice leaf nutrient stress categories.To find out the reason for this situation,we trained the test Inception-V3 network model several times on the enhanced dataset.Here,the number of misjudgment samples can be calculated by using the confusion matrix of Inception-V3 model.The results showed that K deficient category was always mixed with K healthy category,and the number of recognition error images reached 10,with much higher than those of other categories,which proved our previous conjecture that the healthy category was not easily identified with images that were slightly deficient in K nutrient elements.When rice is slightly deficient in element K,the color characteristics of the leaves do not differ much from those of healthy normal leaves,and it is not surprising that this phenomenon arises because the amount of data for normal healthy leaves is small compared with the other two deficient nutrients in the original dataset,and a large number of images of healthy normal rice leaves will be needed to improve accuracy in the future.The EVI fusion model based on transfer learning fuses the information in the Inception-V3 model and EfficientNet-B0 model,compensates some defects of the Inception-V3 model,and improves the classification accuracy of EfficientNet-B0,reaching 97.1% (Fig.1-B).Taking the degrees of nutrient stress in rice leaves as an example (Fig.1-D),the overall situation was the same as the recognition classification of leaf nutrient stress categories,which further justified the use of transfer learning in this small dataset of experiments.Transfer learning not only simplifies the training of the model,but also reduces the computing space and time.However,the loss of the Efficient-B0 model and the Inception-V3 model based on transfer learning gradually approached and stabilized.As with the identification of leaf nutrient stress degree,the EVI fusion model selected the best results from the optimized Inception-V3 model and EfficientNet-B0 for fusion,so that the highest identification accuracy of 94.0% was achieved (Fig.1-B).For individual nutrient stress levels,the EVI model was also the best in terms of accuracy,with 84.7%,88.7%,86.0%,85.2%,84.6%,83.5%,88.2%,85.8% and 85.1% under different N (N1-N4) stresses,K (K1-K4) nutrient stresses and CK,respectively,while the Inception-V3 model had 74.0%,79.1%,75.3%,74.7%,73.8%,77.9%,78.3%,78.1% and 78.5%,respectively,and the EfficientNet-B0 model had 80.4%,84.7%,84.9%,83.9%,80.2%,81.6%,85.1%,84.8% and 79.9%,respectively.These data also proved the application significance of EVI model construction.The identification and classification of rice leaf nutrient stress categories outperformed those of rice leaf nutrient stress degrees (Fig.1-C and -D).The reason for this phenomenon may be due to the small amount of data in each category in the rice leaf nutrient stress degree recognition dataset,with only one-third of the categories in the dataset being rice leaf nutrient stress categories,and the model’s inadequate knowledge of their characteristics,leading to misclassification of some images (Bai et al,2018;Barbedo,2019;Saleem et al,2019).To address this issue,it can be hoped that subsequent experiments will collect a sufficient number of data images to increase the dataset as a way to improve the accuracy of model recognition and classification.

    Compared with the single model,the fusion model EVI proposed in this study made full use of the difference and complementarity of different CNN models in terms of network structure and parameters,and achieved the fusion and semantic complementarity of network models by fusing the advantages of different deep CNN models,which improved the recognition accuracy of the category and degree of N and K nutrient stresses in rice leaves,and helped to make more accurate in different environments.In addition,the model can be used for diagnosis of nutrient stress in other plant leaves.By deploying these improved models in mobile environments (e.g.portable scanners),plant pathologists and farmers will be able to quickly and easily diagnose plant diseases and take the necessary preventive measures to promote fine agriculture.

    ACKNOWLEDGEMENTS

    This study was funded by the National Natural Science Foundation of China (Grant Nos.31801255 and 52071200).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science;http://www.ricescience.org.

    File S1.Methods.

    Fig.S1.Different degrees of nitrogen and potassium nutrient stresses.

    Fig.S2.Dataset of nutrient stress type and degree of rice leaves.

