• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos–H¨anchen shift

    2023-02-20 13:16:18YaoPuLang郎垚璞QingGangLiu劉慶綱QiWang王奇XingLinZhou周興林andGuangYiJia賈光一
    Chinese Physics B 2023年1期
    關(guān)鍵詞:興林

    Yao-Pu Lang(郎垚璞), Qing-Gang Liu(劉慶綱),?, Qi Wang(王奇),Xing-Lin Zhou(周興林), and Guang-Yi Jia(賈光一)

    1State Key Laboratory of Precision Measurement Technology and Instruments,Tianjin University,Tianjin 300072,China

    2School of Communications,Wuhan University of Science and Technology,Wuhan 430081,China

    3School of Science,Tianjin University of Commerce,Tianjin 300134,China

    Keywords: thin film thickness,Bloch surface wave(BSW),Goos–H¨anchen shift,photonic crystal

    1. Introduction

    The photonic crystal film, composed of periodic combinations of materials with different dielectric constants or magnetic permeabilities,[1]has developed rapidly in recent years.It is widely used in optical devices, such as the high precision chemical and biosensors,[2–8]the optical filters,[9,10]the optical switch,[11]the optical color modulation,[12]the optical absorbers,[13,14]and the optical resonators,[15]as it can improve the reflectance of electromagnetic waves in a specific wavelength band,[16]and reduce the light propagation loss.The properties of photonic crystals are mainly dependent on their periodic structure forms and their material refractive indices. For one-dimensional photonic crystal(1DPC),the film thickness, including the thickness of periodic bilayer, has a great influence on the properties of the film. For example,the forbidden bandgap of the structure and the surface resonance modes excited,are modulated by the thickness of the photonic crystal material periodically aligned as well as the termination layer. Currently,the thickness parameters of 1DPC utilized by most of the researchers are also limited to the designed thickness of the periodical bilayer and the termination layer,rather than the actual measurement values of 1DPC.It is found that there are few reports on the methods of measuring the thickness of each layer of the photonic crystal film. Most of the photonic crystal films are processed and then calibrated for parameters prior to being used, rather than reaching the predesigned parameters. Therefore, the method to measure the thickness of 1DPC film is required in order to accurately character the properties of the photonic crystal film.

    Bloch surface waves(BSWs)are electromagnetic surface waves existing at the interface between a homogeneous dielectric medium and an abruptly terminated photonic crystal,typically a periodic dielectric multilayer.[17]The BSW has its unique advantages,for example,it can be excited by TM or TE waves.The BSW does not require the precious metal coupling layer adopted by surface plasmon resonance(SPR),and has a wider range of material selectivity. The following problems are avoided: the damping and resonant broadening effects of the absorption of incident light by metal layer, the parameter adjustment inconvenience,[18]due to the relative fixation of the conditions suitable for stimulating the SPR effect.

    The Goos–H¨anchen (GH) shift is a well-known optical phenomenon in which a light beam undergoes a small transverse displacement when it reaches an interface that satisfies the total internal reflection (TIR) condition.[19]This lateral displacement is proportional to the abrupt phase variation of the angular-dependent reflectance.[20]The GH effect can be enhanced by surface waves at the reflection interface[21–25]or the quasi-bound states in the continuum,[26]and many reports have demonstrated that GH shift can be enhanced to tens or even hundreds of times the wavelength by coupling the BSW[27]due to the electromagnetic surface waves excited at the interface between a homogeneous dielectric medium and an abruptly terminated photonic crystal. Many studies have demonstrated that the GH shift is closely related to the partial derivative of the reflection phase with respect to the incident light angle when the GH shift is investigated by the stationaryphase approach.[20,28–31]The GH shift can reach its maximum when the rate of phase variation is maximum. Because GH shift detection is the measurement of relative position, it is not affected by optical common-mode noise and has a higher signal-to-noise ratio than optical intensity detection.However,there is no report on the crystal period and termination layer thickness analysis by using an enhanced GH shift coupled with BSW.

    Based on the above considerations,a characterization and measurement method for 1DPC film thickness by the GH shift coupled with BSW is proposed. The variations of the light reflectance and the GH shift of the 1DPC composed of TiO2and SiO2layers are investigated by the transmission matrix method. The effects of the angle of incidence,medium dispersion and surface roughness are taken into account,also.

    2. Principle of Goos–H¨anchen shift enhanced by Bloch surface wave

    The 1DPC consists of two dielectric layers with different dielectric constants as shown in Fig.1. When the high refractive index material A and low refractive index material B are arranged in a periodic alternating pattern,the 1DPC film possesses a photonic bandgap, which prevents light from propagating in certain directions at specified frequencies.[1]The reflectance of the light with the wavelength in the bandgap increases dramatically. The film thickness and the dispersion of the material are the most important factors in determining the photonic bandgap of a 1DPC,[32]and the desired photonic bandgap as well as its width can be obtained by designing its structure appropriately. The BSW is a localized mode that appears at the interface between a 1D photonic crystal and a dielectric. When the periodic structure of the photonic crystal is broken, the surface mode is greatly enhanced,[33]and the transmission loss is small. In this paper, the Krestchmann–Rather configuration is adopted to excite the BSW as shown in Fig. 1. The dielectric constant of the covering layer isε0and the dielectric constant of the prism isεS. The dielectric constant of the layer A and the termination layer A′are bothεA,and the dielectric constant of the layer B isεB. The corresponding values of thickness are denoted asdA,dA′, anddB,respectively.

