• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa

    2023-02-20 13:16:58YidanZhang張一丹ChunshuangChu楚春雙ShengHang杭升YonghuiZhang張勇輝QuanZheng鄭權(quán)QingLi李青WengangBi畢文剛andZihuiZhang張紫輝
    Chinese Physics B 2023年1期
    關(guān)鍵詞:李青

    Yidan Zhang(張一丹), Chunshuang Chu(楚春雙), Sheng Hang(杭升), Yonghui Zhang(張勇輝),Quan Zheng(鄭權(quán)), Qing Li(李青), Wengang Bi(畢文剛), and Zihui Zhang(張紫輝),?

    1State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300401,China

    2School of Electronics and Information Engineering,Hebei University of Technology,Key Laboratory of Electronic Materials and Devices of Tianjin,Tianjin 300401,China

    3School of Electrical Engineering,Hebei University of Technology,Tianjin 300401,China.

    4State Key Engineering Center of Flat-Panel-Display Glass and Equipment,Shijiazhuang 050035,China

    Keywords: μLED,polarization mismatch,secondary etched mesa,hole injection

    1. Introduction

    When compared with organic light-emitting diodes(LEDs),III-nitride based LEDs have advantages of low power consumption, long operation life-time, high luminous efficiency, quick response, etc.[1–3]Meanwhile, improved light extraction efficiency (LEE), better current spreading and enhanced heat dissipation can be further achieved by reducing the LED chip size,modifying the inclined sidewall angle and so on.[4–6]Thus, the micro-light emitting diodes (μLEDs)are considered as promising candidates in applications of implantable optoelectronic equipment, display, optical communication, biomedical detection, etc.[7]However, as the size of the LED chip becomes smaller, the external quantum efficiency(EQE)and the optical power decrease significantly,[8,9]which is due to the sidewall damages on the mesa. These surface damages are caused by the plasma-assisted dry etching process. They form carrier leakage channels and produce nonradiative recombination.[10,11]In order to reduce the influence of the defected region on the optoelectronic properties for GaN-based μLEDs, the surface and sidewall defects for μLEDs can be repaired by optimizing the chip fabrication process. For example, the defects on mesa sidewalls can be reduced by optimizing the annealing time and using chemical treatment.[12,13]Moreover,an insulation passivation layer,e.g., SiO2deposited by plasma-enhanced chemical vapor deposition(PECVD)or atomic layer deposition(ALD)systems,can also annihilate surface defects for μLEDs.[14,15]According to our recent report,a resistive ITO/p-GaN junction at the mesa edge for GaN-based μLEDs can function as a current blocking layer,and as a result,the holes can be kept apart from the mesa edge.[16]The current leakage and the surface recombination can be further decreased if one can both make a more resistive junction and generate the energy barriers simultaneously at the mesa periphery. For that goal,our group proposed an ITO/Ta2O5/p-GaN periphery junction at the μLED mesa edge.[17]The most significant advantage of this design is that the large relative dielectric constant of 26 for the Ta2O5layer can generate energy barriers in the p-GaN layer,and this helps to confine the holes in the central region for the μLED mesa.According to the report by Kouet al.,[10]the hole injection can be promoted when the surface recombination can be significantly suppressed. Nevertheless, there is little possibility of completely eliminating the hole diffusion to the mesa edge.Hence, it becomes increasingly important that the hole injection efficiency shall be enhanced for GaN-based μLEDs.

    In this work, we design and fabricate a GaNbased μLED with a p-GaN/p-Al0.25Ga0.75N/p-GaN structure.Such p-GaN/p-Al0.25Ga0.75N/p-GaN structure can generate polarization-induced electric field that can help to make“hot”holes. In addition,a secondary etched mesa is also fabricated and passivated by using SiO2insulating layer.By doing so,the current can be effectively confined in the non-defected area,which suppresses the nonradiative recombination in the mesa edge. As a result,the hole injection can be improved while the surface nonradiative recombination can be decreased. This in turn improves the EQE and reduces the leakage current for the proposed μLED.