    Fig.S3.Framework of EfficientNet-V3 Integration model.

    Table S1.Nutrient contents of nitrogen and potassium at different nutrient levels.

    成年美女黄网站色视频大全免费| 日韩 亚洲 欧美在线| 日韩一区二区三区影片| 亚洲少妇的诱惑av| 高清视频免费观看一区二区| 国产免费福利视频在线观看| 香蕉国产在线看| 最近最新中文字幕免费大全7| 91老司机精品| 少妇 在线观看| 国产在线一区二区三区精| 午夜福利,免费看| 国产成人精品久久二区二区91 | 国产精品 欧美亚洲| 大码成人一级视频| 久久性视频一级片| 街头女战士在线观看网站| 亚洲一区二区三区欧美精品| 亚洲人成电影观看| 汤姆久久久久久久影院中文字幕| 99香蕉大伊视频| 午夜激情久久久久久久| 嫩草影院入口| 自线自在国产av| 亚洲第一av免费看| 免费观看av网站的网址| 少妇的丰满在线观看| 国产人伦9x9x在线观看| 97精品久久久久久久久久精品| 国产精品久久久av美女十八| 一级毛片黄色毛片免费观看视频| 亚洲成国产人片在线观看| 99久久综合免费| 国产乱来视频区| 男女无遮挡免费网站观看| 叶爱在线成人免费视频播放| 免费在线观看黄色视频的| √禁漫天堂资源中文www| 一本久久精品| 午夜福利视频在线观看免费| 天天添夜夜摸| 狂野欧美激情性xxxx| 两个人看的免费小视频| 妹子高潮喷水视频| 国产一区二区三区综合在线观看| 别揉我奶头~嗯~啊~动态视频 | 少妇人妻 视频| 亚洲熟女精品中文字幕| 日本猛色少妇xxxxx猛交久久| 色播在线永久视频| 亚洲国产成人一精品久久久| 国产一区二区三区综合在线观看| 亚洲美女黄色视频免费看| svipshipincom国产片| 国产精品嫩草影院av在线观看| 无遮挡黄片免费观看| 国产成人精品福利久久| 少妇人妻 视频| 日日爽夜夜爽网站| 熟妇人妻不卡中文字幕| 99国产精品免费福利视频| 电影成人av| 性少妇av在线| 超碰成人久久| tube8黄色片| 你懂的网址亚洲精品在线观看| 免费在线观看黄色视频的| 50天的宝宝边吃奶边哭怎么回事| 午夜激情av网站| 精品久久久久久,| 99国产综合亚洲精品| 午夜老司机福利片| 国内毛片毛片毛片毛片毛片| 亚洲熟妇熟女久久| 国产亚洲精品久久久久5区| 大香蕉久久成人网| 国产精品美女特级片免费视频播放器 | 波多野结衣av一区二区av| 国产亚洲精品第一综合不卡| 在线观看免费视频网站a站| 深夜精品福利| 嫁个100分男人电影在线观看| 非洲黑人性xxxx精品又粗又长| aaaaa片日本免费| 少妇的丰满在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久 成人 亚洲| 精品卡一卡二卡四卡免费| 超碰成人久久| 久久香蕉精品热| 天天躁夜夜躁狠狠躁躁| 久久国产精品男人的天堂亚洲| 日本 av在线| 岛国视频午夜一区免费看| 久久香蕉国产精品| 露出奶头的视频| cao死你这个sao货| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面| 50天的宝宝边吃奶边哭怎么回事| www.熟女人妻精品国产| 淫妇啪啪啪对白视频| 亚洲自偷自拍图片 自拍| 亚洲精品在线美女| 精品一品国产午夜福利视频| 精品乱码久久久久久99久播| 国产精品自产拍在线观看55亚洲| 精品免费久久久久久久清纯| 如日韩欧美国产精品一区二区三区| 美女 人体艺术 gogo| 日韩欧美在线二视频| 一区二区三区国产精品乱码| 亚洲最大成人中文| 老熟妇仑乱视频hdxx| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久av美女十八| 午夜a级毛片| 视频区欧美日本亚洲| 