• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2

    2023-02-20 13:16:24SiwenYou游思雯ZiyiShao邵子依XiaoGuo郭曉JunjieJiang蔣俊杰JinxinLiu劉金鑫KaiWang王凱MingjunLi李明君FangpingOuyang歐陽方平ChuyunDeng鄧楚蕓FeiSong宋飛JiataoSun孫家濤andHanHuang黃寒
    Chinese Physics B 2023年1期
    關鍵詞:方平王凱

    Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭曉), Junjie Jiang(蔣俊杰), Jinxin Liu(劉金鑫),Kai Wang(王凱), Mingjun Li(李明君), Fangping Ouyang(歐陽方平), Chuyun Deng(鄧楚蕓),Fei Song(宋飛), Jiatao Sun(孫家濤), and Han Huang(黃寒),?

    1Hunan Key Laboratory of Super-Microstructure and Ultrafast Process,School of Physics and Electronics,Central South University,Changsha 410083,China

    2College of Arts and Science,National University of Defense Technology,Changsha 410073,China

    3Key Laboratory of Interfacial Physics and Technology,Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201000,China

    4School of Information and Electronics,MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices,Beijing Institute of Technology,Beijing 100081,China

    Keywords: MAPbI3/MoS2 heterostructure, Co-deposition, temperature-dependent photoluminescence,growth behavior

    1. Introduction

    Perovskites (PVKs) have raised much attention in semiconductor applications, such as solar cells, light emitting diodes,and photodetectors,due to their exceptional optoelectronic properties.[1–5]Among them, MAPbI3is a representative one due to its simple structure,suitable bandgap for solar absorption, and long-range balanced electron–hole transport lengths.[6,7]Properties of elementary excitation of MAPbI3,such as the values of exciton binding energy and the strength of electron-phonon coupling,are essential for development of high-efficiency devices. According to the temperature dependence of integrated intensity of the photoluminescence (PL)emission peak, the exciton binding energy of MAPbI3has been extracted to be 15–60 meV,[8–10]which is so small that separation and migration of electrons and holes in MAPbI3thin films(300 nm)can be facilitated. Electron–phonon coupling sets a basic intrinsic limit to charge carrier mobility in non-intrinsic scattering without impurities and has been proved to generate homogeneous emission linewidth broadening in semiconductors.[11]Especially,it has comparable effects on temperature-induced renormalization of bandgap with thermal expansion in MAPbI3bulk or thin films, but enhanced contribution in MAPbI3nanocrystals in size of several nanometers because of the strong quantum confinement effects.[12]

    Accompanied with the miniaturization of devices, the functional material films become thinner and thinner.MAPbI3thin films prepared by the solution spin coating method are usually several hundreds of nm in thickness and their properties are close to their bulk counterparts.[13]Methylammonium lead tribromide nanocrystals in different sizes (1.5–3 nm)formed in metal oxide porous scaffolds show a wavelengthtunable emission from green to blue due to the quantum confinement effects.[14]Highquality MAPbI3nanosheets as thin as 1.3 nm have been fabricated by converting solutionprocessed PbI2in MAI vapor, but the preparation process and their thicknesses are not controllable.[15]Transition-metal dichalcogenides (TMDCs) are good templates to realize van der Waals epitaxial growth of MAPbI3due to the dangling bond-free surfaces.[16–19]In previous reports,thicknesscontrollable MAPbI3ultrathin layers are successfully fabricated on chemical vapor deposition(CVD)-grown or mechanical exfoliation monolayer TMDCs using a two-step sequential deposition method.[20,21]However, such a method has some shortcomings, such as the volume expansion and structure damage in MAI intercalation process. The Co-deposition method is superior for preparing MAPbI3thin films with a wide range of clean interfaces,homogeneous morphology,and better stability.[22–25]However, it is still of challenge to prepare and investigate properties of ultrathin MAPbI3thin films with high quality.

    In this work, we systematically investigate the growth behaviors of MAPbI3films via co-deposition of PbI2and MAI on CVD-grown monolayer MoS2as well as the corresponding photoluminescence properties and emission behaviors at different growing stages using atomic force microscopy (AFM), scanning electron microscopy (SEM), PL,and Kelvin probe force microscopy (KPFM) measurements.Temperature-dependent PL measurements reveal thicknessdependent trends of emission photon energy in MAPbI3/MoS2heterostructures from 300 K to 80 K.

    2. Experimental methods

    Monolayer MoS2was prepared by the conventional CVD method with two temperature zone systems on the c-sapphire substrate. S (aladdin 99.999%) and MoO3(aladdin 99.99%)powders were used as precursors,as well as nitrogen(N2)carries the reactants as an inert gas.[26,27]A previously reported co-deposition method was adopted to fabricate MAPbI3ultrathin films on c-sapphire substrates partially covered with monolayer MoS2in a high-vacuum system with base pressure better than 5.0×10-5Pa.[22,28]There are two temperaturecontrolled K-cells at the bottom of the system, loaded with the precursor materials of PbI2(aldrich, 98+%) and MAI(polymer, 99.5%), respectively. The deposition temperatures of PbI2and MAI are 573 K and 415 K, respectively, and the deposition rates of the precursor at 6 ?A/min for PbI2and 15 ?A/min for MAI are monitored by quartz crystal microbalance. The deposition times are 2 min, 4 min, and 6 min.The corresponding samples with a nominal thickness~2 nm,4 nm,and 8 nm are named as samples I,II,and III,respectively.