    2. Structure design and parameters

    In order to show the effectiveness of the proposed GaNbased μLED on the improvement for the optoelectronic characteristics, the epitaxial wafers for GaN-based μLEDs are grown on [0001]-oriented sapphire substrate by using metalorganic chemical vapor deposition (MOCVD) system. Both μLED wafers have a 2 μm thick GaN layer with the electron concentration of 5×1018cm-3. After that, 5 pairs of In0.15Ga0.85N/GaN multiple quantum wells (MQWs) are grown to produce the peak emission wavelength of~450 nm.The thicknesses of the quantum wells and the quantum barriers are~3 nm and~12 nm, respectively. Then, a 25 nm thick p-Al0.25Ga0.75N electron blocking layer (p-EBL) with the hole concentration of 3×1017cm-3is utilized to reduce the electron leakage from MQWs. Next, an 80 nm thick p-GaN layer and a 10 nm thick p+-GaN layer serve as the hole injection layer for the reference μLED wafer, for which the hole concentrations are estimated to be 3×1017cm-3and 1×1021cm-3, respectively. Nevertheless, different from the reference μLED wafer, the proposed μLED wafer has a 3 nm thick p-Al0.25Ga0.75N layer with the hole concentration of 3×1017cm-3inserted into the p-GaN layer, so that a 30 nm p-GaN/3 nm p-Al0.25Ga0.75N/50 nm p-GaN structure can be formed. Different μLEDs have been fabricated such that devices A and B are made of the reference and the proposed μLED wafers in Figs. 1(a) and 1(b), respectively. The scanning electron microscope(SEM)image for the fabricated μLED is shown in Fig.1(c). Details regarding the chip fabrication processes will be presented subsequently.We have conducted the cross-sectional transmission electron microscope(TEM) measurement in the p-type region for devices A and B that are presented in Figs. 1(d) and 1(e), respectively. We can see that the p+-GaN layer,the p-GaN layer and the p-EBL are grown as the pre-set thickness for device A.Moreover,the thin p-Al0.25Ga0.75N layer with the thickness of~3 nm has also been inserted into the p-GaN layer during the epitaxial growth process.

    Fig.1. Schematic diagrams for (a) device A and (b) device B with the p-GaN/p-Al0.25Ga0.75N/p-GaN structure and secondary etched mesa.(c)SEM image for the fabricated μLED with the chip size of 40×40 μm2. Cross-sectional TEM images of the p-type region for(d)device A and(e)device B.

    The fabrication processes for the two μLEDs are as follows. Firstly,for both devices,a square mesa is patterned and dry etched by using the inductively coupled plasma(ICP)system to expose the n-GaN layer. The mesa size is 40×40 μm2and the mesa height is 500 nm. Then,the secondary mesa for device B is etched on both sides of the p-type region. The height and the width for the secondary mesa are~60 nm and~30 μm, respectively. For both devices, the SiO2insulating layer of~200 nm is deposited on the mesa sidewalls by using PECVD system, which is used to passivate the sidewalls defects and isolate the contact between the p-electrode and the n-GaN layer. After patterning the SiO2insulating layer so that the metal contact regions can be exposed, a thin Ni/Au(10 nm/10 nm) is deposited on the p+-GaN layer serving as the current spreading layer. The Ni/Au is annealed in the oxygen environment at the temperature of 450°C for 3 min to form the ohmic contact.[18]On the top of the Ni/Au current spreading layer, we deposit Ni/Au (10 nm/200 nm) so that the Ni/Au/Ni/Au p-type electrode is formed. Next, the Ti/Al/Ti/Au(20 nm/30 nm/60 nm/100 nm)is deposited on the n-GaN layer as the n-type ohmic contact.

    The two μLEDs are numerically investigated by using APSYS software so that an in-depth understanding such as carrier transport and recombination processes can be obtained. The physical equations including Poisson’s equation,Schr¨odinger equation, drift-diffusion equation, etc. are selfconsistently solved.[19]The Shockley–Read–Hall (SRH) recombination lifetime is set to 100 ns and the Auger recombination coefficient is 1×10-30cm6/s in our model for the nonradiative recombination process.[20]The band offset ratio between the conduction band and valence band is set to 0.7/0.3 for the InGaN/GaN MQWs.[10]The LEE for the studied blue μLEDs is set to 60% by compromising our measured EQE and the reported value.[21]Additionally, we also set the defect model in our simulations. The electron trap level is set at 0.24 eV below the conduction band (i.e.,Ec-0.24 eV),for which the trap density and the capture cross section are 1×1013cm-3and 3.4×10-17cm2, respectively.[10,22]The hole trap level is set at 0.46 eV above the valence band(i.e.,Ev+0.46 eV), for which the trap density and the capture cross section are 1.6×1013cm-3and 2.1×10-15cm2,respectively.[10,23]Other important parameters in our simulation model can also be found in Ref.[24].