日韩av在线大香蕉| 好男人在线观看高清免费视频 | e午夜精品久久久久久久| 狂野欧美激情性xxxx| 免费在线观看日本一区| 欧美日韩精品网址| 一进一出抽搐gif免费好疼| 亚洲国产精品999在线| 国产私拍福利视频在线观看| 国产精品精品国产色婷婷| 日韩高清综合在线| 亚洲第一欧美日韩一区二区三区| 夜夜躁狠狠躁天天躁| 色哟哟哟哟哟哟| 亚洲精品国产精品久久久不卡| 免费在线观看亚洲国产| 美国免费a级毛片| 国产av在哪里看| 婷婷六月久久综合丁香| 国产一区二区激情短视频| 一个人观看的视频www高清免费观看 | 男女之事视频高清在线观看| 黄色丝袜av网址大全| 精品国产亚洲在线| 亚洲七黄色美女视频| 在线播放国产精品三级| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| aaaaa片日本免费| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱 | 欧美日韩黄片免| 十八禁网站免费在线| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| 色综合亚洲欧美另类图片| 中文字幕人妻熟女乱码| 午夜激情av网站| 亚洲熟妇中文字幕五十中出| 极品人妻少妇av视频| 老司机在亚洲福利影院| 亚洲精品中文字幕在线视频| 国产在线精品亚洲第一网站| 国产成人免费无遮挡视频| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱 | 在线观看免费午夜福利视频| 中文字幕久久专区| 国产精品亚洲一级av第二区| 中文字幕人成人乱码亚洲影| 久久久久久大精品| 亚洲免费av在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 国产单亲对白刺激| 欧美亚洲日本最大视频资源| 日本免费a在线| 夜夜夜夜夜久久久久| 国产精品99久久99久久久不卡| 老汉色av国产亚洲站长工具| 法律面前人人平等表现在哪些方面| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 啦啦啦韩国在线观看视频| 久久人人精品亚洲av| 又大又爽又粗| 热re99久久国产66热| 村上凉子中文字幕在线| 嫩草影院精品99| cao死你这个sao货| 999久久久国产精品视频| 国产主播在线观看一区二区| 大陆偷拍与自拍| aaaaa片日本免费| 美国免费a级毛片| 精品久久久久久,| 90打野战视频偷拍视频| 99在线视频只有这里精品首页| www国产在线视频色| 波多野结衣巨乳人妻| 欧美av亚洲av综合av国产av| 真人一进一出gif抽搐免费| 91在线观看av| 美女高潮喷水抽搐中文字幕| 法律面前人人平等表现在哪些方面| 纯流量卡能插随身wifi吗| 国产成人精品久久二区二区91| 久久伊人香网站| 韩国精品一区二区三区| 国产精品久久视频播放| 欧美乱色亚洲激情| 美女高潮到喷水免费观看| www.精华液| 18禁观看日本| 久久久久国内视频| 国产亚洲精品一区二区www| 亚洲,欧美精品.| 欧美丝袜亚洲另类 | 色播亚洲综合网| 日日夜夜操网爽| 美女午夜性视频免费| a级毛片在线看网站| 成年人黄色毛片网站| 宅男免费午夜| 淫秽高清视频在线观看| 性色av乱码一区二区三区2| 久久久久久亚洲精品国产蜜桃av| 欧美激情久久久久久爽电影 | 亚洲男人的天堂狠狠| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 亚洲视频免费观看视频| 国产一区二区三区综合在线观看| 高清毛片免费观看视频网站| 日韩欧美国产在线观看| 亚洲人成网站在线播放欧美日韩| 宅男免费午夜| 99香蕉大伊视频| 日日摸夜夜添夜夜添小说| 激情视频va一区二区三区| 欧美黄色片欧美黄色片| 免费人成视频x8x8入口观看| 