    AFM measurements were carried out in a tapping mode(Agilent 5500, USA).[29]SEM was obtained with an MIRA3 LMH(TESCAN Chech)field emission scanning electron microscope. PL spectra were collected in a confocal Raman microscope system(Renishaw inVia Qontor,UK)using a 532 nm laser and 1800 lines/mm grating,where a sample stage(THMS 600) with the temperature varying from 78 K to 873 K is equipped.[30,31]All spectra were taken at laser power density 1 mW/μm2for 1 s and were fitted by Gaussian and Lorentzian mixed deconvolution. X-ray diffraction(XRD)patterns were measured by a PANalytical Empyren system with CuKαradiation(λ=0.154 nm). KPFM images were recorded using an NTEGRA spectra system(NT-MDT,Russia).

    3. Results and discussion

    Figure 1(a) shows a typical AFM image of a triangular CVD-grown MoS2flake, whose thickness is~0.9 nm, as shown in the profile along the red line, indicating a monolayer MoS2.[32]Upon 2 nm MAPbI3deposition (sample I),dispersed bright protrusions with a height up to 8 nm appeared on the bare c-sapphire surface, as shown in Fig. 1(b). On the contrary,the MoS2flake appears as atomically smooth as the pristine one except for some features on its edges. The corresponding line profile displays that the thickness in the triangular MoS2region is almost doubled (~1.6 nm), and the dim features have an additional height of~0.8 nm, indicating that a monolayer MAPbI3is grown on MoS2, and new nuclei start at the edges. Upon 4-nm MAPbI3deposition (sample II), the bright protrusions on c-sapphire (region B)became denser and higher(~30 nm)as shown in Fig.1(c),indicating a nucleation-limited growth. The triangular MoS2region(region A)has no apparent change except that its thickness increases to 4 nm. We speculate that at the beginning,MAPbI3grows in a Frank–van der Merwe mode on MoS2and in a Volmer–Weber mode on c-sapphire. Different growth behaviors of MAPbI3on two substrates may be attributed to their different hydrophilicity and lower nucleation energy on MoS2.[16,33]Therefore, MoS2is a good template to realize van der Waals epitaxial growth of MAPbI3due to the dangling bondfree surface. Upon 8-nm MAPbI3deposition(sample III),although the triangular shape of MoS2is still observable, the entire surface is covered by clusters (up to 60 nm high) as shown in Fig. 1(d), indicating that the growth mode of MAPbI3on MoS2changes to the Stranski–Krastanov(S-K)mode. It reveals the limited influence of MoS2on the growth of MAPbI3. The SEM image in Fig. 1(e) shows the grainy features in more details than the AFM image due to no tip effect.The averaged grain size of MAPbI3on MoS2(~500 nm)is larger than that on the c-sapphire substrate(~200 nm)because the dangling-bond-free surface of MoS2could motivate the migration of atoms precursor molecules (MAI and PbI2)and promote the growth of MAPbI3grains,which is in agreement with the previous reports.[16,17]The corresponding XRD pattern in Fig.1(e)shows the peaks at 14.2°,28.3°,and 33.1°,assigned to the (110), (220), and (310) planes of crystalline MAPbI3in the tetragonal phase, respectively.[34]The grain dimension in the perpendicular direction is estimated to be~33 nm according to the Scherrer equation. No PbI2related peaks can be detected,confirming the high quality of the prepared sample. Figure 1(f) schematically demonstrates the growth modes of MAPbI3on MoS2. The x-ray photoelectron spectra(XPS)full spectra of samples are shown in Fig.S1 in the supporting information, where Pb, I, N, and C elements are detected. In the future, atomically resolved methods like high resolution transmission electron microscopy (HRTEM)and scanning tunneling microscopy(STM)can be used to investigate the detailed structure or the quality of MAPbI3/MoS2heterostructures.

    Fig.1. Typical AFM images of CVD-grown MoS2 on c-sapphire(a),and co-deposited MAPbI3 ultrathin films in various nominal thicknesses[(b)2 nm,(c) 4 nm, (d) 8 nm)] on top, named as sample I, II, and III. The corresponding scan profiles are given. (e) Representative SEM image of 8-nm-thick MAPbI3 (sample-III).The corresponding XRD pattern is inserted. (f)Schematic illustration of different growth modes of MAPbI3 on c-sapphire with and without MoS2.

    Fig.2.Characterizations of MAPbI3/MoS2 heterostructure(sample II):(a)PL spectra collected from CVD-grown MoS2,MAPbI3 on c-sapphire with and without MoS2 regions, (b) PL mapping of a CVD-grown MoS2 flake, (c) PL mapping and (d) KPFM image of the MAPbI3/MoS2 heterostructure. Scale bar: 5 μm. (e)Schematic illustration of the type-II energy level alignment of MAPbI3/MoS2 heterostructure.

