• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa

    2023-02-20 13:16:58YidanZhang張一丹ChunshuangChu楚春雙ShengHang杭升YonghuiZhang張勇輝QuanZheng鄭權(quán)QingLi李青WengangBi畢文剛andZihuiZhang張紫輝
    Chinese Physics B 2023年1期
    關(guān)鍵詞:李青

    Yidan Zhang(張一丹), Chunshuang Chu(楚春雙), Sheng Hang(杭升), Yonghui Zhang(張勇輝),Quan Zheng(鄭權(quán)), Qing Li(李青), Wengang Bi(畢文剛), and Zihui Zhang(張紫輝),?

    1State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300401,China

    2School of Electronics and Information Engineering,Hebei University of Technology,Key Laboratory of Electronic Materials and Devices of Tianjin,Tianjin 300401,China

    3School of Electrical Engineering,Hebei University of Technology,Tianjin 300401,China.

    4State Key Engineering Center of Flat-Panel-Display Glass and Equipment,Shijiazhuang 050035,China

    Keywords: μLED,polarization mismatch,secondary etched mesa,hole injection

    1. Introduction

    When compared with organic light-emitting diodes(LEDs),III-nitride based LEDs have advantages of low power consumption, long operation life-time, high luminous efficiency, quick response, etc.[1–3]Meanwhile, improved light extraction efficiency (LEE), better current spreading and enhanced heat dissipation can be further achieved by reducing the LED chip size,modifying the inclined sidewall angle and so on.[4–6]Thus, the micro-light emitting diodes (μLEDs)are considered as promising candidates in applications of implantable optoelectronic equipment, display, optical communication, biomedical detection, etc.[7]However, as the size of the LED chip becomes smaller, the external quantum efficiency(EQE)and the optical power decrease significantly,[8,9]which is due to the sidewall damages on the mesa. These surface damages are caused by the plasma-assisted dry etching process. They form carrier leakage channels and produce nonradiative recombination.[10,11]In order to reduce the influence of the defected region on the optoelectronic properties for GaN-based μLEDs, the surface and sidewall defects for μLEDs can be repaired by optimizing the chip fabrication process. For example, the defects on mesa sidewalls can be reduced by optimizing the annealing time and using chemical treatment.[12,13]Moreover,an insulation passivation layer,e.g., SiO2deposited by plasma-enhanced chemical vapor deposition(PECVD)or atomic layer deposition(ALD)systems,can also annihilate surface defects for μLEDs.[14,15]According to our recent report,a resistive ITO/p-GaN junction at the mesa edge for GaN-based μLEDs can function as a current blocking layer,and as a result,the holes can be kept apart from the mesa edge.[16]The current leakage and the surface recombination can be further decreased if one can both make a more resistive junction and generate the energy barriers simultaneously at the mesa periphery. For that goal,our group proposed an ITO/Ta2O5/p-GaN periphery junction at the μLED mesa edge.[17]The most significant advantage of this design is that the large relative dielectric constant of 26 for the Ta2O5layer can generate energy barriers in the p-GaN layer,and this helps to confine the holes in the central region for the μLED mesa.According to the report by Kouet al.,[10]the hole injection can be promoted when the surface recombination can be significantly suppressed. Nevertheless, there is little possibility of completely eliminating the hole diffusion to the mesa edge.Hence, it becomes increasingly important that the hole injection efficiency shall be enhanced for GaN-based μLEDs.

    In this work, we design and fabricate a GaNbased μLED with a p-GaN/p-Al0.25Ga0.75N/p-GaN structure.Such p-GaN/p-Al0.25Ga0.75N/p-GaN structure can generate polarization-induced electric field that can help to make“hot”holes. In addition,a secondary etched mesa is also fabricated and passivated by using SiO2insulating layer.By doing so,the current can be effectively confined in the non-defected area,which suppresses the nonradiative recombination in the mesa edge. As a result,the hole injection can be improved while the surface nonradiative recombination can be decreased. This in turn improves the EQE and reduces the leakage current for the proposed μLED.