    3. Results and discussion

    By using a calibrated integrating sphere, we show the measured electroluminescence (EL) spectra in terms of various injection current densities for devices A and B in Figs.2(a)and 2(b), respectively. Note, the measured devices are not packaged with bare μLED dies, so that only part of the photons can be collected by our optical fiber. It shows that the EL intensity for devices A and B increases as the current density increases from 50 A/cm2to 200 A/cm2. Meanwhile, the EL intensity for device B is always stronger than that for device A at the same current density level. The inset in Fig.2(a)shows the illuminating device taken under the optical microscope system. The blue emission with the peak wavelength of~445 nm can be observed,which agrees with the set InN composition in the MQWs.

    Fig.2. Measured EL spectra for (a) device A and (b) device B at varying injection current density levels. The inset in (a) shows the image for the illuminating μLED at the current density of 200 A/cm2.

    Fig.3.(a)Measured and(b)calculated EQE and optical power density as a function of the injection current density for devices A and B,respectively.

    In order to better understand the impact of the proposed p-GaN/p-Al0.25Ga0.75N/p-GaN structure and the secondary etched mesa of the p-type region,we then experimentally and numerically obtain the EQE and optical power density at various injection current density levels for devices A and B in Figs. 3(a) and 3(b), respectively. We can see that the measured EQE and optical power density for device B are both higher than those for device A, which is consistent with the trend of the calculated results in Fig.3(b). This also indicates the reliability of our simulation model. The results presented in Fig. 3(a) are also consistent with the EL profiles in Fig. 2.At the current density of 200 A/cm2, the measured efficiency droop levels are 65.2% and 43.8% for devices A and B, respectively according to Fig.3(a). These values are 23.7%and 15.6%for devices A and B,respectively according to the numerical results in Fig.3(b). The reduced efficiency droop obtained both experimentally and numerically for device B can be well attributed to the increased hole injection.[25]

    In order to reveal the underlying physical mechanism for the enhanced EQE and optical power for device B, we calculate the electric field and the hole concentration profiles for devices A and B in Figs. 4(a)–4(c), respectively. Figure 4(a) shows that the polarization electric field is formed at the multiple heterojunction interfaces for the p-GaN/p-Al0.25Ga0.75N/p-GaN structure. We define that the positive electric field is along the [0001] orientation. When we look into the electric field profile in the thin p-Al0.25Ga0.75N layer,we can infer that the holes may lose energy as they travel through the thin p-Al0.25Ga0.75N layer. To better investigate the net energy (W) that the holes obtain from the p-type region for devices A and B,we integrate the electric field by following the equationW=eEfield·dx,in whicheis electron charge,Efielddenotes the electric field profile andlrepresents the integration range. The values ofWobtained by the holes are-0.09 eV and-0.18 eV for devices A and B at the current density of 200 A/cm2, respectively. The negative value ofWmeans that the holes obtain the energy from the p-type region and become “hot”. Therefore, the injection of holes into the MQWs can be effectively promoted and the radiative recombination in the whole active region can be improved for device B according to Fig. 4(b). Figure 4(c) presents the lateral hole concentration distribution in the last quantum well closest to p-EBL.It shows that the hole concentration in the mesa sidewalls region of device B is lower than that of device A,while the hole concentration in the middle mesa region of device B is higher than that of device A.

    Fig.4. (a) Numerically calculated electric field profiles for devices A and B with the p-GaN/p-Al0.25Ga0.75N/p-GaN. (b) Vertical hole concentration profiles in the MQW region and(c)lateral hole distribution in the last quantum well closest to the p-EBL for devices A and B.Data are calculated at the injection current density of 200 A/cm2.