    PL measurements were performed to investigate the optical properties of sample II, as shown in Fig. 2(a). The peak intensities were normalized by the bottom panel. The PL spectrum of CVD-grown MoS2exhibits three peaks(fitted)at 1.76 eV,1.84 eV,and 1.99 eV,corresponding to the free exciton of c-sapphire substrate(blue plot), exciton A and exciton B of MoS2(red plot),respectively. The better distribution and uniformity of MoS2can be reflected by the PL mapping of exciton A,as shown in Fig.2(b). For sample II,two representative PL spectra from regions A and B are shown in Fig.2(a).Besides the original emission peaks of MoS2and sapphire,an additional emission peak centered at 1.68 eV with a full width at half maximum(FWHM)of 0.11 eV can be observed,which belongs to the MAPbI3(green plot). It is worth noting that the emission peak intensity of MoS2is higher than that of sapphire without MAPbI3,while they are almost equal after deposition of MAPbI3, revealing the quenching of MoS2emission peak intensity. Moreover,the PL intensity of MAPbI3on MoS2(region A)is quenched by a factor of 3 times compared to that on c-sapphire(region B).As shown in Fig.2(c),the PL intensity mapping at 1.68 eV was measured. It was observed that the PL intensity in region A was significantly lower than that in region B, indicating the PL quenching of MAPbI3on MoS2.For sample III, the PL emission peak of MAPbI3is located at 1.64 eV and there is no MoS2signal anymore because of strong luminescence properties of thicker MAPbI3, as shown in Fig. S2(a). The clear redshift of the emission peak can be ascribed to the thickness-dependent quantum confinement effect of MAPbI3layer.[20]Moreover,the intensity of emission peak is still quenched in the heterostructure.

    To further investigate the surface charge distribution in heterostructures,KPFM measurements were carried out. The contact potential difference(CPD)is defined as the work function difference between the sample surface and the cantilever tip. As shown in Fig. 2(d), the CPD difference between MAPbI3/MoS2and pure MAPbI3regions is determined to be about 250 mV,which indicates that the work function of pure MAPbI3is 250 meV smaller than that of MAPbI3/MoS2. It reveals the formation of electric dipoles pointing out of the plane in the MAPbI3/MoS2heterostructure region,due to the interfacial electron transfer from MAPbI3into MoS2, resulting in separation of holes and electrons distributions on two sides.[18,35,36]Taking the PL quenching at the heterostructure interface into consideration, we can get a conclusion that a representative type-II band alignment of MAPbI3/MoS2heterostructure is formed as shown in Fig. 2(e), which is in agreement with the previous reports.[17,21,37,38]Taking the transport gaps of MAPbI3and monolayer MoS2as 1.65 eV and 2.11 eV,[39]respectively,both conduction band minimum(CBM)and valence band maximum(VBM)levels of MAPbI3are higher than those of MoS2.[40,41]For sample III, the CPD difference is~20 mV [see Fig. S2(b)], which may be attributed to the different morphologies of the heterostructures.The work function of MAPbI3changes as the surface becomes rougher. Profiting from the effective interfacial charge carrier separation in ultrathin type-II MAPbI3/MoS2heterostructure,they are excellent candidates for designing high-performance photodetector devices.

    To better understand the thickness-dependent photophysical properties of MAPbI3/MoS2, temperature-dependent PL measurements from 300 K to 80 K are carried out. Figure 3(a) shows the temperature evolutions of PL spectra of sample III.There is a dominant and symmetric emission peak located at around 1.64 eV(peak I),belonging to the tetragonal-I phase (I4/mcmgroup) MAPbI3.[9]Below 150 K, a new emission peak appears at 1.69 eV (peak II), arising from the orthorhombic phase MAPbI3. These emission peaks of tetragonal and orthorhombic phase are ascribed to the free exciton recombination.[41]The atomic models of tetragonal and orthorhombic phases are shown in the insets of Fig. 3(a).[42]In order to understand the evolution of fitting emission peak,PL spectra at six representative temperatures are shown in Fig. S3. As the temperature decreases to 100 K, a newemerging emission component occurs at the low-energy side centered at 1.56 eV (peak III), which can be attributed to the trap-mediated exciton radiative recombination.[43]Figure 3(b)shows the photon energy evolution of the fitted three emission peaks of MAPbI3with temperature according to the experimental spectra. Peak I has a redshift from 1.64 eV to 1.59 eV in the temperature range from 300 K to 150 K. This trend is consistent with the previous report on pure MAPbI3.[9]The phase transition from tetragonal to orthorhombic for such MAPbI3/MoS2starts to take place at 150 K, which is higher than that for pure MAPbI3(~120 K),close to that of bulk.[12]From 150 K to 100 K, peak I (tetragonal) displays a slight blueshift while peak II(orthorhombic)keeps the trend of redshift. According to the integrated intensity of the fitted three emission peaks, the relative percentage evolution as a function of temperature is shown in Fig.3(c). As the temperature decreases, the ratio of the tetragonal phase goes down continuously while that of orthorhombic increases. It is worth noting that the ratio of trapped exciton peak keeps growing at low temperatures, attributed to the smaller binding energy of trapped excitons and surface state transitions.[41]

    Fig.3. Optical transition properties of sample III in the temperature range of 300–80 K.(a)Temperature-dependent PL spectra. (b)Experimental data and fitting curve of photon energy as a function of temperature. Red: tetragonal phase. Blue: orthorhombic phase. Purple: the defect peak. (c)Relative percentage of three peaks in MAPbI3/MoS2 heterostructure.