    2. Structure design and parameters

    In order to show the effectiveness of the proposed GaNbased μLED on the improvement for the optoelectronic characteristics, the epitaxial wafers for GaN-based μLEDs are grown on [0001]-oriented sapphire substrate by using metalorganic chemical vapor deposition (MOCVD) system. Both μLED wafers have a 2 μm thick GaN layer with the electron concentration of 5×1018cm-3. After that, 5 pairs of In0.15Ga0.85N/GaN multiple quantum wells (MQWs) are grown to produce the peak emission wavelength of~450 nm.The thicknesses of the quantum wells and the quantum barriers are~3 nm and~12 nm, respectively. Then, a 25 nm thick p-Al0.25Ga0.75N electron blocking layer (p-EBL) with the hole concentration of 3×1017cm-3is utilized to reduce the electron leakage from MQWs. Next, an 80 nm thick p-GaN layer and a 10 nm thick p+-GaN layer serve as the hole injection layer for the reference μLED wafer, for which the hole concentrations are estimated to be 3×1017cm-3and 1×1021cm-3, respectively. Nevertheless, different from the reference μLED wafer, the proposed μLED wafer has a 3 nm thick p-Al0.25Ga0.75N layer with the hole concentration of 3×1017cm-3inserted into the p-GaN layer, so that a 30 nm p-GaN/3 nm p-Al0.25Ga0.75N/50 nm p-GaN structure can be formed. Different μLEDs have been fabricated such that devices A and B are made of the reference and the proposed μLED wafers in Figs. 1(a) and 1(b), respectively. The scanning electron microscope(SEM)image for the fabricated μLED is shown in Fig.1(c). Details regarding the chip fabrication processes will be presented subsequently.We have conducted the cross-sectional transmission electron microscope(TEM) measurement in the p-type region for devices A and B that are presented in Figs. 1(d) and 1(e), respectively. We can see that the p+-GaN layer,the p-GaN layer and the p-EBL are grown as the pre-set thickness for device A.Moreover,the thin p-Al0.25Ga0.75N layer with the thickness of~3 nm has also been inserted into the p-GaN layer during the epitaxial growth process.

    Fig.1. Schematic diagrams for (a) device A and (b) device B with the p-GaN/p-Al0.25Ga0.75N/p-GaN structure and secondary etched mesa.(c)SEM image for the fabricated μLED with the chip size of 40×40 μm2. Cross-sectional TEM images of the p-type region for(d)device A and(e)device B.

    The fabrication processes for the two μLEDs are as follows. Firstly,for both devices,a square mesa is patterned and dry etched by using the inductively coupled plasma(ICP)system to expose the n-GaN layer. The mesa size is 40×40 μm2and the mesa height is 500 nm. Then,the secondary mesa for device B is etched on both sides of the p-type region. The height and the width for the secondary mesa are~60 nm and~30 μm, respectively. For both devices, the SiO2insulating layer of~200 nm is deposited on the mesa sidewalls by using PECVD system, which is used to passivate the sidewalls defects and isolate the contact between the p-electrode and the n-GaN layer. After patterning the SiO2insulating layer so that the metal contact regions can be exposed, a thin Ni/Au(10 nm/10 nm) is deposited on the p+-GaN layer serving as the current spreading layer. The Ni/Au is annealed in the oxygen environment at the temperature of 450°C for 3 min to form the ohmic contact.[18]On the top of the Ni/Au current spreading layer, we deposit Ni/Au (10 nm/200 nm) so that the Ni/Au/Ni/Au p-type electrode is formed. Next, the Ti/Al/Ti/Au(20 nm/30 nm/60 nm/100 nm)is deposited on the n-GaN layer as the n-type ohmic contact.

    The two μLEDs are numerically investigated by using APSYS software so that an in-depth understanding such as carrier transport and recombination processes can be obtained. The physical equations including Poisson’s equation,Schr¨odinger equation, drift-diffusion equation, etc. are selfconsistently solved.[19]The Shockley–Read–Hall (SRH) recombination lifetime is set to 100 ns and the Auger recombination coefficient is 1×10-30cm6/s in our model for the nonradiative recombination process.[20]The band offset ratio between the conduction band and valence band is set to 0.7/0.3 for the InGaN/GaN MQWs.[10]The LEE for the studied blue μLEDs is set to 60% by compromising our measured EQE and the reported value.[21]Additionally, we also set the defect model in our simulations. The electron trap level is set at 0.24 eV below the conduction band (i.e.,Ec-0.24 eV),for which the trap density and the capture cross section are 1×1013cm-3and 3.4×10-17cm2, respectively.[10,22]The hole trap level is set at 0.46 eV above the valence band(i.e.,Ev+0.46 eV), for which the trap density and the capture cross section are 1.6×1013cm-3and 2.1×10-15cm2,respectively.[10,23]Other important parameters in our simulation model can also be found in Ref.[24].