最新在线观看一区二区三区| 欧美一级a爱片免费观看看 | 女警被强在线播放| 亚洲欧美激情在线| av网站免费在线观看视频| 看黄色毛片网站| 日韩欧美三级三区| 日本vs欧美在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 一级毛片精品| 亚洲一区二区三区不卡视频| 国产精品综合久久久久久久免费 | 人妻丰满熟妇av一区二区三区| 亚洲第一av免费看| 国产区一区二久久| 伊人久久大香线蕉亚洲五| 黄片大片在线免费观看| 欧美绝顶高潮抽搐喷水| 国产一区在线观看成人免费| 国产一区二区三区综合在线观看| 日韩视频一区二区在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲中文字幕日韩| a级毛片在线看网站| 香蕉久久夜色| 成在线人永久免费视频| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 中文字幕最新亚洲高清| avwww免费| 一区在线观看完整版| 国产成人精品久久二区二区免费| 亚洲av五月六月丁香网| 亚洲三区欧美一区| 午夜福利免费观看在线| 日韩大尺度精品在线看网址 | 人人澡人人妻人| 国产不卡一卡二| 无人区码免费观看不卡| 一区二区三区高清视频在线| 久久久久久久久久久久大奶| 国产视频一区二区在线看| 国产成人欧美| 国产亚洲精品第一综合不卡| 国产亚洲欧美在线一区二区| 亚洲中文av在线| 在线免费观看的www视频| 久久久久久久久久久久大奶| 中出人妻视频一区二区| 不卡av一区二区三区| 日韩成人在线观看一区二区三区| 欧美日韩福利视频一区二区| 国产成人欧美| 后天国语完整版免费观看| 又紧又爽又黄一区二区| 一边摸一边抽搐一进一小说| 黄色成人免费大全| 午夜福利在线观看吧| 不卡av一区二区三区| 嫩草影院精品99| 成人欧美大片| 欧美激情极品国产一区二区三区| 窝窝影院91人妻| 黄片小视频在线播放| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| 99国产精品一区二区蜜桃av| 在线十欧美十亚洲十日本专区| 国产午夜精品久久久久久| 国产麻豆成人av免费视频| 亚洲午夜理论影院| 最好的美女福利视频网| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 成年人黄色毛片网站| 一边摸一边做爽爽视频免费| 女生性感内裤真人,穿戴方法视频| 夜夜夜夜夜久久久久| 日韩国内少妇激情av| 一级a爱片免费观看的视频| 国产成人精品无人区| 91大片在线观看| 午夜视频精品福利| 久久久精品欧美日韩精品| 成年女人毛片免费观看观看9| 女同久久另类99精品国产91| 久久久水蜜桃国产精品网| bbb黄色大片| 超碰成人久久| 国产黄a三级三级三级人| 成人18禁高潮啪啪吃奶动态图| 日本免费一区二区三区高清不卡 | 级片在线观看| 久久精品国产亚洲av香蕉五月| 自拍欧美九色日韩亚洲蝌蚪91| 国产野战对白在线观看| 国产成人欧美在线观看| 亚洲第一av免费看| 亚洲男人的天堂狠狠| 美女午夜性视频免费| 中出人妻视频一区二区| 男女下面进入的视频免费午夜 | 亚洲人成电影观看| 精品久久久久久久人妻蜜臀av | 91av网站免费观看| 亚洲欧美精品综合久久99| 午夜两性在线视频| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久| 一a级毛片在线观看| 在线观看日韩欧美| 99国产精品一区二区三区| 色在线成人网| tocl精华| 99久久99久久久精品蜜桃| 精品一品国产午夜福利视频| 99久久精品国产亚洲精品| 美国免费a级毛片| 午夜a级毛片| 中国美女看黄片| 黄色毛片三级朝国网站| 欧美日本亚洲视频在线播放| 久久中文字幕人妻熟女| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 嫩草影院精品99| 日本三级黄在线观看| 老熟妇仑乱视频hdxx| 欧美成人性av电影在线观看| 人人澡人人妻人| 国产又爽黄色视频| 一级作爱视频免费观看| 久久人人97超碰香蕉20202| 亚洲人成电影免费在线| av天堂在线播放| 夜夜夜夜夜久久久久| 色在线成人网| 国产欧美日韩综合在线一区二区| 搞女人的毛片| 亚洲av成人av| www.