    For MAPbI3on MoS2in sample II (region A), the evolution of PL spectra as a function of temperature looks rather different, as shown in Fig. 4(a). The intensity of the main peak located at 1.68 eV (peak IV) increases as the temperature decreases from 300 K to 120 K. It results from the enhanced optical matrix elements on account of the reinforced Coulomb attraction, and is a representative behavior of freeexciton radiative recombination.[41]Although the PL signal of MoS2is weak,a blueshift of photon energy is still observable,consistent with the trend of traditional semiconductors.[44]See Fig.S4 for more details. No trapped exciton peak can be detected,suggesting less defect density in sample II.

    Figure 4(b)displays the evolution of the extracted photon energy as a function of temperature.There is a turning point at 260 K for peak IV(red plot). Its photon energy exhibits a linear redshift from room temperature to 260 K,then a non-linear blue-shift from 26 K to 120 K. It is obviously different from that of sample III and previous results.[9,12,21]Below 120 K,a new peak appears at 1.72 eV (peak V, blue plot), which belongs to the orthorhombic phase MAPbI3. More details about the peak fitting are shown in Fig. S5. For comparison,temperature-dependent PL measurements were carried out on region B in sample II(black plot). The evolution of the main peak’s photon energy coincides with that in region A except for that in the range from 300 K to 260 K(peak VI).It is wellknown that the photon energy evolution as a function of temperature in either single crystalline bulk or thin films[45]keeps a linear redshift in the stable tetragonal phase and a secondorder phase transition from tetragonal to orthorhombic occurs at low temperature.[46]Moreover, MAPbI3nanocrystals with a size less than 8 nm have no apparent phase transition even at a temperature as low as 80 K.[12]Although MAPbI3on sapphire in sample II is nanocrystals, their sizes are significantly larger, close to those in the thin-film phase. The different photon energy evolutions in sample II may show a special crystal/electronic-structure relationship. A similar trend to that of MAPbI3on MoS2is observed in MAxFA1-xPbI3films accompanied by a different phase transition,[45]where a turning point in the photon energy evolution is attributed to the occurrence of a second-order transition from cubic to tetragonal phase. Here, MAPbI3was co-deposited on the monolayer MoS2and growing in van der Waals epitaxy, forming a clean and molecular sharp interface. We propose that MAPbI3in cubic phase may be formed at room temperature on MoS2and a second-order phase transition from cubic to another different tetragonal phase occurs at 260 K, called tetragonal-II.Below 120 K,a transition from tetragonal-II to the orthorhombic phase starts to take place. For MAPbI3on sapphire, one phase transition from tetragonal-II to orthorhombic starts to take place at 100 K. The atomic mode of tetragonal-II phase belonging to theI4cmspace group is shown in the inset of Fig. 4(a),[47]where the disordered organic cations may rotate in increments along thec-axis and affect the tilting of the corner-shared PbI6octahedron.Moreover,the tilting increases with the temperature decreasing. It gives rise to an opposite effect to the electron-phonon coupling induced gap renormalization, leading to the non-monotonic change of the photon energy.[48]

    Figure 4(c)shows the evolution of the extracted FWHM of peak IV with temperature.The broadening behaviors can be described by the one-oscillator model of the electron–phonon interaction:[49]

    Here,Γ0is the inhomogeneous broadening contribution depending on the crystal quality,which is a constant and does not change with temperature;σandΓopare the exciton-acoustic phonon interaction and the exciton-optical phonon contribution to the FWHM broadening; ˉhωopis the efficient opticalphonon energy, corresponding to the torsion mode of the organic cations.[45,50]Due to the main emission peak belonging to the free-exciton recombination,σ=0 is reasonable for ignoring the acoustic-phonon contribution.In the best fitting,the parameters areΓ0=30.0±2.3 meV,Γop=144.7±7.5 meV,and ˉhωop=25.1±5.0 meV, in agreement with the previous report.[21]Molecularly thin film of MAPbI3prepared by codeposition on monolayer MoS2has better crystalline and novel exciton behavior,which could be beneficial for getting atomically clean interfaces and investigating related properties.

    Fig.4. Optical transition properties of sample II in the temperature range of 300–80 K. (a) Temperature-dependent PL spectra. Inset: atomic model of tetragonal-II phase. (b) Experimental data of photon energy of MAPbI3/MoS2 (red: tetragonal phase,blue: orthorhombic phase)and pure MAPbI3 (black). (c) Experimental data (black) and fitting curve (blue) of FWHM of tetragonal phase as a function of temperature on MAPbI3/MoS2 heterostructure.