    3. Results and discussion

    By using a calibrated integrating sphere, we show the measured electroluminescence (EL) spectra in terms of various injection current densities for devices A and B in Figs.2(a)and 2(b), respectively. Note, the measured devices are not packaged with bare μLED dies, so that only part of the photons can be collected by our optical fiber. It shows that the EL intensity for devices A and B increases as the current density increases from 50 A/cm2to 200 A/cm2. Meanwhile, the EL intensity for device B is always stronger than that for device A at the same current density level. The inset in Fig.2(a)shows the illuminating device taken under the optical microscope system. The blue emission with the peak wavelength of~445 nm can be observed,which agrees with the set InN composition in the MQWs.

    Fig.2. Measured EL spectra for (a) device A and (b) device B at varying injection current density levels. The inset in (a) shows the image for the illuminating μLED at the current density of 200 A/cm2.

    Fig.3.(a)Measured and(b)calculated EQE and optical power density as a function of the injection current density for devices A and B,respectively.

    In order to better understand the impact of the proposed p-GaN/p-Al0.25Ga0.75N/p-GaN structure and the secondary etched mesa of the p-type region,we then experimentally and numerically obtain the EQE and optical power density at various injection current density levels for devices A and B in Figs. 3(a) and 3(b), respectively. We can see that the measured EQE and optical power density for device B are both higher than those for device A, which is consistent with the trend of the calculated results in Fig.3(b). This also indicates the reliability of our simulation model. The results presented in Fig. 3(a) are also consistent with the EL profiles in Fig. 2.At the current density of 200 A/cm2, the measured efficiency droop levels are 65.2% and 43.8% for devices A and B, respectively according to Fig.3(a). These values are 23.7%and 15.6%for devices A and B,respectively according to the numerical results in Fig.3(b). The reduced efficiency droop obtained both experimentally and numerically for device B can be well attributed to the increased hole injection.[25]

    In order to reveal the underlying physical mechanism for the enhanced EQE and optical power for device B, we calculate the electric field and the hole concentration profiles for devices A and B in Figs. 4(a)–4(c), respectively. Figure 4(a) shows that the polarization electric field is formed at the multiple heterojunction interfaces for the p-GaN/p-Al0.25Ga0.75N/p-GaN structure. We define that the positive electric field is along the [0001] orientation. When we look into the electric field profile in the thin p-Al0.25Ga0.75N layer,we can infer that the holes may lose energy as they travel through the thin p-Al0.25Ga0.75N layer. To better investigate the net energy (W) that the holes obtain from the p-type region for devices A and B,we integrate the electric field by following the equationW=eEfield·dx,in whicheis electron charge,Efielddenotes the electric field profile andlrepresents the integration range. The values ofWobtained by the holes are-0.09 eV and-0.18 eV for devices A and B at the current density of 200 A/cm2, respectively. The negative value ofWmeans that the holes obtain the energy from the p-type region and become “hot”. Therefore, the injection of holes into the MQWs can be effectively promoted and the radiative recombination in the whole active region can be improved for device B according to Fig. 4(b). Figure 4(c) presents the lateral hole concentration distribution in the last quantum well closest to p-EBL.It shows that the hole concentration in the mesa sidewalls region of device B is lower than that of device A,while the hole concentration in the middle mesa region of device B is higher than that of device A.

    Fig.4. (a) Numerically calculated electric field profiles for devices A and B with the p-GaN/p-Al0.25Ga0.75N/p-GaN. (b) Vertical hole concentration profiles in the MQW region and(c)lateral hole distribution in the last quantum well closest to the p-EBL for devices A and B.Data are calculated at the injection current density of 200 A/cm2.

    It is worth noting that the secondary etched mesa for device B also contains surface defects and these are also considered in our physical model. Hence, it is necessary to extract the recombination current for devices A and B. Figures 5(a)and 5(b) show the calculated radiative recombination current density and SRH recombination current density for devices A and B, respectively. According to Fig. 5(a), we can find that the radiative recombination for device B is significantly higher than that for device A. Nevertheless, Fig. 5(b) demonstrates that the SRH recombination current density for device A becomes larger. Note, the inset of Fig. 5(a) presents the lateral radiative recombination rate in the last quantum well closest to p-EBL for devices A and B. We can see that neither of the two devices has strong radiative recombination rate at the defected mesa edge, while the radiative recombination rate in the central mesa region is higher for device B thanks to the enhanced hole injection efficiency therein. The inset of Fig. 5(b) demonstrates that the defected mesa regions have a significant SRH nonradiative recombination rate. However,the secondary etched mesa helps suppress the SRH nonradiative recombination rate at the mesa edge for device B when compared with device A.Therefore,with the assistance of our physical calculations, we further confirm that the p-GaN/p-Al0.25Ga0.75N/p-GaN structure can produce hot holes and favor the hole injection into the MQW region.In the meanwhile,the secondary etched mesa can effectively suppress the SRH nonradiative recombination at the defected mesa edges. We also find that the newly generated surface defects at the secondary etched mesa edge sacrifice neither the hole injection nor the optical power.