精华液| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 亚洲精品中文字幕一二三四区| 人人澡人人妻人| 一a级毛片在线观看| 99久久国产精品久久久| 欧美成人午夜精品| 欧美日韩亚洲综合一区二区三区_| 一级毛片高清免费大全| 日韩欧美三级三区| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 1024香蕉在线观看| 日本vs欧美在线观看视频| 亚洲三区欧美一区| 免费看美女性在线毛片视频| 美国免费a级毛片| 香蕉丝袜av| 亚洲专区字幕在线| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 欧美乱妇无乱码| 亚洲一区中文字幕在线| 男女床上黄色一级片免费看| 极品人妻少妇av视频| 97人妻天天添夜夜摸| 久久香蕉国产精品| 人妻久久中文字幕网| 最好的美女福利视频网| 久99久视频精品免费| 久久国产精品影院| 露出奶头的视频| 国产人伦9x9x在线观看| 午夜福利18| 久久九九热精品免费| 激情视频va一区二区三区| 真人一进一出gif抽搐免费| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 亚洲第一av免费看| 99久久国产精品久久久| 国产视频一区二区在线看| 一夜夜www| 9色porny在线观看| 日韩成人在线观看一区二区三区| 国产色视频综合| 又黄又爽又免费观看的视频| 国产精品 国内视频| 动漫黄色视频在线观看| 国产国语露脸激情在线看| 村上凉子中文字幕在线| 色尼玛亚洲综合影院| 岛国视频午夜一区免费看| 国产精品野战在线观看| or卡值多少钱| 日韩欧美国产在线观看| 久久狼人影院| 性欧美人与动物交配| 亚洲中文字幕日韩| 天堂动漫精品| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 一个人免费在线观看的高清视频| 脱女人内裤的视频| 国产欧美日韩一区二区三| 久久久国产成人精品二区| 悠悠久久av| 操出白浆在线播放| 久久国产精品男人的天堂亚洲| 午夜成年电影在线免费观看| 亚洲精品美女久久av网站| 亚洲av片天天在线观看| 一个人观看的视频www高清免费观看 | 亚洲精华国产精华精| 亚洲国产欧美网| 香蕉丝袜av| 天天一区二区日本电影三级 | 黑人巨大精品欧美一区二区蜜桃| 成人三级做爰电影| 人人妻人人爽人人添夜夜欢视频| 中文字幕色久视频| 亚洲av成人不卡在线观看播放网| 精品日产1卡2卡| 精品乱码久久久久久99久播| 99久久99久久久精品蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 亚洲专区国产一区二区| 国产成人影院久久av| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 国产熟女xx| 国产亚洲欧美在线一区二区| 脱女人内裤的视频| 国产成年人精品一区二区| 国产日韩一区二区三区精品不卡| 国产不卡一卡二| 国产单亲对白刺激| 无遮挡黄片免费观看| 亚洲一区高清亚洲精品| 免费看a级黄色片| 国产亚洲欧美精品永久| 黄色女人牲交| 熟女少妇亚洲综合色aaa.