    4. Conclusion

    In summary, while MAPbI3grows in a Volmer–Weber mode on sapphire,it can appear in a Stranski–Krastanov mode on single layer MoS2, which gives an opportunity to prepare molecularly thin MAPbI3/MoS2heterojunction. Such heterojunctions have a type-II energy level alignment and are good candidates for optoelectronic devices.Temperature-dependent PL measurements reveal that such molecularly thin MAPbI3has a different emission property compared with thin films of either nanocrystals or bigger grains. The second-order phase transitions are observed at 120 K and 150 K.Our research creates more potential to fabricate molecularly thin heterostructures and provides a platform to study novel applications.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11874427 and 11804395)and the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2020zzts377).

    猜你喜歡
    方平王凱
    春雪
    王凱室內(nèi)設計作品選登
    改姓
    一種輕量化自卸半掛車結(jié)構設計
    智富時代(2019年2期)2019-04-18 07:44:42
    春雪
    王凱:我現(xiàn)在準備好了,歡迎隨時來撲
    意林繪閱讀(2016年2期)2016-03-09 07:23:24
    “靖王”王凱:我自己看《瑯琊榜》也會哭
    金色年華(2016年2期)2016-02-28 01:38:42
    由一道習題錯解想到的
    女友有求于我
    小小說月刊(2014年8期)2014-08-29 03:36:08
    女友有求于我
    大片免费播放器 马上看| 亚洲成国产人片在线观看| 欧美日韩黄片免| 亚洲熟女毛片儿| 人人妻,人人澡人人爽秒播| 热99久久久久精品小说推荐| 日韩视频一区二区在线观看| 成年人黄色毛片网站| 99久久精品国产亚洲精品| 伦理电影免费视频| 在线 av 中文字幕| 欧美精品高潮呻吟av久久| 精品人妻熟女毛片av久久网站| 黑丝袜美女国产一区| 桃红色精品国产亚洲av| 99热网站在线观看| 精品第一国产精品| 在线观看www视频免费| 99久久人妻综合| 人妻一区二区av| 中亚洲国语对白在线视频| 免费不卡黄色视频| 99久久99久久久精品蜜桃| 九色亚洲精品在线播放| 一区福利在线观看| 亚洲精品自拍成人| 久久国产精品人妻蜜桃| 亚洲三区欧美一区| 日本精品一区二区三区蜜桃| 国产色视频综合| 亚洲精品国产色婷婷电影| 亚洲精品国产av成人精品| 悠悠久久av| 久热这里只有精品99| 久久中文字幕一级| 一本—道久久a久久精品蜜桃钙片| 脱女人内裤的视频| 成人国产一区最新在线观看| 大香蕉久久网| 欧美日韩一级在线毛片| 青春草亚洲视频在线观看| 国产精品熟女久久久久浪| 成人国产一区最新在线观看| 亚洲av电影在线进入| 成年人黄色毛片网站| 高清在线国产一区| 热re99久久精品国产66热6| 精品一品国产午夜福利视频| 国产精品久久久久久人妻精品电影 | 国产日韩欧美在线精品| 黄色视频,在线免费观看| 青草久久国产| 老司机午夜十八禁免费视频| 色播在线永久视频| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添小说| 九色亚洲精品在线播放| 亚洲国产看品久久| 久久久久国内视频| 91大片在线观看| 国产精品99久久99久久久不卡| videos熟女内射| 日韩视频一区二区在线观看| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 亚洲国产看品久久| 亚洲一码二码三码区别大吗| 成年女人毛片免费观看观看9 | 中国美女看黄片| 一级片'在线观看视频| 91精品国产国语对白视频| 精品福利观看| 他把我摸到了高潮在线观看 | av又黄又爽大尺度在线免费看| 美女福利国产在线| 亚洲精品一区蜜桃| 捣出白浆h1v1| 夜夜夜夜夜久久久久| 50天的宝宝边吃奶边哭怎么回事| 成人av一区二区三区在线看 | 看免费av毛片| 777久久人妻少妇嫩草av网站| 国产精品欧美亚洲77777| 美女主播在线视频| 国产成人免费无遮挡视频| 久久久精品区二区三区| 99国产精品免费福利视频| 午夜福利在线观看吧| 日本猛色少妇xxxxx猛交久久| 欧美性长视频在线观看| 男人添女人高潮全过程视频| 免费看十八禁软件| 久久青草综合色| 老熟妇仑乱视频hdxx| 