    It is known that the surface defects at the mesa sidewalls provide current leakage channels. Thus, the current–voltage(I–V)characteristics for the two μLEDs are measured and investigated, which are shown in Fig.6. When the two μLEDs are reversed biased at the voltage of-5 V,the leakage current for device B is almost one order of magnitude smaller than that for device A. The on/off current ratios at the biases of-5 V and 5 V are 108and 109for devices A and B, respectively.The reduced leakage current and the increased on/off current ratio infer that device B can effectively suppress the surface nonradiative recombination and reduce the leakage current on the mesa sidewalls. We also find that the forward voltage for device B is reduced when compared with device A,and this is due to the hot holes and the enhanced hole injection efficiency.

    Fig.5. (a)Radiative recombination current density and(b)SRH recombination current density as a function of injection current density for devices A and B.The insets in(a)and(b)show the lateral radiative recombination rate and the lateral SRH nonradiative recombination rate in the last quantum well closest to the p-EBL layer,respectively.

    Fig.6. Measured I–V characteristics in semi-log scale for devices A and B,respectively.

    4. Conclusion

    The secondary etched mesa and p-GaN/p-Al0.25Ga0.75N/p-GaN structure are proposed and the detailed analysis has been conducted for GaN-based μLEDs in this work. By using the p-GaN/p-Al0.25Ga0.75N/p-GaN structure,the polarization induced electric field therein can increase the kinetic energy for holes and hence the holes are more efficiently injected into the MQWs. For that reason, the EQE is increased by 155.6% at the current density of 200 A/cm2and the efficiency droop is suppressed to 43.8% for the proposed μLED.Meanwhile,the secondary etched mesa can also suppress the hole diffusion towards the mesa sidewalls and confine the holes into the central mesa region. Correspondingly, the surface SRH nonradiative recombination and the leakage current can be obtained and a high on/off current ratio of 109can be generated for the proposed μLED.Therefore,we strongly believe that the findings in this work are very helpful for the community to better understand GaN-based μLEDs and the proposed structure paves a new way for making highefficiency and strong-reliability GaN-based μLEDs.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62074050 and 61975051); Research Fund by State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology(Grant Nos.EERI PI2020008 and EERIPD2021012); and Joint Research Project for Tunghsu Group and Hebei University of Technology (Grant No.HI1909).