    It is worth noting that the secondary etched mesa for device B also contains surface defects and these are also considered in our physical model. Hence, it is necessary to extract the recombination current for devices A and B. Figures 5(a)and 5(b) show the calculated radiative recombination current density and SRH recombination current density for devices A and B, respectively. According to Fig. 5(a), we can find that the radiative recombination for device B is significantly higher than that for device A. Nevertheless, Fig. 5(b) demonstrates that the SRH recombination current density for device A becomes larger. Note, the inset of Fig. 5(a) presents the lateral radiative recombination rate in the last quantum well closest to p-EBL for devices A and B. We can see that neither of the two devices has strong radiative recombination rate at the defected mesa edge, while the radiative recombination rate in the central mesa region is higher for device B thanks to the enhanced hole injection efficiency therein. The inset of Fig. 5(b) demonstrates that the defected mesa regions have a significant SRH nonradiative recombination rate. However,the secondary etched mesa helps suppress the SRH nonradiative recombination rate at the mesa edge for device B when compared with device A.Therefore,with the assistance of our physical calculations, we further confirm that the p-GaN/p-Al0.25Ga0.75N/p-GaN structure can produce hot holes and favor the hole injection into the MQW region.In the meanwhile,the secondary etched mesa can effectively suppress the SRH nonradiative recombination at the defected mesa edges. We also find that the newly generated surface defects at the secondary etched mesa edge sacrifice neither the hole injection nor the optical power.

    It is known that the surface defects at the mesa sidewalls provide current leakage channels. Thus, the current–voltage(I–V)characteristics for the two μLEDs are measured and investigated, which are shown in Fig.6. When the two μLEDs are reversed biased at the voltage of-5 V,the leakage current for device B is almost one order of magnitude smaller than that for device A. The on/off current ratios at the biases of-5 V and 5 V are 108and 109for devices A and B, respectively.The reduced leakage current and the increased on/off current ratio infer that device B can effectively suppress the surface nonradiative recombination and reduce the leakage current on the mesa sidewalls. We also find that the forward voltage for device B is reduced when compared with device A,and this is due to the hot holes and the enhanced hole injection efficiency.

    Fig.5. (a)Radiative recombination current density and(b)SRH recombination current density as a function of injection current density for devices A and B.The insets in(a)and(b)show the lateral radiative recombination rate and the lateral SRH nonradiative recombination rate in the last quantum well closest to the p-EBL layer,respectively.

    Fig.6. Measured I–V characteristics in semi-log scale for devices A and B,respectively.

    4. Conclusion

    The secondary etched mesa and p-GaN/p-Al0.25Ga0.75N/p-GaN structure are proposed and the detailed analysis has been conducted for GaN-based μLEDs in this work. By using the p-GaN/p-Al0.25Ga0.75N/p-GaN structure,the polarization induced electric field therein can increase the kinetic energy for holes and hence the holes are more efficiently injected into the MQWs. For that reason, the EQE is increased by 155.6% at the current density of 200 A/cm2and the efficiency droop is suppressed to 43.8% for the proposed μLED.Meanwhile,the secondary etched mesa can also suppress the hole diffusion towards the mesa sidewalls and confine the holes into the central mesa region. Correspondingly, the surface SRH nonradiative recombination and the leakage current can be obtained and a high on/off current ratio of 109can be generated for the proposed μLED.Therefore,we strongly believe that the findings in this work are very helpful for the community to better understand GaN-based μLEDs and the proposed structure paves a new way for making highefficiency and strong-reliability GaN-based μLEDs.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 62074050 and 61975051); Research Fund by State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology(Grant Nos.EERI PI2020008 and EERIPD2021012); and Joint Research Project for Tunghsu Group and Hebei University of Technology (Grant No.HI1909).