国产又色又爽无遮挡免| 免费高清在线观看视频在线观看| 久久ye,这里只有精品| 下体分泌物呈黄色| 欧美黑人欧美精品刺激| 国产精品成人在线| 在线观看免费高清a一片| 悠悠久久av| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 日韩三级视频一区二区三区| 国产欧美日韩综合在线一区二区| 国产成人免费无遮挡视频| 999久久久国产精品视频| 精品人妻熟女毛片av久久网站| 如日韩欧美国产精品一区二区三区| 欧美大码av| 久久久久久免费高清国产稀缺| 18禁国产床啪视频网站| 亚洲美女黄色视频免费看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡 | 成人国产av品久久久| 久久精品亚洲熟妇少妇任你| 一区二区日韩欧美中文字幕| 国产精品成人在线| 亚洲中文日韩欧美视频| 精品人妻1区二区| 国产亚洲精品久久久久5区| 各种免费的搞黄视频| 天天躁日日躁夜夜躁夜夜| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av | 色婷婷av一区二区三区视频| 亚洲一区中文字幕在线| 亚洲国产精品999| 久9热在线精品视频| 久久青草综合色| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 9色porny在线观看| 亚洲精品一区蜜桃| 汤姆久久久久久久影院中文字幕| 精品一区二区三区av网在线观看 | 乱人伦中国视频| 91av网站免费观看| 国产精品一区二区在线不卡| 欧美 日韩 精品 国产| 久久久水蜜桃国产精品网| 永久免费av网站大全| 精品国产一区二区久久| 亚洲色图 男人天堂 中文字幕| 成年女人毛片免费观看观看9 | 最新在线观看一区二区三区| 亚洲国产精品一区三区| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看日本一区| 国产在视频线精品| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区三区久久久樱花| 亚洲国产av影院在线观看| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 久久久水蜜桃国产精品网| 久久九九热精品免费| 在线观看免费午夜福利视频| 性少妇av在线| 国产激情久久老熟女| 久久午夜综合久久蜜桃| 亚洲av成人一区二区三| 国产精品 欧美亚洲| 巨乳人妻的诱惑在线观看| 好男人电影高清在线观看| 国产精品久久久久久精品电影小说| 另类精品久久| 免费观看av网站的网址| 欧美大码av| 午夜福利影视在线免费观看| 亚洲美女黄色视频免费看| 下体分泌物呈黄色| 亚洲成人免费av在线播放| 久久亚洲国产成人精品v| 天堂中文最新版在线下载| 中文字幕人妻熟女乱码| 久久午夜综合久久蜜桃| 在线 av 中文字幕| 国产又爽黄色视频| 久久人妻福利社区极品人妻图片| 如日韩欧美国产精品一区二区三区| 欧美中文综合在线视频| 在线观看免费高清a一片| 妹子高潮喷水视频| 欧美老熟妇乱子伦牲交| 亚洲七黄色美女视频| 18在线观看网站| 大片电影免费在线观看免费| 我的亚洲天堂| a 毛片基地| 日本91视频免费播放| 老司机影院成人| 黄色片一级片一级黄色片| 精品国产一区二区久久| 男人操女人黄网站| 淫妇啪啪啪对白视频 | 在线观看一区二区三区激情| 国产精品自产拍在线观看55亚洲 | 97精品久久久久久久久久精品| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 在线天堂中文资源库| 欧美激情高清一区二区三区| 午夜老司机福利片| 看免费av毛片| 嫩草影视91久久| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品一区二区免费欧美 | tocl精华| 亚洲精品久久午夜乱码| 美国免费a级毛片| 老熟妇仑乱视频hdxx| 80岁老熟妇乱子伦牲交| 国产男女超爽视频在线观看| 又大又爽又粗| 美女扒开内裤让男人捅视频| 午夜91福利影院| 99国产极品粉嫩在线观看| 国产欧美日韩精品亚洲av| 欧美xxⅹ黑人| 大香蕉久久成人网| 2018国产大陆天天弄谢| 丝袜美足系列| 新久久久久国产一级毛片| 成人免费观看视频高清| 黄片大片在线免费观看| 黄色片一级片一级黄色片| 国产黄色免费在线视频| √禁漫天堂资源中文www| 水蜜桃什么品种好| 热99久久久久精品小说推荐| 成年人免费黄色播放视频| 黄频高清免费视频| 人人妻人人澡人人看| 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频| 精品福利观看| 天天影视国产精品| 久久人妻福利社区极品人妻图片| 国产色视频综合| 啦啦啦在线免费观看视频4| 在线观看www视频免费| 国产男女超爽视频在线观看| 欧美另类一区| 女人高潮潮喷娇喘18禁视频| 大香蕉久久成人网| 亚洲专区国产一区二区| 亚洲性夜色夜夜综合| 国产高清videossex| 久久久久久久国产电影| 美女大奶头黄色视频| 黄色怎么调成土黄色| 欧美精品高潮呻吟av久久| 欧美精品一区二区免费开放| 欧美性长视频在线观看| 亚洲av日韩精品久久久久久密| 777米奇影视久久| 18禁观看日本| 日本av免费视频播放| 午夜福利影视在线免费观看| 在线精品无人区一区二区三| 高清av免费在线| 乱人伦中国视频| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 欧美激情 高清一区二区三区| 久久这里只有精品19| 欧美日韩av久久| 国产av精品麻豆| 我的亚洲天堂| 亚洲成人国产一区在线观看| 亚洲成国产人片在线观看| 黄网站色视频无遮挡免费观看| 国产精品av久久久久免费| 亚洲精品国产色婷婷电影| 日本五十路高清| 亚洲天堂av无毛| 少妇 在线观看| 免费观看人在逋| 一区二区三区四区激情视频| 少妇被粗大的猛进出69影院| 成人国语在线视频| 国产野战对白在线观看| 久久香蕉激情| 亚洲国产欧美日韩在线播放| 久久精品国产亚洲av高清一级| av在线播放精品| 精品少妇内射三级| 国产精品.