| 国产真人三级小视频在线观看| 少妇的丰满在线观看| 亚洲国产精品sss在线观看| 丰满人妻熟妇乱又伦精品不卡| 19禁男女啪啪无遮挡网站| 我的亚洲天堂| 在线永久观看黄色视频| 国产片内射在线| 变态另类丝袜制服| 天天一区二区日本电影三级 | 人人妻,人人澡人人爽秒播| av福利片在线| 一进一出抽搐gif免费好疼| 亚洲色图 男人天堂 中文字幕| 亚洲精品国产区一区二| 欧美日韩一级在线毛片| 91字幕亚洲| 波多野结衣一区麻豆| 久久精品91蜜桃| 中国美女看黄片| 变态另类成人亚洲欧美熟女 | 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av高清一级| 一区二区三区激情视频| 女人精品久久久久毛片| 黄片小视频在线播放| 一级毛片精品| 成人亚洲精品一区在线观看| 97超级碰碰碰精品色视频在线观看| 精品国产乱子伦一区二区三区| 午夜免费观看网址| 在线播放国产精品三级| 1024香蕉在线观看| 精品第一国产精品| 国产三级黄色录像| 9191精品国产免费久久| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 亚洲国产高清在线一区二区三 | 亚洲激情在线av| 国产一区二区三区综合在线观看| 欧美一级毛片孕妇| 波多野结衣av一区二区av| 久久草成人影院| 亚洲成av片中文字幕在线观看| 亚洲专区字幕在线| 两性夫妻黄色片| 亚洲欧美日韩无卡精品| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 丝袜在线中文字幕| 精品久久久久久成人av| 91成年电影在线观看| 国产精品98久久久久久宅男小说| 精品一区二区三区四区五区乱码| 男女下面进入的视频免费午夜 | 麻豆av在线久日| 成人特级黄色片久久久久久久| av片东京热男人的天堂| 午夜福利,免费看| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| av欧美777| 国产成人精品久久二区二区免费| 18禁裸乳无遮挡免费网站照片 | 1024香蕉在线观看| 一本大道久久a久久精品| 真人一进一出gif抽搐免费| 午夜福利欧美成人| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 久久久国产欧美日韩av| 一级毛片女人18水好多| 母亲3免费完整高清在线观看| www.自偷自拍.com| 国产人伦9x9x在线观看| 制服丝袜大香蕉在线| 亚洲国产欧美日韩在线播放| 精品久久久久久成人av| 亚洲狠狠婷婷综合久久图片| 亚洲 欧美 日韩 在线 免费| 婷婷丁香在线五月| 女性生殖器流出的白浆| 亚洲欧美激情在线| 精品午夜福利视频在线观看一区| 国产午夜精品久久久久久| 一二三四在线观看免费中文在| 女人精品久久久久毛片| 国产一区二区三区综合在线观看| 九色亚洲精品在线播放| 精品无人区乱码1区二区| 午夜福利,免费看| 亚洲一区中文字幕在线| 非洲黑人性xxxx精品又粗又长| 在线免费观看的www视频| 欧美精品啪啪一区二区三区| 黄色片一级片一级黄色片| 国产免费av片在线观看野外av| 亚洲色图综合在线观看| 国产精品自产拍在线观看55亚洲| 熟妇人妻久久中文字幕3abv| 亚洲五月天丁香| 国产成人欧美| 99久久国产精品久久久| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 午夜福利,免费看| 国产1区2区3区精品| 日韩欧美免费精品| 国产精品1区2区在线观看.| 真人一进一出gif抽搐免费| 国产真人三级小视频在线观看| 热re99久久国产66热| 青草久久国产| 精品一品国产午夜福利视频| 在线观看舔阴道视频| 久9热在线精品视频| 国产蜜桃级精品一区二区三区| 搞女人的毛片| 国产成人一区二区三区免费视频网站| 99热只有精品国产| 欧美日韩精品网址| 国产精品亚洲av一区麻豆| 久久久久久久午夜电影| 一区二区三区激情视频| 亚洲国产中文字幕在线视频| 久久中文字幕人妻熟女|