    Fig.1. Scheme of 1DPC Krestchmann–Rather configuration.

    The characteristic matrix of single-layer film is expressed as

    wherejis the subscript and denotes the layer A,B or A′,where the phase shiftδjis obtained from

    withλbeing the wavelength of the incident light in the vacuum,njthe refractive index of the film,djthe physical thickness,θjthe refractive angle between the wave vector of the light in this layer and the normal of the film interface,andηjthe optical admittance. When the light of incidence is transverse electric (TE) wave, the optical admittance is expressed as

    While for the transverse magnetic(TM)wave,the optical admittance is given by

    where?0is the optical admittance in vacuum. Then, the total characteristic matrixMTof theN-periodic photonic crystal can be obtained by concatenating the characteristic matrices of the single-layer film as follows:

    The reflection coefficientrand the phaseφof the reflected light are given by

    By using Eqs.(6)and(7),the reflection properties of thin film of 1DPC with different materials and structures under different light of incidence can be studied.

    The GH shift expressed in Eq. (8)[30]is well suitable for the beams with a reflection angle greater than the critical angle. It must be emphasized that the equation is applicable only for the incident wave that is a plane wave or well collimated and the beam waist is wide enough.[29,34]In recent studies,equation(8)can be applied to all incident angles when the reflection occurs at the absorbing surface.[29]The 1DPC combined with special materials such as indium antimonide(InSb)[35]or the graphene-based hyperbolic metamaterial(GHMM),[36]will possess a GH shift around 182 times the wavelength.The BSW can also be used to enhance the GH shift.[20,25,34,37]When they are combined,the much larger GH shift which increases up to 2520 times the wavelength can be achieved.[37]

    3. Calculation results and discussion

    3.1. Feasibility of measuring film thickness via Goos–H¨anchen shift coupled with Bloch surface wave

    The substrate material is BK7 glass. The 1DPC consists of TiO2as material A and SiO2as material B.The thicknesses of materials A and B are denoted asdAanddB, respectively.The material of terminating layer is TiO2and its thickness isdA′, and its covering layer is air. The incident light is in the TE mode. Owing to the importance of refractive index in the thickness solution, it should be determined first. The TiO2and SiO2nanoscale layers are deposited on silicon substrates by using the ion assistance electronic beam deposition technique and measured by ellipsometry. The refractive index dispersions of the constituent materials in a wavelength range of 210 nm–1200 nm are shown in Fig. 2(a), and the extinction coefficients are displayed in Fig. 2(b). The optical constants of SiO2are fitted by the Cauchy model,[38]those of BK7 glasses are fitted by the Cody–Lorentz model,[38,39]and those of TiO2by using the Tauc–Lorentz model.[38,40]The details of the models and values of the fitting parameters are given in Appendix A.

    To match the energy loss due to the roughness of the thin film,the extinction coefficient of TiO2is set to be 10-3in the visible light range.[27]Based on the same consideration, the extinction coefficient of SiO2is assumed to be 1×106.

    When the 1DPC film withdA= 144.1 nm anddB=161 nm is considered as a semi-infinite (N=300, the number of periodic layers)film, figure 3 shows the bandgaps(for TE mode) of the structure clearly. The deep red area shows a low reflectance area, and the incident light in this area is allowed to pass through this film. The yellow area shows a high reflectance area. In this area,the incident light is forbidden to pass through this film,e.g.the bandgap. And then,the structure is simulated as a finite (N=3) and interrupted periodic structure by a layer of TiO2(dA′=41.5 nm), and the reflectance is shown in Fig.4(a)while the incident light is in the TE mode. The deep red curve, in a wavelength range of 612 nm–939 nm,shows a deep reflectance dip which is caused by the excited BSW in the bandgap. Several reflectance decay phenomena can be seen in Fig.4(a)(at smaller wavelengths),which are caused by the bandgap edge of the photonic crystal. The depths of these changes are less than the reflectance minimum values associated with the excitation of a BSW.The research is therefore focused on BSW.

    Fig.2. Curves of (a) refractive index and (b) extinction coefficient versus wavelength of constituent materials.

    Fig.3. Reflectance of 1DPC(dA=144.1 nm,dB=161 nm)under approximate semi-infinite conditions for TE mode, with deep red region regarded the photonic bandgap.

    Figure 4(b)shows the spectral reflectance when the angle of incidence is 70.5°,the lowest reflectance at a wavelength of 676.1 nm is 0.01. In order to show the variation of reflectance,phase and GH shift more clearly,the axes are restricted to 68°–73°and 650 nn–700 nm in Figs.5–7.

    Fig.4.(a)Reflectance of finite 1DPC(dA=144.1 nm,dB=161 nm,N=3,dA′ =41.5 nm)and(b)spectral reflectance versus wavelength at θ0=70.5°for TE mode.