久久久| 国产高清国产精品国产三级| 日本欧美视频一区| 老司机午夜福利在线观看视频 | 美女视频免费永久观看网站| 亚洲七黄色美女视频| av在线播放精品| 亚洲精品一二三| 精品欧美一区二区三区在线| 99久久人妻综合| 香蕉国产在线看| 国产亚洲av高清不卡| 亚洲九九香蕉| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 一级毛片女人18水好多| 少妇被粗大的猛进出69影院| 老司机福利观看| 99国产极品粉嫩在线观看| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 亚洲精品国产精品久久久不卡| 欧美少妇被猛烈插入视频| videos熟女内射| 欧美日韩福利视频一区二区| 超碰97精品在线观看| 精品福利永久在线观看| 欧美乱码精品一区二区三区| 日韩,欧美,国产一区二区三区| 欧美另类亚洲清纯唯美| 国产精品影院久久| 日本撒尿小便嘘嘘汇集6| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 热99国产精品久久久久久7| 国产一区二区三区综合在线观看| 久久ye,这里只有精品| 国产精品久久久av美女十八| 国产麻豆69| 悠悠久久av| 91国产中文字幕| 亚洲精品成人av观看孕妇| 亚洲欧美精品自产自拍| 亚洲av片天天在线观看| 亚洲精品美女久久av网站| 亚洲国产中文字幕在线视频| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| 黑人巨大精品欧美一区二区mp4| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 国产一卡二卡三卡精品| 亚洲精品国产一区二区精华液| 女人高潮潮喷娇喘18禁视频| 一区二区av电影网| 久久人人97超碰香蕉20202| 丝袜人妻中文字幕| 丰满饥渴人妻一区二区三| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 色94色欧美一区二区| 国产一区二区 视频在线| 啦啦啦免费观看视频1| 国产成人av教育| 少妇粗大呻吟视频| 欧美日韩一级在线毛片| 成人av一区二区三区在线看 | 亚洲专区中文字幕在线| tocl精华| 亚洲全国av大片| 午夜精品久久久久久毛片777| 一级a爱视频在线免费观看| 日韩欧美免费精品| 国产成+人综合+亚洲专区| 岛国毛片在线播放| 国产1区2区3区精品| 男女床上黄色一级片免费看| 久久午夜综合久久蜜桃| 蜜桃在线观看..| 国产人伦9x9x在线观看| 两个人免费观看高清视频| 亚洲综合色网址| 午夜影院在线不卡| 午夜激情久久久久久久| 国产一区有黄有色的免费视频| 国产麻豆69| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx| av线在线观看网站| 性少妇av在线| 免费少妇av软件| 大码成人一级视频| avwww免费| 可以免费在线观看a视频的电影网站| av天堂在线播放| 精品国产一区二区久久| 国产深夜福利视频在线观看| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 日韩有码中文字幕| 极品少妇高潮喷水抽搐| 亚洲免费av在线视频| 91字幕亚洲| 日韩制服骚丝袜av| 99国产极品粉嫩在线观看| 午夜老司机福利片| av在线老鸭窝| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 亚洲综合色网址| av欧美777| 法律面前人人平等表现在哪些方面 | 18在线观看网站| 韩国高清视频一区二区三区| 久久九九热精品免费| 亚洲熟女毛片儿| 国产av又大| 亚洲国产欧美日韩在线播放| 日韩有码中文字幕| 国产日韩欧美亚洲二区| 免费不卡黄色视频| 女人高潮潮喷娇喘18禁视频| 国产区一区二久久| avwww免费| 国产高清videossex| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 十八禁网站免费在线| 黑人欧美特级aaaaaa片| 深夜精品福利| 久久 成人 亚洲| 黄色视频,在线免费观看| 精品国产国语对白av| 午夜福利在线免费观看网站| 午夜91福利影院| 亚洲欧美精品自产自拍| 亚洲国产精品成人久久小说| 人成视频在线观看免费观看| 久久久久国产精品人妻一区二区| 亚洲av欧美aⅴ国产| 欧美日韩精品网址| 香蕉国产在线看| 国产无遮挡羞羞视频在线观看| 人成视频在线观看免费观看| netflix在线观看网站| 欧美97在线视频| 制服诱惑二区| 老熟妇乱子伦视频在线观看 | 国产成人影院久久av| 亚洲情色 制服丝袜| 国产淫语在线视频| 亚洲成国产人片在线观看| 自线自在国产av| 嫁个100分男人电影在线观看| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 亚洲情色 制服丝袜| 国产在线观看jvid| 国产精品 国内视频| 色视频在线一区二区三区| 美女午夜性视频免费| 久久精品成人免费网站| 丰满少妇做爰视频| 精品久久久久久久毛片微露脸 | 老熟妇乱子伦视频在线观看 | 美女扒开内裤让男人捅视频| www.