    猜你喜歡
    李青
    紙鳶風(fēng)與少年
    攝影與攝像(2020年8期)2020-09-10 07:22:44
    一次轟鳴
    李青作品
    反思錯(cuò)因正確解答
    新絲路
    金秋(2019年18期)2019-12-19 09:11:30
    青花爺
    燈光
    各有所好
    愛(ài)你(2017年16期)2017-11-24 15:44:21
    各有所好
    糊涂小伙為愛(ài)走歪路
    ponron亚洲| 欧美日本亚洲视频在线播放| 欧美老熟妇乱子伦牲交| 在线观看午夜福利视频| www.精华液| 久久国产亚洲av麻豆专区| 黑人巨大精品欧美一区二区mp4| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女 | 无限看片的www在线观看| 亚洲成人久久性| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 色综合欧美亚洲国产小说| 咕卡用的链子| 日韩欧美国产一区二区入口| 亚洲性夜色夜夜综合| 欧美日韩一级在线毛片| 在线观看免费高清a一片| 久久久久久免费高清国产稀缺| 国产av一区二区精品久久| 免费人成视频x8x8入口观看| 日本三级黄在线观看| 国产精品1区2区在线观看.| 国产精品久久久av美女十八| 精品免费久久久久久久清纯| 亚洲男人的天堂狠狠| 国产精品久久久久成人av| 日韩欧美国产一区二区入口| 国产伦人伦偷精品视频| 亚洲免费av在线视频| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 久久香蕉国产精品| 国产成人av教育| 国产激情欧美一区二区| 动漫黄色视频在线观看| 国产精品影院久久| 亚洲色图综合在线观看| 免费看十八禁软件| 一级片免费观看大全| 可以免费在线观看a视频的电影网站| 真人做人爱边吃奶动态| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 国产亚洲精品久久久久久毛片| 成人三级黄色视频| 亚洲av第一区精品v没综合| 在线av久久热| 久久精品亚洲熟妇少妇任你| 久久亚洲精品不卡| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 麻豆成人av在线观看| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 在线观看免费高清a一片| 日本五十路高清| or卡值多少钱| 国产精品亚洲av一区麻豆| 欧美日韩国产亚洲二区| 日韩欧美精品v在线| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 日韩精品中文字幕看吧| 欧美黑人欧美精品刺激| 麻豆国产av国片精品| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| 免费大片18禁| 久久伊人香网站| 日本成人三级电影网站| 高清日韩中文字幕在线| 好男人在线观看高清免费视频| 成人美女网站在线观看视频| 97碰自拍视频| 日本a在线网址| 91麻豆av在线| 亚洲成人免费电影在线观看| 九色成人免费人妻av| 熟女人妻精品中文字幕| 熟妇人妻久久中文字幕3abv| 国产免费av片在线观看野外av| 一区二区三区免费毛片| 啦啦啦韩国在线观看视频| 欧美一区二区精品小视频在线| 精品久久国产蜜桃| 久久久国产成人精品二区| 国产探花极品一区二区| 男女做爰动态图高潮gif福利片| 亚洲精品影视一区二区三区av| 直男gayav资源| 久久国产精品影院| 亚洲国产欧洲综合997久久,| 国产中年淑女户外野战色| 欧美日本视频| 搡女人真爽免费视频火全软件 | 91久久精品电影网| 亚洲av第一区精品v没综合| 精品午夜福利视频在线观看一区| 亚洲人成网站在线播放欧美日韩| 麻豆国产97在线/欧美| 一进一出抽搐动态| 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 毛片一级片免费看久久久久 | av专区在线播放| 亚洲专区中文字幕在线| 国产精品自产拍在线观看55亚洲| 中文字幕免费在线视频6| h日本视频在线播放| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 欧美日本视频| 亚洲av.av天堂| 18禁裸乳无遮挡免费网站照片| 淫妇啪啪啪对白视频| 日本免费一区二区三区高清不卡| 亚洲国产欧美人成| 91麻豆av在线| 又紧又爽又黄一区二区| 亚洲最大成人av| 久久久国产成人精品二区| 国产白丝娇喘喷水9色精品| 国产欧美日韩一区二区三| 亚洲最大成人手机在线| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 国产精品久久久久久精品电影| 