    Fig.5. Reflectance versus incident angle and wavelength for TE mode of finite 1DPC with dA=144.1 nm,dB=161 nm,N=3,and dA′ =41.5 nm.

    To show the condition of the GH shift peak position more clearly,the reflectance of the region,where the peak GH shift is located(wavelength from 650 nm to 700 nm,incidence angle from 68°to 73°), is intercepted as shown in Fig. 5. The phase of the reflected light,shown in Fig.6,also changes dramatically with the reflectance decreasing sharply. Since the sampling interval is 0.05 nm,the lower right part of the curve in Fig.6 is serrated. If the sampling interval is small enough(less than 0.0001 nm or 0.0001°, the curve will become smoothly. It is unnecessary to display such a smooth curve here because the actual system cannot take so fine sampling interval.The position with the lowest reflectance is not the position with the largest phase change, but the position has the largest phase change rate. The GH shift is proportional to the angle-dependent phase variation when experiments are performed with a single wavelength light source.[20,28–31]When the wavelength is modified,the derivative of the phase with respect to the incident angle varies consequently. Thus, a large GH shift can also be generated by changing the wavelength.

    Fig.6. Phase versus incident angle and wavelength of reflected light for TE mode of finite 1DPC, with dA =144.1 nm, dB =161 nm, N =3,and dA′ =41.5 nm.

    Fig.7. GH shift versus incident angle and wavelength for TE mode of finite 1DPC, with dA = 144.1 nm, dB = 161 nm, N = 3, and dA′=41.5 nm,and deep red point at the intersection of the white dashed lines indicating the largest GH shift.

    Although a few of obvious phase variations can be seen in Fig. 7 when the wavelength is above 685 nm, there are no GH shifts with larger values than that at an incident angle of 70.5°and a wavelength of 676.1 nm,as the rate of phase variation is the most decisive factor.It should be additionally stated that the accumulated phase change will goes beyond the range from-πtoπ. In order to calculate the rate of phase change,the phase is expressed not only as the phase in one period,but also as the cumulative change of the phase from the beginning to the present, to avoid the calculation error of the GH shift caused by subtracting 2π.

    It can be found that the huge GH shift peaks, which are shown in Fig. 7 and distributed along the curve of the abrupt reflectance change as indicated in Fig.5,seem to be distributed discretely. This is because only the specific combination of incident angle and wavelength can excite large GH shift,and the calculations are performed by interval sampling to obtain theoretically continuous angular and wavelength variations,therefore,these GH shift peaks appear to be discretely distributed.Whenθ0= 70.5°andλ= 676.1 nm, the largest GH shift,3.46×106nm, about 5120 times the wavelength, will occur as shown by the dark red point in Fig. 7. Based on this discrete distribution, it can be more easily to discern the change in thickness of the 1DPC film.

    3.2. Peak shift and peak wavelength of Goos–H¨anchen shift versus layer thickness

    As shown in Fig.8,when the thickness of the termination layer(i.e.,dA′)varies from 41.1 nm to 41.5 nm(θ0=70.5°),the value of GH shift peak increases from 2×106nm to about 5×106nm and the wavelength position where the peak is located (called peak wavelength), shifts from 673.4 nm to 676.1 nm. For every 0.1-nm change in termination thickness,the peak wavelength varies approximately linearly by 0.7 nm.This resolution is sufficient to distinguish thickness changes of at least 0.1 nm.

    Fig.8. Simulated GH shift for TE mode with dA′ from 41.1 nm to 41.5 nm.

    Fig.10. Simulation for TE mode with dA =71.3 nm, dB =172.9 nm. (a) reflectance, semi-infinite (N =300); (b) reflectance, N =6,dA′ =42.0 nm;(c)phase,N=6,dA′ =42.0 nm;(d)GH shift,N=6,dA′ =42.0 nm.

    Like the termination layer, when the thickness values of the periodic bilayers (dAanddB) change, the GH shift peak and the peak wavelength also change as shown in Fig. 9.The resolution of the periodic bilayers obtained from the peak wavelength is slightly lower than that of the thickness of the termination layer. The resolution obtained from the GH shift peaks can provide enough support for obtaining the solution ofdAanddB.

    Fig.9.Plots of simulated GH shift versus wavelength for TE mode with thickness(a)dA from 144.1 nm to 144.5 nm and(b)dB from 160.6 nm to 161.0 nm.

    Fig.11. Simulated GH shift for TE mode with different thickness values: (a) dA′ from 41.6 nm to 42 nm, (b) dA from 71.3 nm to 71.7 nm,(c)dB from 172.9 nm to 173.3 nm,and(d)dA′ from 30 nm to 50 nm and dA from 65 nm to 90 nm.