    猜你喜歡
    李青
    紙鳶風(fēng)與少年
    攝影與攝像(2020年8期)2020-09-10 07:22:44
    一次轟鳴
    李青作品
    反思錯(cuò)因正確解答
    新絲路
    金秋(2019年18期)2019-12-19 09:11:30
    青花爺
    燈光
    各有所好
    愛(ài)你(2017年16期)2017-11-24 15:44:21
    各有所好
    糊涂小伙為愛(ài)走歪路
    又爽又黄a免费视频| 亚洲欧洲国产日韩| 亚洲av中文av极速乱| 我的老师免费观看完整版| 欧美xxⅹ黑人| 国产av码专区亚洲av| 亚洲色图av天堂| 亚洲av在线观看美女高潮| 嫩草影院入口| 国产国拍精品亚洲av在线观看| 成人国产麻豆网| 久久99精品国语久久久| 免费观看av网站的网址| 国产成人一区二区在线| 观看免费一级毛片| 秋霞在线观看毛片| 2021少妇久久久久久久久久久| 精品人妻偷拍中文字幕| 国产精品久久久久久久电影| 国产精品国产av在线观看| videos熟女内射| 成人鲁丝片一二三区免费| 在线免费十八禁| 亚洲aⅴ乱码一区二区在线播放| 日日撸夜夜添| 国产av码专区亚洲av| 欧美激情国产日韩精品一区| 国产成人精品一,二区| 特大巨黑吊av在线直播| 精品人妻熟女av久视频| 一个人观看的视频www高清免费观看| 久久ye,这里只有精品| 国产成人免费观看mmmm| 日本色播在线视频| 日本黄大片高清| .国产精品久久| 国产欧美亚洲国产| av在线亚洲专区| 欧美 日韩 精品 国产| 少妇 在线观看| 日本一二三区视频观看| 日本wwww免费看| 蜜臀久久99精品久久宅男| 免费观看在线日韩| 亚洲av二区三区四区| 一个人看视频在线观看www免费| 又黄又爽又刺激的免费视频.| 久久久久久久大尺度免费视频| 免费在线观看成人毛片| 一级毛片我不卡| 免费观看无遮挡的男女| 午夜亚洲福利在线播放| 亚洲内射少妇av| 一级毛片 在线播放| 欧美精品人与动牲交sv欧美| 欧美三级亚洲精品| 亚洲成色77777| 国产精品99久久久久久久久| 波多野结衣巨乳人妻| 国产综合懂色| 欧美成人午夜免费资源| 韩国高清视频一区二区三区| 黄色怎么调成土黄色| 国产男女内射视频| 99久久精品热视频| av免费观看日本| 亚洲一区二区三区欧美精品 | 日韩电影二区| 亚洲欧美日韩另类电影网站 | 内地一区二区视频在线| 亚洲成人久久爱视频| 久久久久网色| 成人无遮挡网站| 色播亚洲综合网| 偷拍熟女少妇极品色| 一级毛片久久久久久久久女| 亚洲精品乱久久久久久| 欧美日韩精品成人综合77777| 永久网站在线| 又黄又爽又刺激的免费视频.| 嘟嘟电影网在线观看| 亚洲欧美一区二区三区国产| 午夜老司机福利剧场| 少妇裸体淫交视频免费看高清| 有码 亚洲区| 国产伦精品一区二区三区视频9| 亚洲精品乱码久久久久久按摩| 肉色欧美久久久久久久蜜桃 | 性插视频无遮挡在线免费观看| 欧美性猛交╳xxx乱大交人| 在线观看av片永久免费下载| 联通29元200g的流量卡| 性色av一级| 久久99热这里只有精品18| 国产综合懂色| 国产欧美日韩一区二区三区在线 | 国产精品久久久久久精品电影小说 | 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 国产精品女同一区二区软件| 亚洲欧美中文字幕日韩二区| a级毛色黄片| 久久久久国产精品人妻一区二区| av国产精品久久久久影院| 日本欧美国产在线视频| 亚洲人与动物交配视频| 人妻 亚洲 视频| 亚洲av二区三区四区| 亚洲精品成人久久久久久| 午夜激情久久久久久久| 一本一本综合久久| 亚洲丝袜综合中文字幕| 成人毛片a级毛片在线播放| 亚洲精品乱久久久久久| 日韩免费高清中文字幕av| 国产爽快片一区二区三区| 国产精品99久久久久久久久| 美女主播在线视频| 一个人观看的视频www高清免费观看| 91精品国产九色| 亚洲性久久影院| 亚洲真实伦在线观看| 激情五月婷婷亚洲| 亚洲精品中文字幕在线视频 | 中文乱码字字幕精品一区二区三区| 乱码一卡2卡4卡精品| 夫妻性生交免费视频一级片| 各种免费的搞黄视频| 最后的刺客免费高清国语| 亚洲av在线观看美女高潮| 亚洲成色77777| 亚洲欧洲国产日韩| 亚洲欧美清纯卡通| 久久精品熟女亚洲av麻豆精品| 国产免费福利视频在线观看| 国产精品三级大全| 日本av手机在线免费观看| 亚洲经典国产精华液单| 国产亚洲5aaaaa淫片| 亚洲国产色片| 国产成人免费观看mmmm| 人体艺术视频欧美日本| 亚洲天堂国产精品一区在线| 日韩一区二区三区影片| 成人高潮视频无遮挡免费网站| 99精国产麻豆久久婷婷| 蜜桃亚洲精品一区二区三区| 亚州av有码| 99视频精品全部免费 在线| 久久人人爽人人片av| 日韩强制内射视频| 黄片无遮挡物在线观看| 色5月婷婷丁香| 国产一区有黄有色的免费视频| 日韩一区二区三区影片| 少妇 在线观看| 中文乱码字字幕精品一区二区三区| 久久久午夜欧美精品| 成年女人看的毛片在线观看| 中文乱码字字幕精品一区二区三区| 99re6热这里在线精品视频| 80岁老熟妇乱子伦牲交| 免费看av在线观看网站| 成人免费观看视频高清| 爱豆传媒免费全集在线观看| av.