国产91精品成人一区二区三区| 亚洲成人免费电影在线观看| 久久精品久久久久久噜噜老黄 | 此物有八面人人有两片| 美女黄网站色视频| 欧美黑人巨大hd| 51国产日韩欧美| 九色国产91popny在线| 免费看光身美女| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 黄色丝袜av网址大全| 白带黄色成豆腐渣| 午夜福利高清视频| 久久婷婷人人爽人人干人人爱| 欧美性猛交╳xxx乱大交人| 国产淫片久久久久久久久 | 国产成人啪精品午夜网站| 日韩欧美在线乱码| 麻豆成人av在线观看| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 欧美日韩黄片免| 18禁在线播放成人免费| 亚洲av不卡在线观看| 欧美区成人在线视频| 哪里可以看免费的av片| 精品欧美国产一区二区三| 麻豆成人午夜福利视频| 亚洲自偷自拍三级| 搡老妇女老女人老熟妇| 亚洲成av人片免费观看| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 欧美一区二区国产精品久久精品| 亚洲精品久久国产高清桃花| 亚洲avbb在线观看| 天天一区二区日本电影三级| 欧美又色又爽又黄视频| 亚洲av成人av| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 亚洲精品成人久久久久久| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 国产精品一区二区三区四区久久| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| or卡值多少钱| 日韩大尺度精品在线看网址| 久久精品国产亚洲av香蕉五月| 99在线视频只有这里精品首页| 久久精品国产亚洲av涩爱 | 亚洲国产精品久久男人天堂| 亚洲精品在线观看二区| 精品欧美国产一区二区三| 国产免费男女视频| 高清日韩中文字幕在线| 91麻豆av在线| 久久久久久九九精品二区国产| 女生性感内裤真人,穿戴方法视频| 男插女下体视频免费在线播放| av专区在线播放| 亚洲专区中文字幕在线| 深爱激情五月婷婷| 99热精品在线国产| 中文字幕人成人乱码亚洲影| 无人区码免费观看不卡| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| 久久伊人香网站| 国产精品久久久久久亚洲av鲁大| 性色avwww在线观看| 在线观看舔阴道视频| 国产精品,欧美在线| 免费在线观看成人毛片| 亚洲精品在线美女| 观看美女的网站| 国内精品久久久久精免费| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 国产精品野战在线观看| 美女黄网站色视频| 蜜桃久久精品国产亚洲av| 亚洲 国产 在线| 老鸭窝网址在线观看| 99精品在免费线老司机午夜| 亚洲美女视频黄频| 欧美黄色淫秽网站| 女同久久另类99精品国产91| 欧美性猛交╳xxx乱大交人| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 国产亚洲av嫩草精品影院| 欧美+日韩+精品| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 女同久久另类99精品国产91| 91久久精品国产一区二区成人| 看黄色毛片网站| 精品一区二区免费观看| 如何舔出高潮| 日本五十路高清| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 非洲黑人性xxxx精品又粗又长| 国产老妇女一区| 性色av乱码一区二区三区2| av在线老鸭窝| 黄色女人牲交| 婷婷丁香在线五月| 日本五十路高清| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 我要看日韩黄色一级片| 成人精品一区二区免费| 亚州av有码| 欧美另类亚洲清纯唯美| 国产精品影院久久| 简卡轻食公司| 国产免费一级a男人的天堂| 久久6这里有精品| 午夜视频国产福利| 久久久久久久久久黄片| 丰满人妻熟妇乱又伦精品不卡| 久久久久亚洲av毛片大全| 午夜精品在线福利| 亚洲电影在线观看av| 观看美女的网站| 天堂av国产一区二区熟女人妻| 我的女老师完整版在线观看| 内地一区二区视频在线| 日韩成人在线观看一区二区三区| 99热这里只有是精品在线观看 | 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| www.www免费av| 欧美绝顶高潮抽搐喷水| 我要搜黄色片| 国产亚洲精品av在线| 一二三四社区在线视频社区8| 别揉我奶头 嗯啊视频| 国产真实伦视频高清在线观看 | 少妇的逼水好多| 国产成年人精品一区二区| 午夜福利成人在线免费观看| 