• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7

    2023-02-20 13:16:08TinaRaoufiJinchengHe何金城BinbinWang王彬彬EnkeLiu劉恩克andYoungSun孫陽(yáng)
    Chinese Physics B 2023年1期
    關(guān)鍵詞:金城圖書(shū)館評(píng)價(jià)

    Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬),Enke Liu(劉恩克), and Young Sun(孫陽(yáng))

    1Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Center of Quantum Materials and Devices,Chongqing University,Chongqing 401331,China

    Keywords: magnetocaloric effect,cobaltite,phase transition,Griffiths phase

    1. Introduction

    Global warming has made society more aware of the need to reduce its energy consumption. Since living standards and economic growth are improved along with the increasing population, the demand for cooling technology and thermal energy harvesting systems is expected to increase substantially over the next 30 years. Refrigeration accounts for a substantial portion of global electricity consumption. Therefore, improving energy conversion efficiency is crucial in this branch of technology. The magnetic refrigeration and cryogenic systems based on the magnetocaloric effect(MCE)are a viable alternative to traditional gas-compression refrigeration because of their high thermodynamic performance,low noise,and environmental friendliness.[1,2]Magnetic refrigeration technology around room temperature is important for household refrigeration and air conditioner, but magnetic refrigeration in low-temperature regions is essential for liquefaction of helium,hydrogen,and nitrogen,which is commonly used in lowtemperature physics, superconductors, medicine, and space technology.[3,4]

    The MCE is a magneto-thermodynamic character for magnetic solid materials,which represents the reversible temperature variation or entropy change when it is magnetized or demagnetized under adiabatic or isothermal conditions.[5]The MCE is regarded as an inherent effect in magnetic materials when a magnetic material is exposed to magnetic fields. Up to date,the magnetic properties and magnetocaloric efficiency of a wide range of magnetic materials with various characterization and preparation techniques such as oxides, alloys, amorphous, intermetallic, and composites have been investigated and reviewed in literature.[6–8]

    In recent years, the oxide CaBaCo4O7(CBCO), which belongs to the “114” cobaltite from a new class of geometrically frustrated magnets,has attracted interest due to its complex geometrically frustrated network. The CBCO compound crystallizes in the orthorhombicPbn21symmetry in the entire temperature range from the room temperature to 4 K.[9]The magnetic unit cell of CBCO includes four equivalent Co sites, leading to an alternate stacking of two types of corner shared CoO4tetrahedral: Co1 sits in the triangular layer,while Co2, Co3, and Co4 atoms are in the kagome layer,causing considerable magnetic frustration.[10,11]The geometrical frustration in the kagome and triangular lattice of this compound can be partially lifted due to large orthorhombic structural distortion and charge ordering (the stoichiometric formula),leading to a ferrimagnetic order state below 60 K.[12]

    In this work,the magnetic and magnetocaloric properties of the 114 cobaltite CaBaCo4O7compound are studied with the aims at better understanding the low-temperature physical properties of CBCO and developing new magnetic materials for magnetic refrigeration. We use comprehensive magnetization calculation to describe the magnetic phase transition by applying the Banerjee criterion,as well as recent methods such as universal scaling and a quantitative technique based on the field dependence of the magnetic entropy change to find the order of magnetic phase transition to gain a better understanding of the nature of magnetic transitions and MCE properties of the system.

    2. Experiments

    Polycrystalline samples of CaBaCo4O7were synthesized by the conventional solid-state reaction method. The stoichiometric quantities of all the initial reactants with high-purity,including CaCO3,BaCO3,and Co3O4,were ground in an agate mortar for 2 h, and then heated at 900°C in air for 12 h for decarbonization. After another 1 h grinding process,the mixture was then pressed in the form of cylindrical bars to make pellets, heated in air at 1100°C for 14 h, and finally cooled down to room temperature.

    The temperature-dependent dc magnetization and magnetization versus applied magnetic field up to 7 T were measured by using a Quantum Design magnetic properties measurement system(MPMS).The crucial MCE characteristics,such as-ΔSM(T), refrigerant capacity (RC), and relative cooling power (RCP),were calculated from the magnetization versus applied magnetic fields.

    3. Results and discussions

    3.1. Structural characterization

    The structural properties of the CBCO samples were investigated by using the x-ray diffraction(XRD)at room temperature. Figure 1 shows the diffraction pattern of a CBCO sample and Rietveld refinement analysis using the FullProf program.

    Fig.1.The x-ray diffraction pattern of the prepared CaBaCo4O7 sample at room temperature.