在线天堂| 中国美白少妇内射xxxbb| 久热久热在线精品观看| 免费av不卡在线播放| 菩萨蛮人人尽说江南好唐韦庄| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| 日本色播在线视频| 一本久久精品| 亚洲人成网站在线观看播放| 日本色播在线视频| 国产精品嫩草影院av在线观看| 国产淫语在线视频| 亚洲欧美精品专区久久| 欧美成人a在线观看| 国产在线一区二区三区精| 国产一区二区在线观看日韩| 麻豆久久精品国产亚洲av| 国产成人一区二区在线| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 亚洲高清免费不卡视频| 可以在线观看毛片的网站| 欧美亚洲 丝袜 人妻 在线| 深爱激情五月婷婷| 伊人久久国产一区二区| 日韩av不卡免费在线播放| 搡老乐熟女国产| 欧美成人精品欧美一级黄| 成人亚洲精品一区在线观看 | 国产亚洲5aaaaa淫片| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 欧美日韩视频高清一区二区三区二| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 丰满乱子伦码专区| 熟妇人妻不卡中文字幕| 久久精品人妻少妇| 亚洲国产精品成人综合色| 日日啪夜夜爽| 男人舔奶头视频| 久久97久久精品| 天堂俺去俺来也www色官网| 99久久九九国产精品国产免费| 免费av毛片视频| 日本欧美国产在线视频| 国产成人freesex在线| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久| 国产亚洲精品久久久com| 国产又色又爽无遮挡免| www.色视频.com| 色婷婷久久久亚洲欧美| 人人妻人人看人人澡| 精品久久久久久久久亚洲| 丰满少妇做爰视频| 亚洲欧美成人精品一区二区| 免费av毛片视频| xxx大片免费视频| 精品人妻偷拍中文字幕| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 欧美日韩亚洲高清精品| 又爽又黄a免费视频| 日韩视频在线欧美| 国产日韩欧美在线精品| 高清在线视频一区二区三区| 亚洲精品中文字幕在线视频 | 国产精品人妻久久久久久| 久久久久久久久久久丰满| 亚洲精品国产av成人精品| 精品一区在线观看国产| 亚洲色图av天堂| 国产精品久久久久久久久免| 久久久久网色| 能在线免费看毛片的网站| 我要看日韩黄色一级片| 久久精品国产自在天天线| 亚洲真实伦在线观看| 国产精品一区二区性色av| 你懂的网址亚洲精品在线观看| 黄色配什么色好看| 国产毛片在线视频| 亚洲人成网站在线观看播放| 大又大粗又爽又黄少妇毛片口| 日韩av不卡免费在线播放| 少妇猛男粗大的猛烈进出视频 | 青春草亚洲视频在线观看| 免费黄网站久久成人精品| 国内精品美女久久久久久| 视频中文字幕在线观看| 国产探花在线观看一区二区| 成人国产麻豆网| 丝袜脚勾引网站| 国产一区二区三区综合在线观看 | 天堂中文最新版在线下载 | 日日撸夜夜添| 99re6热这里在线精品视频| 国产免费又黄又爽又色| 国产精品国产三级国产专区5o| 国产成人a∨麻豆精品| 欧美一区二区亚洲| 国产一区二区亚洲精品在线观看| 国产亚洲91精品色在线| 丰满人妻一区二区三区视频av| 草草在线视频免费看| 久久国产乱子免费精品| 日本猛色少妇xxxxx猛交久久| 成年人午夜在线观看视频| 在线观看一区二区三区激情| 亚洲电影在线观看av| 综合色丁香网| 尾随美女入室| 夫妻午夜视频| 天堂网av新在线| 久久精品国产自在天天线| 亚洲欧美日韩另类电影网站 | 免费观看在线日韩| 亚洲国产最新在线播放| 久久久久久久久久成人| 亚洲精品国产色婷婷电影| 国产色爽女视频免费观看| 国产一区二区三区av在线| 成年人午夜在线观看视频| av福利片在线观看| 国产av国产精品国产| 国产精品人妻久久久久久| 黑人高潮一二区| 中文字幕免费在线视频6| 欧美亚洲 丝袜 人妻 在线| 日韩亚洲欧美综合| 色综合色国产| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| www.