18禁黄网站禁片免费观看直播| 国产精品美女特级片免费视频播放器| 亚洲成人免费电影在线观看| 亚洲黑人精品在线| 欧美不卡视频在线免费观看| 亚洲av第一区精品v没综合| 免费av观看视频| 男女床上黄色一级片免费看| 亚洲人成网站高清观看| 88av欧美| 欧美国产日韩亚洲一区| 日本精品一区二区三区蜜桃| 欧美中文日本在线观看视频| 亚洲精品在线观看二区| 老司机午夜十八禁免费视频| 午夜福利在线在线| 日本撒尿小便嘘嘘汇集6| 人妻夜夜爽99麻豆av| 亚洲精华国产精华精| 久久久久久久久久成人| 观看美女的网站| 9191精品国产免费久久| 国产精品三级大全| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄 | 不卡一级毛片| 欧美激情国产日韩精品一区| 精品人妻一区二区三区麻豆 | 长腿黑丝高跟| xxxwww97欧美| 伦理电影大哥的女人| 九九久久精品国产亚洲av麻豆| 久久久国产成人免费| 日本熟妇午夜| 日本精品一区二区三区蜜桃| 美女高潮的动态| 在线a可以看的网站| 少妇的逼好多水| 色综合欧美亚洲国产小说| 亚洲第一区二区三区不卡| 亚洲狠狠婷婷综合久久图片| 中文字幕免费在线视频6| 老熟妇仑乱视频hdxx| 欧美成人性av电影在线观看| 国产成人a区在线观看| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看| 精品不卡国产一区二区三区| 男插女下体视频免费在线播放| 久久国产精品影院| 久久久久九九精品影院| 99视频精品全部免费 在线| 嫩草影院入口| 变态另类成人亚洲欧美熟女| 18禁裸乳无遮挡免费网站照片| 亚洲精品一卡2卡三卡4卡5卡| 欧美zozozo另类| 国内精品一区二区在线观看| 女人十人毛片免费观看3o分钟| 国产精品亚洲美女久久久| a级毛片a级免费在线| 窝窝影院91人妻| 国产成人福利小说| 脱女人内裤的视频| 床上黄色一级片| 日日夜夜操网爽| 床上黄色一级片| 可以在线观看毛片的网站| 欧美黑人欧美精品刺激| 国产精品电影一区二区三区| 国产一区二区在线av高清观看| 脱女人内裤的视频| 久久久久久大精品| 成人永久免费在线观看视频| 国产伦人伦偷精品视频| 欧美不卡视频在线免费观看| 午夜福利在线观看吧| av福利片在线观看| 男插女下体视频免费在线播放| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 精品人妻熟女av久视频| 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| ponron亚洲| bbb黄色大片| 男人舔奶头视频| 欧美xxxx性猛交bbbb| 午夜福利高清视频| 99热这里只有是精品在线观看 | 亚洲天堂国产精品一区在线| 亚洲18禁久久av| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 中文字幕熟女人妻在线| 一个人看视频在线观看www免费| 亚洲av第一区精品v没综合| 人妻制服诱惑在线中文字幕| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 成人av一区二区三区在线看| aaaaa片日本免费| 无遮挡黄片免费观看| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 成人亚洲精品av一区二区| 亚洲美女视频黄频| 国产高清三级在线| 久久久久久久午夜电影| 亚洲,欧美,日韩| 欧美成人性av电影在线观看| 日本成人三级电影网站| 精品一区二区三区视频在线| 又粗又爽又猛毛片免费看| 在线免费观看不下载黄p国产 | 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 男女视频在线观看网站免费| 午夜两性在线视频| 久99久视频精品免费| 好男人电影高清在线观看| 免费在线观看亚洲国产| 欧美在线黄色| 国产 一区 欧美 日韩| 亚洲av成人av| 中文资源天堂在线| 夜夜爽天天搞| 亚洲中文字幕一区二区三区有码在线看| 一级作爱视频免费观看| 国产精品影院久久| 成人亚洲精品av一区二区| 日韩欧美一区二区三区在线观看| 高潮久久久久久久久久久不卡| 亚洲内射少妇av| 赤兔流量卡办理| 听说在线观看完整版免费高清| 日韩国内少妇激情av| 天天躁日日操中文字幕| 国内精品美女久久久久久| 无人区码免费观看不卡| 欧美在线黄色| 又黄又爽又刺激的免费视频.