    Similar conclusions can be obtained when a different 1DPC structure,e.g.,dA=71.3 nm anddB=172.9 nm, is simulated. If this structure is considered to be semi-infinite,the reflectance is shown in Fig.10(a). If a more realistic finite structure(N=6 anddA′ =42.0 nm)is simulated as shown in Fig. 10(b), reflectance dips due to BSW can be found in the photonic bandgap. Both the phase and the GH shift also have huge changes because of BSW as shown in Figs. 10(c) and 10(d). Similarly,when the thickness values of the termination layer and the periodic bilayer vary at an interval of 0.1 nm,the value of the GH shift peak and the peak wavelength also change significantly. As shown in Figs. 11(a)–11(c), these peak wavelengths change almost linearly, too. These results prove that the detection of thickness by the enhanced GH shift is not only useful for the special structure (dA=144.1 nm,dB=161 nm,N=3,dA′ =41.5 nm),but also widely applicable.

    3.3. Method of determining layer thickness

    When bothdAanddA′are uncertain (θ0=49.9 nm andλ=779.2 nm),the GH shifts,shown in Fig.11(d),can be obtained. It can be clearly seen that with some thickness combinations,there are obvious GH shift peaks. But it is not enough to solve the thickness of a particular layer alone. The feasible solution is to obtain more such GH shift distribution maps bychanging the wavelength and the angle of incidence to determine the unique thickness combination. As shown in Fig.12,there are differences in the distributions of GH shifts among different films at different wavelengths,especially in the case of excited BSW. These differences allow us to calculate the thickness values of the films. It can be expected that the accuracies of such calculations will further be improved if the angular dimension is taken into consideration.

    According to the simulation results, it is clear that both the periodic bilayers and the thickness of the termination layer have a decisive influence on the GH shift. When calculating the film thickness, the thickness of the termination layer cannot be calculated without obtaining the thickness of the bilayer periodic structure.Therefore,the optimization algorithm from machine learning technique is needed to perform the solution of the overall 1DPC structure by sampling at different incident light and wavelengths.

    Fig.12. GH shift versus dA,dA′,and wavelength in TE mode.

    In this work,according to the target thickness in processing, the limitations for the true thickness of the termination layer and the periodic bilayer are preset. The particle swarm optimization (PSO) is initialized to give a group of random particles(random solutions),and then to find the solution that best meets the requirements for iteration,i.e., the optimal solution under a specific evaluation function. In each iteration,the particles gradually converge toward the optimal solution by tracking the better solution. In addition, the trapping into local optimum is avoided by adding unexpected variables. A more accurate thickness combination can be obtained by increasing the weight of the peak GH shift as well as the peak wavelength in the evaluation function through the adjustment for the evaluation function. The accurate film thickness can be achieved when the thickness range of the termination layers and the periodic bilayer are limited to±10 nm and±50 nm of the target thickness respectively.

    A more general film, withdA= 126.9 nm,dB=236.1 nm,N= 5, anddA′= 87.2 nm is chosen as the object of thickness distribution solution. It is difficult to achieve sub-nanometer accuracy when actually manufacturing the film(therefore the film is not always a perfect periodic in structure),so calculation results are retained to two decimal places to support the process. The GH shift obtained from the simulation is used as the‘measured value’for the evaluation of the solution method. As the solving results that are shown in Table 1, the repeatability error of the termination layer thickness measurement is less than 2% with an accuracy error ofσ=±2 nm,and the repeatability error of the periodic layer measurement is less than 3‰with an accuracy error ofσ=±0.5 nm. The first sample mentioned in this work (e.g.,dA= 144.1 nm,dB=161 nm,N=3, anddA′=41.5 nm) is also used as the subject for calculation and the results are shown in Table 2.

    Table 1. Solving result for dA=126.9 nm,dB=236.1 nm,N=5,and dA′ =87.2 nm.

    Table 2. Solving result for dA =144.1 nm, dB =161 nm, N =3, and dA′ =41.5 nm.

    As this sample induces a more intensive BSW, the repeatability error of the termination layer thickness measurement is less than 5‰with an accuracy error ofσ=±0.5 nm,and the repeatability error of the periodic layer measurement is less than 5‰with an accuracy error ofσ=±2 nm. It shows that when the BSW is more intensive, the results are better for the termination layer,while the accuracy of the calculation will decrease for the periodic structure.

    4. Conclusions

    The models of 1DPC with different structures are studied by the transmission matrix method in the work. The reflectance, reflection phase, and the distribution of GH shifts are given for different incidence conditions. It is demonstrated that large GH shifts of the order of 5.1×103times the wavelength can occur under specific conditions (e.g.,dA=144.1 nm,dB=161 nm,N=3, anddA′=41.5 nm). When multiple thickness values of the layers are varied,the peak position of the GH shifts and the peak wavelength changes accordingly. And another structure with a GH shift of 30 times the wavelength magnitude is chosen as the object of thickness distribution solution. The changes occurring are sufficient to carry out the resolution of the thickness. Therefore,after multi-wavelength sampling,the thickness of the termination layer and the periodic bilayer can be solved by GH shifts combined with the PSO algorithm. As 1DPC-based sensors and optical fibers are more and more widely used in the field of optical communication and sensing, this BSW enhanced GH shift provides an innovative idea of analyzation and calibration for 1DPC film, and can provide the guidance for on-line application of multilayer film.