色视频.com| 极品教师在线视频| 久久99蜜桃精品久久| 在线 av 中文字幕| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久免费av| 丝袜美腿在线中文| 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 中文字幕久久专区| 爱豆传媒免费全集在线观看| 免费黄频网站在线观看国产| 精品一区二区免费观看| 亚洲人成网站在线播| 亚洲欧美精品专区久久| 建设人人有责人人尽责人人享有的 | 成人午夜精彩视频在线观看| 国产精品三级大全| 夜夜爽夜夜爽视频| 国产欧美另类精品又又久久亚洲欧美| 直男gayav资源| 日本色播在线视频| 嘟嘟电影网在线观看| 久久精品综合一区二区三区| 国产亚洲一区二区精品| 国产极品天堂在线| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花 | www.色视频.com| 亚洲国产成人一精品久久久| 少妇人妻一区二区三区视频| 男人狂女人下面高潮的视频| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 黄色配什么色好看| 亚洲aⅴ乱码一区二区在线播放| 欧美激情国产日韩精品一区| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| 久久影院123| 男女无遮挡免费网站观看| 亚洲av男天堂| 国产色爽女视频免费观看| 国产精品久久久久久精品电影| 特大巨黑吊av在线直播| 精华霜和精华液先用哪个| 欧美3d第一页| 中文欧美无线码| 三级国产精品片| 午夜福利高清视频| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 久久精品国产亚洲网站| 日本与韩国留学比较| 久久精品夜色国产| 国产极品天堂在线| 久久精品久久久久久久性| 亚洲一区二区三区欧美精品 | 国产真实伦视频高清在线观看| 97精品久久久久久久久久精品| 在线看a的网站| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 久久久久久伊人网av| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 亚洲精品日韩av片在线观看| 国产一级毛片在线| av播播在线观看一区| 色视频www国产| 只有这里有精品99| 美女视频免费永久观看网站| 在线观看一区二区三区| 国产在线一区二区三区精| 街头女战士在线观看网站| 热99国产精品久久久久久7| 在线天堂最新版资源| 国产在视频线精品| 成年女人看的毛片在线观看| 国产淫片久久久久久久久| 纵有疾风起免费观看全集完整版| 最近2019中文字幕mv第一页| 亚洲精品自拍成人| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 亚洲精品456在线播放app| 日日啪夜夜撸| 99热全是精品| 少妇人妻一区二区三区视频| 成年av动漫网址| 亚洲精品日韩av片在线观看| 三级国产精品片| 久久99蜜桃精品久久| 成人鲁丝片一二三区免费| 国产精品无大码| 香蕉精品网在线| 在线观看一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲怡红院男人天堂| 高清在线视频一区二区三区| 精品午夜福利在线看| 联通29元200g的流量卡| 男女国产视频网站| 99re6热这里在线精品视频| 久久精品久久精品一区二区三区| 亚洲经典国产精华液单| 春色校园在线视频观看| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 国产乱人视频| 国产乱来视频区| 只有这里有精品99| 国产欧美日韩一区二区三区在线 | 九九爱精品视频在线观看| 成人国产麻豆网| 美女视频免费永久观看网站| 永久免费av网站大全| 国产高清国产精品国产三级 | 国产淫片久久久久久久久| 白带黄色成豆腐渣| 大片电影免费在线观看免费| 免费看av在线观看网站| 亚洲电影在线观看av| 亚洲av一区综合| 欧美97在线视频| 久久国产乱子免费精品| 亚洲国产精品成人久久小说| av福利片在线观看| 国产精品女同一区二区软件| 观看免费一级毛片| av播播在线观看一区| 国产片特级美女逼逼视频| 精品酒店卫生间| 九色成人免费人妻av| 欧美丝袜亚洲另类| 色5月婷婷丁香| 最近最新中文字幕免费大全7| 麻豆精品久久久久久蜜桃| 精品国产一区二区三区久久久樱花 | 下体分泌物呈黄色| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 成人二区视频| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 亚洲精品自拍成人| 日韩亚洲欧美综合| 久久热精品热| 99热这里只有是精品在线观看| 精品人妻视频免费看| 欧美丝袜亚洲另类| 免费观看a级毛片全部| 