自偷自拍.com| 汤姆久久久久久久影院中文字幕| 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 亚洲avbb在线观看| 亚洲国产看品久久| 亚洲综合色网址| 国产精品麻豆人妻色哟哟久久| 99热国产这里只有精品6| 日韩 欧美 亚洲 中文字幕| 亚洲欧美成人综合另类久久久| a级毛片在线看网站| 亚洲国产看品久久| 精品欧美一区二区三区在线| 美国免费a级毛片| 亚洲精品美女久久av网站| 欧美精品av麻豆av| 亚洲精品久久成人aⅴ小说| 两人在一起打扑克的视频| 在线亚洲精品国产二区图片欧美| 国产成人精品无人区| 9191精品国产免费久久| 建设人人有责人人尽责人人享有的| 老司机影院毛片| 纵有疾风起免费观看全集完整版| 国产成人av激情在线播放| 丝袜喷水一区| 性少妇av在线| 人人妻,人人澡人人爽秒播| 国产色视频综合| 啦啦啦啦在线视频资源| 99精国产麻豆久久婷婷| 日本av手机在线免费观看| 他把我摸到了高潮在线观看 | 一本大道久久a久久精品| 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| 一本综合久久免费| 岛国毛片在线播放| 美女福利国产在线| 亚洲精品粉嫩美女一区| av一本久久久久| 亚洲精品一二三| 国产精品一区二区免费欧美 | 亚洲国产精品一区三区| 欧美激情极品国产一区二区三区| 99国产精品99久久久久| 国产av精品麻豆| 亚洲欧美日韩另类电影网站| 中文字幕人妻熟女乱码| 国产亚洲av片在线观看秒播厂| 熟女少妇亚洲综合色aaa.| 国产一卡二卡三卡精品| 国产免费视频播放在线视频| 亚洲精品美女久久av网站| 午夜91福利影院| 亚洲一区二区三区欧美精品| 亚洲精品中文字幕在线视频| 三级毛片av免费| 久久精品aⅴ一区二区三区四区| 亚洲情色 制服丝袜| videosex国产| 欧美性长视频在线观看| 日韩,欧美,国产一区二区三区| 日本av手机在线免费观看| 高清视频免费观看一区二区| 亚洲国产精品成人久久小说| 亚洲伊人色综图| 一进一出抽搐动态| 97在线人人人人妻| 首页视频小说图片口味搜索| 亚洲成人免费电影在线观看| 精品国产一区二区三区久久久樱花| 欧美大码av| 女人高潮潮喷娇喘18禁视频| 女人爽到高潮嗷嗷叫在线视频| 19禁男女啪啪无遮挡网站| 精品国产乱子伦一区二区三区 | 亚洲欧美一区二区三区黑人| 亚洲成人手机| 亚洲精品国产精品久久久不卡| av一本久久久久| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久| 国产野战对白在线观看| 极品人妻少妇av视频| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 日本五十路高清| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 色综合欧美亚洲国产小说| 国产日韩欧美在线精品| 大码成人一级视频| 一区二区日韩欧美中文字幕| 91麻豆av在线| 国产av一区二区精品久久| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 国产亚洲午夜精品一区二区久久| 精品一品国产午夜福利视频| 亚洲第一欧美日韩一区二区三区 | 国产日韩欧美亚洲二区| 伦理电影免费视频| 久久中文字幕一级| 亚洲熟女毛片儿| 各种免费的搞黄视频| 亚洲成人免费av在线播放| 成人三级做爰电影| 女人久久www免费人成看片| 丰满少妇做爰视频| 欧美成狂野欧美在线观看| 久久久国产欧美日韩av| 亚洲国产精品一区三区| 最近中文字幕2019免费版| 97人妻天天添夜夜摸| 久9热在线精品视频| 在线观看一区二区三区激情| 欧美大码av| 狠狠婷婷综合久久久久久88av| 日韩中文字幕欧美一区二区| 人人妻人人澡人人看| 午夜福利乱码中文字幕| 日日摸夜夜添夜夜添小说| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 高清黄色对白视频在线免费看| 97人妻天天添夜夜摸| 国产伦人伦偷精品视频| 一级片免费观看大全| 一本久久精品| 国产伦人伦偷精品视频| av电影中文网址| 高清黄色对白视频在线免费看| 男人爽女人下面视频在线观看| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 久久人妻福利社区极品人妻图片| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 日日爽夜夜爽网站| 黄频高清免费视频| 曰老女人黄片| 色精品久久人妻99蜜桃| 黑人巨大精品欧美一区二区mp4| 超色免费av| 飞空精品影院首页| 国产精品秋霞免费鲁丝片| 99热网站在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 99国产综合亚洲精品|