    Appendix A:Material model and fitting parameters

    In this section the models of the optical constants of the materials are briefly presented, please see Fig. 2 in the main body for the exact values. These values are calculated from the internal analysis of the Ellipsometer. In all three models,theEis light quantum energy. The Cauchy model[38]for the optical constant of SiO2is given by

    whereλis the wavelength in unit of μm,A,B,C, and kamp are the their fitting parameters,bandedge is the parameter that can be set manually,[38]specifically,A=1.479,B=0.00411,C=0,kamp=0,and bandedge=4 eV.

    The Tauc–Lorentz model[38,40]for the dielectric constant of TiO2is given by

    where

    wherePis the Cauchy principal part of the integral; AmpT,BrT,EoT, andEgTare the variable fitting parameters, specifically,AmpT=258.5002,BrT=2.035,ET=4.123,andEgT=3.295.

    The Cody–Lorentz model[38,39]for the dielectric constant of BK7 is given by

    where

    TheAB,ΓB,EB,EgB,EpB,EtB, andEuBare variable fitting parameters. In this paper,AB= 0.00130,ΓB= 0.454,EB= 4.492,EgB= 3.035,EpB= 8.339,EtB= 0.000, andEuB= 0.500. The refractive indices and extinction coefficients of TiO2can be calculated fromεT1=n2TiO2-k2TiO2andεT2= 2nTiO2kTiO2. For BK7,εB1=n2BK7-k2BK7andεB2=2nBK7kBK7.

    Acknowledgements

    The authors thank Dr.Zirui Qin and Dr.Chong Yue,graduated from our group,for their valuable discussion in the modeling process, and also thank Prof. Dr. Reza Asgari, School of Physics, Institute for Research in Fundamental Sciences,(IPM) 19395-5531 Tehran, Iran, for the discussion and suggestion of related issues.

    Project supported by the National Natural Science Foundation of China(Grant Nos.51575387 and 51827812).