婷婷色av中文字幕| av国产免费在线观看| 久久久久久久大尺度免费视频| 亚洲精品日韩av片在线观看| 成年av动漫网址| 亚洲国产av新网站| 久久久久久久久久久丰满| 国产精品一及| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 赤兔流量卡办理| 我要看日韩黄色一级片| 国产探花极品一区二区| 欧美激情在线99| 成人免费观看视频高清| 最后的刺客免费高清国语| 肉色欧美久久久久久久蜜桃 | 在线a可以看的网站| 午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 成人无遮挡网站| 精品国产一区二区三区久久久樱花 | freevideosex欧美| 干丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆| 狠狠精品人妻久久久久久综合| 九九久久精品国产亚洲av麻豆| 国产在线一区二区三区精| 精品一区二区免费观看| 成人美女网站在线观看视频| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 一级二级三级毛片免费看| 国产精品99久久久久久久久| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说 | 大又大粗又爽又黄少妇毛片口| 黑人高潮一二区| 成年女人在线观看亚洲视频 | 中文资源天堂在线| 欧美一区二区亚洲| 亚洲色图av天堂| 插阴视频在线观看视频| 纵有疾风起免费观看全集完整版| 免费在线观看成人毛片| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 精品一区二区免费观看| 亚洲三级黄色毛片| a级毛片免费高清观看在线播放| 国产又色又爽无遮挡免| 国产高清有码在线观看视频| 黄色日韩在线| 国产亚洲av嫩草精品影院| 成人毛片60女人毛片免费| 久久人人爽人人片av| 免费观看a级毛片全部| 久久久久久久久久久丰满| xxx大片免费视频| 美女被艹到高潮喷水动态| 99九九线精品视频在线观看视频| 高清视频免费观看一区二区| av卡一久久| 欧美区成人在线视频| 一本一本综合久久| 蜜臀久久99精品久久宅男| 欧美日韩亚洲高清精品| av免费在线看不卡| 亚洲三级黄色毛片| 精品一区在线观看国产| 看免费成人av毛片| 春色校园在线视频观看| 日韩av在线免费看完整版不卡| 免费看av在线观看网站| 国产成人免费观看mmmm| 91精品一卡2卡3卡4卡| 18禁在线无遮挡免费观看视频| 久久久亚洲精品成人影院| 亚洲久久久久久中文字幕| av又黄又爽大尺度在线免费看| 欧美+日韩+精品| 最后的刺客免费高清国语| 国产极品天堂在线| 国产综合懂色| 在线观看美女被高潮喷水网站| 欧美日韩一区二区视频在线观看视频在线 | 成人综合一区亚洲| 视频中文字幕在线观看| 日本免费在线观看一区| 一级黄片播放器| 又大又黄又爽视频免费| 可以在线观看毛片的网站| 国产成人免费无遮挡视频| av在线蜜桃| 亚洲av不卡在线观看| 国产黄a三级三级三级人| 亚洲国产日韩一区二区| 亚洲欧美中文字幕日韩二区| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看 | 亚洲av福利一区| 亚洲欧美日韩东京热| 国产片特级美女逼逼视频| av免费观看日本| 成人一区二区视频在线观看| 欧美激情在线99| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| 亚洲av.av天堂| 国产伦在线观看视频一区| 亚洲最大成人手机在线| 日韩人妻高清精品专区| 久久久久性生活片| 汤姆久久久久久久影院中文字幕| 亚洲精品中文字幕在线视频 | 亚洲精品色激情综合| 成年女人在线观看亚洲视频 | 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| 不卡视频在线观看欧美| 免费观看性生交大片5| 色综合色国产| 嫩草影院入口| 人人妻人人澡人人爽人人夜夜| 一本久久精品| 麻豆久久精品国产亚洲av| 国产精品熟女久久久久浪| 永久免费av网站大全| 久久精品国产亚洲网站| av免费观看日本| 97在线人人人人妻| 一级片'在线观看视频| 国产成人午夜福利电影在线观看| 久久综合国产亚洲精品| 九草在线视频观看| 日韩免费高清中文字幕av| 久久久久久九九精品二区国产| 午夜激情福利司机影院| 成人黄色视频免费在线看| 成年av动漫网址| 亚洲av免费在线观看| 成人美女网站在线观看视频| 国产亚洲最大av| 黄色一级大片看看| 欧美成人一区二区免费高清观看| 1000部很黄的大片| 99热全是精品| 亚洲欧洲国产日韩| 午夜精品一区二区三区免费看| 欧美国产精品一级二级三级 | 大香蕉久久网| 亚洲高清免费不卡视频| 免费观看在线日韩|