    The results of the refinement demonstrate that the sample crystalizes in the orthorhombic crystal structure with thePbn21space group and the cell parametersa=6.277(1) ?A,b=10.987(9) ?A,c=10.180(9) ?A, andV=702.198(5) ?A3.In comparison to previous work,the value of the volume was decreased.[13]There is also a small extra peak related to BaO2in the XRD pattern. The sintering temperature and annealing time are important factors in the solid-state reaction process. The grain size grows as the annealing time and sintering temperature increase. The variation in annealing time in the process of preparing our sample compared to the work of Dhansekharet al. could explain the decrease in volume cell and observation of inhomogeneity(extra peak)in XRD.[14–16]

    3.1.1 LibQUAL+TM的演變。LibQUAL+TM是基于SERVQUAL提出的一種適用于圖書(shū)館的質(zhì)量評(píng)價(jià)模型[4]。

    3.2. Magnetic characterization

    Figure 2(a) displays the FC magnetization for polycrystalline CBCO measured as a function of temperature in 0.05 T magnetic field over a temperature range of 20–300 K. The FC curve exhibits a sharp increase of magnetization at the Curie temperature (TC) of a ferrimagnetic (FIM) to paramagnetic(PM)transition.[17]The temperature derivative of theM–Tcurve is shown in the inset of Fig. 2(a), which can be used to unambiguously calculateTC. The value ofTCis evaluated to be 60 K, which is close to other reports.[16,17]One of the principal capabilities of the CBCO compound is that the structural distortion lifts exchange-interaction frustration which leads to the unique geometry of the kagome lattice. The exchange interaction in the system would be influenced by the precise Co3+/Co2+=1 ratio, resulting in the appearance of the FIM ordering.[10,12]

    The inverse magnetic susceptibility versus temperature is presented in Fig.2(b). The linear behavior ofχ-1versusTat higher temperatures suggests thatχ-1obeys the Curie–Weiss(CW)law in this region:[18]

    whereθPis the CW temperature,andCis the Curie constant.The black line in Fig.2(b)depicts the fit to the CW law with parametersθP=13.6 K andC=1.1010 K·A·m2/T·kg. The small value of the CW temperature is expected for the ferrimagnetic state.[19]The small value of intercept can be referred to competition between AFM and FM phase interaction before the Griffiths temperatures (TG) and the persistence of inhomogeneity in the PM regime. The assumption thatχ-1does not follow the CW law aboveTCis evident from this diagram. The downturn behavior of inverse susceptibility versus temperature aboveTCis clear from Fig.2(b),which is considered as a sign of Griffiths phase (GP) singularity rather than a pure PM region. The appearance of short-range FM/AFM correlation well aboveTCis signaled by the faster reduction ofχ-1belowTG.

    Fig.2. (a)Magnetization as a function of temperature in the field-cooled mode under a magnetic field of 0.05 T.The inset presents the dM/dT versus T curves. (b)Temperature evolution of inverse magnetic susceptibility. The black solid line indicates the linear fit to the CW law. (c)The T-dependent susceptibility data following Eq.(2),plotted in double logarithmic scale.

    The exponentλ, which can be calculated from the following equation, is commonly used to evaluate the Griffiths phase:[20]

    whereλis a constant to obtain the degree of deviation from the CW behavior andis the critical transition temperature of the random ferromagnetic where susceptibility diverges. The choice of=θPis generally good one because it ensuresλ~0 in the paramagnetic region. The difference betweenTCandθPin the present system makes it reasonable to choose=TC. In Fig. 2(c) the log–log plot shows the power-law behavior inχ-1(T) and the slope of the fitted straight line[Eq. (2)] gives theλGPandλPMvalues. The value ofλPMis estimated to be zero in the pure PM regime.Here,λPMis positive and less than unite,andTC<<TG,which confirm the appearance of GP. Susceptibility measurements were carried out in another magnetic field to establish the feature and to identify the magnetic field limit where the Griffith phase disappeared. Griffith phase is present even in the high magnetic field of 7 T(the results are not shown here).

    Previous research demonstrated that the strong AFM Co–Co interaction facilitated by Co–O–Co super-exchange in kagome and triangular layers generates complex magnetic properties in CBCO.Because of the critical function of significant structural distortion,cobalt valence,and charge ordering in forming a long-range magnetic order, geometrical frustration in CBCO is partially lifted.[21]The partially lifted geometrical frustration phenomenon generates a slight disordering of the cobalt spins in the long-range magnetic order. The presence of GP is attributed to a complicated magnetic interaction,competition between AFM and FM orders,while remaining geometrical frustration,which results in inhomogeneity in CBCO.

    A series of isothermal magnetization curves around the magnetic transition temperature are assessed to examine the magnetic and magnetocaloric properties of materials. Figure 3(a)shows theM–Hcurves of the CBCO aroundTCunder 0 to 7 T. As the temperature rises, the magnetization curves progressively shift from a nonlinear to a linear shape, representing the transition process from FIM to PM. It is worth noting that theM–Hcurves exhibit a nonlinear behavior at a temperature segment higher thanTC(60–70 K)in the PM region,implying that the PM state is incomplete. Moreover,the sudden change in the slope of someM–Hcurves suggests the presence of magnetic inhomogenity in this sample.