    猜你喜歡
    興林
    統(tǒng)編語文教材八(上)第四單元拓展閱讀
    植樹造林
    綠色天府(2022年1期)2022-11-23 14:11:38
    統(tǒng)編語文教材八(下)第一單元拓展閱讀
    航天遙感電子學(xué)單機(jī)產(chǎn)品重點(diǎn)檢驗環(huán)節(jié)復(fù)查方法
    長相思·山兒青
    馬鞍山市全面推行“五綠興林·勸耕貸”融資擔(dān)保業(yè)務(wù)
    初夏
    “紅色小鎮(zhèn)”扛起抗戰(zhàn)精神傳承大旗
    民族大家庭(2017年1期)2017-04-05 05:55:04
    賈興林作品
    天工(2016年2期)2016-02-09 03:31:56
    色94色欧美一区二区| 脱女人内裤的视频| 麻豆成人av在线观看| 自线自在国产av| 亚洲精品一二三| 性色av乱码一区二区三区2| 99久久国产精品久久久| 高潮久久久久久久久久久不卡| 一二三四在线观看免费中文在| 国产一区有黄有色的免费视频| 亚洲av成人av| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇久久久久久888优播| 黄色成人免费大全| 国产91精品成人一区二区三区| 天天操日日干夜夜撸| 在线av久久热| 免费在线观看视频国产中文字幕亚洲| 搡老岳熟女国产| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 91精品国产国语对白视频| 亚洲精品国产区一区二| 日韩三级视频一区二区三区| 精品熟女少妇八av免费久了| 丝袜美足系列| 国产亚洲精品第一综合不卡| 色94色欧美一区二区| 一进一出抽搐动态| 国产成人精品久久二区二区免费| 女人高潮潮喷娇喘18禁视频| 一夜夜www| 18禁裸乳无遮挡动漫免费视频| 亚洲av片天天在线观看| 村上凉子中文字幕在线| 亚洲性夜色夜夜综合| 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 波多野结衣av一区二区av| 99在线人妻在线中文字幕 | 香蕉久久夜色| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| 一级毛片精品| 涩涩av久久男人的天堂| 丝袜美腿诱惑在线| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| 少妇的丰满在线观看| 精品久久久精品久久久| 午夜福利视频在线观看免费| 精品免费久久久久久久清纯 | 亚洲第一青青草原| a在线观看视频网站| av一本久久久久| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 亚洲av日韩在线播放| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 国产精品国产高清国产av | 免费观看精品视频网站| 婷婷成人精品国产| videosex国产| 老司机午夜福利在线观看视频| 老司机深夜福利视频在线观看| videos熟女内射| 国产精品av久久久久免费| 99热网站在线观看| 手机成人av网站| 精品视频人人做人人爽| 18禁裸乳无遮挡免费网站照片 | 巨乳人妻的诱惑在线观看| 国产亚洲精品久久久久5区| 亚洲成国产人片在线观看| 欧美乱色亚洲激情| 少妇被粗大的猛进出69影院| 久9热在线精品视频| 窝窝影院91人妻| 大型黄色视频在线免费观看| 国产伦人伦偷精品视频| 777米奇影视久久| 国产精品国产高清国产av | 黄色毛片三级朝国网站| 亚洲精品在线观看二区| 狠狠狠狠99中文字幕| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 高清黄色对白视频在线免费看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区精品视频观看| 亚洲第一av免费看| 国产精品偷伦视频观看了| 黄色怎么调成土黄色| 每晚都被弄得嗷嗷叫到高潮| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 欧美激情久久久久久爽电影 | 精品国产一区二区三区四区第35| 久久精品亚洲av国产电影网| 91九色精品人成在线观看| 国产成人系列免费观看| a在线观看视频网站| 夜夜躁狠狠躁天天躁| 亚洲中文字幕日韩| 午夜福利在线免费观看网站| 十分钟在线观看高清视频www| 欧美乱色亚洲激情| 99热只有精品国产| 夜夜夜夜夜久久久久| 免费日韩欧美在线观看| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 下体分泌物呈黄色| 亚洲精品国产精品久久久不卡| 美女 人体艺术 gogo| 天天躁日日躁夜夜躁夜夜| 丁香欧美五月| 欧美乱妇无乱码| 日日爽夜夜爽网站| 国产不卡一卡二| 亚洲一区二区三区欧美精品| 国产1区2区3区精品| 免费在线观看影片大全网站| 亚洲精品中文字幕一二三四区| 美女扒开内裤让男人捅视频| 国产视频一区二区在线看| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 777久久人妻少妇嫩草av网站| 91麻豆精品激情在线观看国产 | 窝窝影院91人妻| 午夜影院日韩av| 久久亚洲真实| 夜夜躁狠狠躁天天躁| 人人妻,人人澡人人爽秒播| 欧美激情高清一区二区三区| 久久热在线av| 飞空精品影院首页| 高清黄色对白视频在线免费看| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三区在线| 老鸭窝网址在线观看| xxx96com| av线在线观看网站| 丝袜人妻中文字幕| 午夜91福利影院| 在线视频色国产色| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频 | 伊人久久大香线蕉亚洲五| 狠狠婷婷综合久久久久久88av| 国产片内射在线| 国产成人欧美| 大型av网站在线播放| 黄片播放在线免费| 黑人巨大精品欧美一区二区蜜桃| 母亲3免费完整高清在线观看| 久久人人爽av亚洲精品天堂| 啦啦啦免费观看视频1| 亚洲人成电影观看| 色播在线永久视频| 一进一出好大好爽视频| 人人妻人人澡人人看| 久久久久国产精品人妻aⅴ院 | 黑人操中国人逼视频| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 亚洲三区欧美一区| 天堂中文最新版在线下载| 黄色丝袜av网址大全| 好男人电影高清在线观看| 久久99一区二区三区| 亚洲情色 制服丝袜| 韩国精品一区二区三区| 亚洲精华国产精华精| 午夜免费鲁丝| 国产精品久久久av美女十八| 亚洲色图 