| 国产高清视频在线观看网站| 国产精品不卡视频一区二区 | 成人特级黄色片久久久久久久| 最近在线观看免费完整版| 国产乱人视频| 特大巨黑吊av在线直播| 丰满的人妻完整版| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 国产色爽女视频免费观看| 国产黄a三级三级三级人| 在线观看舔阴道视频| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐动态| 日韩中字成人| 一本精品99久久精品77| 亚洲av日韩精品久久久久久密| 欧美激情国产日韩精品一区| 亚洲精品久久国产高清桃花| 日韩免费av在线播放| 亚洲成a人片在线一区二区| 婷婷色综合大香蕉| 高清在线国产一区| 国产精品三级大全| 欧美精品啪啪一区二区三区| 国产精华一区二区三区| 亚洲精品在线观看二区| 日本三级黄在线观看| 天堂动漫精品| 亚洲一区二区三区不卡视频| 欧美成人a在线观看| 精品一区二区三区人妻视频| 国产日本99.免费观看| 午夜a级毛片| 精品久久久久久久久久免费视频| 亚洲无线在线观看| 久久久久久久精品吃奶| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 国产 一区 欧美 日韩| 欧美日韩中文字幕国产精品一区二区三区| 国产免费男女视频| 午夜福利视频1000在线观看| 91午夜精品亚洲一区二区三区 | 国产白丝娇喘喷水9色精品| 久久九九热精品免费| av天堂在线播放| 午夜福利成人在线免费观看| 欧美精品国产亚洲| 欧美绝顶高潮抽搐喷水| 国产亚洲av嫩草精品影院| 人人妻,人人澡人人爽秒播| 老司机福利观看| 欧美黑人欧美精品刺激| 欧美乱色亚洲激情| 美女cb高潮喷水在线观看| 午夜福利在线在线| 99久久成人亚洲精品观看| 哪里可以看免费的av片| 少妇熟女aⅴ在线视频| 国产成人影院久久av| 91久久精品电影网| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 欧美绝顶高潮抽搐喷水| 欧美乱妇无乱码| 色在线成人网| 日本一本二区三区精品| 在线观看美女被高潮喷水网站 | 99久久无色码亚洲精品果冻| 久久久久久九九精品二区国产| 国产精品久久久久久久久免 | 国产av一区在线观看免费| 亚洲国产欧美人成| 免费无遮挡裸体视频| 午夜精品久久久久久毛片777| 亚洲精品日韩av片在线观看| 欧美一级a爱片免费观看看| 极品教师在线免费播放| 亚洲中文字幕日韩| 欧美3d第一页| 男女床上黄色一级片免费看| 老司机深夜福利视频在线观看| 日韩高清综合在线| 日本与韩国留学比较| 在线播放国产精品三级| 丰满乱子伦码专区| 国产白丝娇喘喷水9色精品| 亚洲人成电影免费在线| 日韩中字成人| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 每晚都被弄得嗷嗷叫到高潮| 如何舔出高潮| 九色成人免费人妻av| 国产精品国产高清国产av| 简卡轻食公司| 国产精品av视频在线免费观看| 麻豆一二三区av精品| 亚洲五月天丁香| 精品人妻偷拍中文字幕| 国产久久久一区二区三区| 成人特级av手机在线观看| 欧美不卡视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 赤兔流量卡办理| 国产精品久久视频播放| 亚洲精品一区av在线观看| 国内久久婷婷六月综合欲色啪| or卡值多少钱| 一区二区三区激情视频| 蜜桃亚洲精品一区二区三区| 精品午夜福利在线看| 搞女人的毛片| 一级作爱视频免费观看| 搡女人真爽免费视频火全软件 | 国产69精品久久久久777片| 亚州av有码| 国产精品乱码一区二三区的特点| 一级作爱视频免费观看| 搡女人真爽免费视频火全软件 | 男人狂女人下面高潮的视频| 深夜精品福利| 99国产精品一区二区三区| 男人和女人高潮做爰伦理| 3wmmmm亚洲av在线观看| 99精品在免费线老司机午夜| 嫩草影院入口| 午夜影院日韩av| 日韩大尺度精品在线看网址| 免费搜索国产男女视频| 人人妻,人人澡人人爽秒播| 国产高清三级在线| 岛国在线免费视频观看| 好男人电影高清在线观看| 精品人妻一区二区三区麻豆 | 色噜噜av男人的天堂激情| 国产在线男女| 午夜免费激情av| 18禁黄网站禁片免费观看直播| 日日摸夜夜添夜夜添小说| 18美女黄网站色大片免费观看| 久久人人精品亚洲av| 国产又黄又爽又无遮挡在线| 免费观看人在逋| 老熟妇仑乱视频hdxx| 99久久成人亚洲精品观看| 制服丝袜大香蕉在线| av在线蜜桃| 中文字幕免费在线视频6| a级毛片a级免费在线| 精品国产亚洲在线| 精品99又大又爽又粗少妇毛片 | 很黄的视频免费| 色吧在线观看| 又黄又爽又免费观看的视频| 热99re8久久精品国产| 欧美午夜高清在线| 日本熟妇午夜| 日韩有码中文字幕| 久久这里只有精品中国| 一本综合久久免费| 麻豆国产av国片精品| 国产蜜桃级精品一区二区三区| 国产精品亚洲美女久久久| 国产人妻一区二区三区在| 国产伦精品一区二区三区视频9| 欧美高清成人免费视频www| 高清毛片免费观看视频网站| 成人三级黄色视频| 少妇的逼水好多| 成年人黄色毛片网站| 草草在线视频免费看| 久久久久免费精品人妻一区二区| 午夜精品在线福利| www日本黄色视频网| 国产伦精品一区二区三区四那|