男人天堂 中文字幕| 91在线观看av| 亚洲第一青青草原| 久久久国产一区二区| 黄色 视频免费看| 欧美激情高清一区二区三区| 99精品在免费线老司机午夜| 热99久久久久精品小说推荐| 成年女人毛片免费观看观看9 | 夜夜爽天天搞| 午夜日韩欧美国产| 久久精品aⅴ一区二区三区四区| av福利片在线| 国产亚洲av高清不卡| 久久久国产精品麻豆| 亚洲avbb在线观看| 亚洲伊人色综图| 老鸭窝网址在线观看| 少妇猛男粗大的猛烈进出视频| 欧美在线黄色| 三级毛片av免费| 久热爱精品视频在线9| 女人久久www免费人成看片| 欧美另类亚洲清纯唯美| 亚洲精品在线观看二区| 久久久国产成人免费| 成年人午夜在线观看视频| 国产一区二区三区综合在线观看| 多毛熟女@视频| 日韩免费av在线播放| 啪啪无遮挡十八禁网站| 天天躁日日躁夜夜躁夜夜| 黄片小视频在线播放| 国产亚洲欧美98| 亚洲成人免费电影在线观看| 亚洲av熟女| 国产激情欧美一区二区| 宅男免费午夜| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 大型av网站在线播放| 免费一级毛片在线播放高清视频 | 搡老岳熟女国产| 久久久国产成人免费| 下体分泌物呈黄色| 性色av乱码一区二区三区2| 黄色怎么调成土黄色| 午夜福利欧美成人| 首页视频小说图片口味搜索| 久久精品国产a三级三级三级| 国产成人影院久久av| 亚洲欧美一区二区三区久久| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 亚洲成人免费av在线播放| 黄片大片在线免费观看| 97人妻天天添夜夜摸| 天天添夜夜摸| 日日夜夜操网爽| 午夜福利乱码中文字幕| 中出人妻视频一区二区| av中文乱码字幕在线| 黄片大片在线免费观看| 久热爱精品视频在线9| 国产有黄有色有爽视频| 色播在线永久视频| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色 | 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 91麻豆精品激情在线观看国产 | 亚洲国产精品合色在线| 极品教师在线免费播放| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 亚洲美女黄片视频| 大型av网站在线播放| 欧美 亚洲 国产 日韩一| 精品久久久久久,| 午夜福利免费观看在线| 久久这里只有精品19| 一级毛片女人18水好多| 伊人久久大香线蕉亚洲五| 午夜福利免费观看在线| 18禁裸乳无遮挡动漫免费视频| 久久精品亚洲熟妇少妇任你| 国产不卡一卡二| 久久精品91无色码中文字幕| 精品第一国产精品| 欧美亚洲日本最大视频资源| 亚洲熟妇中文字幕五十中出 | 女人被狂操c到高潮| 亚洲色图av天堂| 免费在线观看完整版高清| 别揉我奶头~嗯~啊~动态视频| 精品高清国产在线一区| 久久香蕉国产精品| 久久精品国产99精品国产亚洲性色 | 精品电影一区二区在线| 国产精品av久久久久免费| 一级片'在线观看视频| a级毛片黄视频| 国产91精品成人一区二区三区| 久9热在线精品视频| 美国免费a级毛片| 在线永久观看黄色视频| 久久九九热精品免费| 黄色a级毛片大全视频| 亚洲专区中文字幕在线| 天天添夜夜摸| 美女扒开内裤让男人捅视频| 天堂俺去俺来也www色官网| 大香蕉久久网| 最新在线观看一区二区三区| 欧美乱码精品一区二区三区| 超碰97精品在线观看| 男人的好看免费观看在线视频 | 少妇 在线观看| 在线看a的网站| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| av一本久久久久| 精品国产一区二区三区四区第35| 女人精品久久久久毛片| 新久久久久国产一级毛片| 久99久视频精品免费| 超碰97精品在线观看| 最新的欧美精品一区二区| 亚洲色图av天堂| 在线看a的网站| 国产成+人综合+亚洲专区| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 久久久久精品人妻al黑| 我的亚洲天堂| 亚洲精品美女久久久久99蜜臀| av一本久久久久| 亚洲精品久久成人aⅴ小说| 成年女人毛片免费观看观看9 | 操出白浆在线播放| 男人舔女人的私密视频| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区mp4| 久久亚洲真实| 欧美不卡视频在线免费观看 | 国产又爽黄色视频| 色综合欧美亚洲国产小说| 免费看a级黄色片| 黄色片一级片一级黄色片| 欧美亚洲日本最大视频资源| 午夜精品久久久久久毛片777| 亚洲三区欧美一区| 午夜精品在线福利| 亚洲国产欧美日韩在线播放| 欧美成狂野欧美在线观看| 亚洲成人免费电影在线观看| 日韩大码丰满熟妇| 午夜两性在线视频| 一区二区三区精品91| 国产乱人伦免费视频| 国产男女超爽视频在线观看| xxx96com| 亚洲国产看品久久| 欧美色视频一区免费| 免费日韩欧美在线观看| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 国产亚洲一区二区精品| 亚洲九九香蕉| 国产在视频线精品| 久久人妻熟女aⅴ| 搡老熟女国产l中国老女人| 日韩熟女老妇一区二区性免费视频| av国产精品久久久久影院| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全电影3 | 亚洲成国产人片在线观看| 国产野战对白在线观看| 成年女人毛片免费观看观看9 | 午夜老司机福利片| 精品亚洲成a人片在线观看| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| 亚洲一区高清亚洲精品| 一级a爱片免费观看的视频| 久久久久视频综合| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 99国产精品免费福利视频| 午夜免费鲁丝| av欧美777| 日本vs欧美在线观看视频| 国产亚洲av高清不卡| 香蕉丝袜av| 亚洲精品久久午夜乱码| 日韩精品免费视频一区二区三区| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 午夜久久久在线观看| 久久久精品免费免费高清| 日韩欧美在线二视频 | 精品少妇久久久久久888优播| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 大香蕉久久网| 一本综合久久免费| 在线看a的网站| 欧美日韩av久久| 中国美女看黄片| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 91精品国产国语对白视频| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩另类电影网站| 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 在线永久观看黄色视频| 夜夜躁狠狠躁天天躁| 岛国毛片在线播放| av电影中文网址| 精品国产乱码久久久久久男人| 国产精品乱码一区二三区的特点 | 欧美日韩亚洲综合一区二区三区_| av电影中文网址| 在线看a的网站| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 亚洲精品国产区一区二| 久久这里只有精品19| 亚洲美女黄片视频| 国产精品 欧美亚洲| 麻豆国产av国片精品| 三上悠亚av全集在线观看| 国产欧美日韩综合在线一区二区| 免费看a级黄色片| 久久草成人影院| 久久狼人影院| 伦理电影免费视频| 亚洲av成人av| 一本综合久久免费| 亚洲五月天丁香| 成年版毛片免费区| 国产色视频综合| 自线自在国产av| 在线av久久热| 热99久久久久精品小说推荐| 99精品在免费线老司机午夜| 欧美日韩亚洲综合一区二区三区_| 757午夜福利合集在线观看| 久久天躁狠狠躁夜夜2o2o| 天堂俺去俺来也www色官网| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 一级片'在线观看视频| 热99久久久久精品小说推荐| 中文字幕av电影在线播放| 精品国产一区二区三区久久久樱花| 超碰成人久久| 视频在线观看一区二区三区| 久久婷婷成人综合色麻豆| 一级作爱视频免费观看| 国产男靠女视频免费网站| 色综合欧美亚洲国产小说| 久久精品国产清高在天天线| 一级毛片高清免费大全| 男女之事视频高清在线观看| 女同久久另类99精品国产91| 亚洲色图 男人天堂 中文字幕| 日韩制服丝袜自拍偷拍| av片东京热男人的天堂| 精品亚洲成a人片在线观看| 免费久久久久久久精品成人欧美视频| 亚洲男人天堂网一区| 中文字幕av电影在线播放| 欧美日韩亚洲综合一区二区三区_| 手机成人av网站| 成年人黄色毛片网站| 久久人人97超碰香蕉20202| 在线av久久热| 18禁国产床啪视频网站| 午夜日韩欧美国产| 母亲3免费完整高清在线观看| 久久久久久免费高清国产稀缺| 日本wwww免费看| 午夜福利欧美成人| 精品少妇久久久久久888优播| 黑丝袜美女国产一区| 欧美日韩精品网址| 亚洲熟女精品中文字幕| 精品久久久久久,| 国产片内射在线| 岛国毛片在线播放| 又黄又爽又免费观看的视频| 两性夫妻黄色片| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| www.999成人在线观看| 亚洲成人手机| 亚洲aⅴ乱码一区二区在线播放 | 啦啦啦 在线观看视频| 午夜91福利影院| 中亚洲国语对白在线视频| 欧美亚洲日本最大视频资源| 国产成人欧美在线观看 | 中文字幕高清在线视频| 在线看a的网站| 国产无遮挡羞羞视频在线观看| 日本wwww免费看| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 国产成人精品久久二区二区91| 精品一区二区三区视频在线观看免费 | 亚洲一区二区三区欧美精品| 好男人电影高清在线观看| 高清av免费在线| 日本精品一区二区三区蜜桃| 无限看片的www在线观看| 又大又爽又粗| 国产男靠女视频免费网站| 国产片内射在线| 色94色欧美一区二区| 欧美精品亚洲一区二区| bbb黄色大片| 精品一区二区三卡| 亚洲色图综合在线观看| 大型av网站在线播放| 亚洲国产欧美日韩在线播放| 色综合欧美亚洲国产小说| 十八禁网站免费在线| 欧美 亚洲 国产 日韩一| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 91老司机精品| 亚洲七黄色美女视频| 美女视频免费永久观看网站| 色综合欧美亚洲国产小说| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区不卡视频| 大香蕉久久成人网| 村上凉子中文字幕在线| 亚洲在线自拍视频| 中文字幕人妻丝袜制服| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 丰满的人妻完整版| 精品卡一卡二卡四卡免费| 久久天躁狠狠躁夜夜2o2o| 久久精品国产a三级三级三级| 在线播放国产精品三级| 国产成人精品在线电影| 国产精品免费视频内射| aaaaa片日本免费| 日韩欧美一区二区三区在线观看 | 天堂√8在线中文| 欧美激情久久久久久爽电影 | 国产精华一区二区三区| 久久久国产欧美日韩av| 50天的宝宝边吃奶边哭怎么回事| 亚洲七黄色美女视频| 欧美 日韩 精品 国产| 人妻久久中文字幕网| 国产精品久久久人人做人人爽| 91老司机精品| 久久久水蜜桃国产精品网| 免费一级毛片在线播放高清视频 | 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 精品福利观看| 亚洲国产欧美一区二区综合| 国产乱人伦免费视频| 最近最新中文字幕大全免费视频| 不卡av一区二区三区| 男女之事视频高清在线观看| 欧美日韩瑟瑟在线播放| 免费女性裸体啪啪无遮挡网站| 国产在视频线精品| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 久久久久久久午夜电影 | 美女国产高潮福利片在线看| 国产精品av久久久久免费| 欧美乱码精品一区二区三区| 午夜福利在线免费观看网站| 免费日韩欧美在线观看| 国产精品偷伦视频观看了| 亚洲国产精品sss在线观看 | 超碰成人久久| 欧美日韩福利视频一区二区| 在线永久观看黄色视频| 亚洲专区字幕在线| 99精品久久久久人妻精品| 欧美黑人精品巨大| 搡老熟女国产l中国老女人| 后天国语完整版免费观看| 亚洲片人在线观看| 天天躁日日躁夜夜躁夜夜| 成人黄色视频免费在线看| avwww免费| 午夜91福利影院| 后天国语完整版免费观看| 国产高清激情床上av| 91在线观看av| 后天国语完整版免费观看| 久热这里只有精品99| 香蕉久久夜色| 在线观看日韩欧美| av视频免费观看在线观看| 又黄又粗又硬又大视频| 99热国产这里只有精品6| 国产一卡二卡三卡精品| 欧美精品啪啪一区二区三区| 国产精品秋霞免费鲁丝片| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲熟妇少妇任你| 三级毛片av免费| 男女床上黄色一级片免费看| 9热在线视频观看99| 日本vs欧美在线观看视频| 久久久久精品人妻al黑| 一级黄色大片毛片| 欧美一级毛片孕妇| 国产成人精品在线电影| 国产一区二区三区视频了| 色尼玛亚洲综合影院| 男女之事视频高清在线观看| 欧美+亚洲+日韩+国产|