    Fig.3. (a)Series of isothermal M–H curves under magnetic field up to 7 T in the temperature range of 40–80 K.(b)The Arrott plots obtained from the M–H curves.

    3.3. Magnetocaloric characterization

    To determine the magnetocaloric properties, the isothermal magnetization was measured as a function of the magnetic field in the range 0–7 T and the temperature range of 20 K around the magnetic phase transition temperature. The magnetic entropy change ΔSM(T), an essential parameter to represent the magnetocaloric effect of a material,can be indirectly evaluated from the total isothermal magnetization using Maxwell’s thermodynamic relation:

    Based on the fact that the isothermalM(H) curve is determined by different changes in the magnetic field and Eq. (4)gives the value of ΔSM(T)at different temperatures and fields,ΔSM(T)can be expressed as

    whereMiandMi+1are the magnetization values measured atTiandTi+1under a magnetic field ofH, respectively. Figure 4(a)shows the magnetic entropy-ΔSM(T)calculated using Eq. (5) against temperature for a magnetic field change up to 7 T with steps of 1 T. The maximum peaks occur nearTC, and the values rise as the magnetic field increases. At the field of 7 T, the maximum-ΔSM(T) is about 3 J/kg·K at~60 K.It is specially essential to mention that the behaviors of-ΔSM(T)below and aboveTCdiffer from each other.A progressive increase in-ΔSM(T) occurs belowTC, which is the signature of the second-order phase transition (SOPT);whereas aboveTC,the rapid change in-ΔSM(T)suggests the first-order phase transition(FOPT)behavior in this region.

    The ΔSM(T)value of CBCO is comparable with those of some potential magnetic refrigerant material in a similar temperature region under a 5 T magnetic field,such as Gd2Ni2Sn(4.6 J/kg·K at 75 K),[23]Tb2Ni2Sn (2.9 J/kg·K at 66 K),[23]Sm2Co2Ga(1.31 J/kg·K at 62 K),[24]Nd6Co2Si3(5.3 J/kg·K at 84.5 K),[25]TbPtMg(5.1 J/kg·K at 58 K),[26]and GdCuMg(5.6 J/kg·K at 78 K).[27]

    Fig.4. (a) The -ΔSM(T) curves versus temperature under different magnetic fields up to 7 T.(b)The corresponding exponent n as a function of temperature for 7 T.

    Dhanasekharet al. reported that the magnetic entropy change of a polycrystalline CBCO sample sintered under various conditions has different values.[16]Compared to the previous report with the decrease in sintering time,a broad peak in magnetic entropy change with the width of half maximum of ΔS–Tcurve about 14 K is observed in our case. Reduced sintering time contributes to increased porosity.The saturation magnetization decreases with reduced sintering times, which can be attributed to the core/shell morphology,lower grain size and the spin structure on the core and surface. The effect of reducing the sintering time on saturation magnetization is consistent with the previous studies.[28,29]

    The Landau theory is a theoretical model which is defined based on the magnetoelastic contribution and electron interaction. This theory is used to determine the nature of the magnetic phase transition in magnetic materials.[30]The Landau theory can verify the nature of the phase transition indicated by other models, as well as explain the magnetic entropy change dependence on temperature variation.The Gibbs free energy for a magnetic system can be described as a function of the magnetic field, magnetization, and temperature in the Landau theory around the Curie temperature transitionTC.TheG(M,T) can be defined in terms of the order parameter of powerM, and the coefficients are smooth functions of temperature:[31]

    where the coefficientsa(T),b(T),andc(T)are known as Landau coefficients,and they describe temperature-dependent parameters. The energyG(M,T) corresponds to the minimum value at the phase transition under the condition of equilibrium energy minimization,(dG/dM)=0,leading to the following magnetic equation of state:

    The temperature-dependent parameters ofa(T),b(T), andc(T)obtained from the polynomial fit of theM–Hdata using Eq.(7)allow us to determine the order of magnetic phase transition as depicted in Figs.5(a)–5(c). It is clear from Fig.5(a)that the parametera(T) changes from negative to positive as the temperature increases, and the temperature corresponding to zero is almost close toTC. According to the Inoue–Shimizu model,[32]the sign of theb(TC)determines the order of the magnetic phase transition, which indicates the FOMT ifb(TC)<0 and the SOPT ifb(TC)≥0. The sign ofb(TC)is positive in the CBCO sample, confirming the SOPT atTC.However, as seen above theTC(near 65 K), the trend of theb(T)is changed. This conclusion matches with the results of the Arrott plots.

    Fig.5. (a)–(c)The temperature dependence of the Landau parameters. (d)Comparison of experimental and calculated values by the Landau theory of the magnetic entropy change under magnetic field of 7 T for the CBCO sample.

    The magnetic entropy change is estimated theoretically using the Landau theory through differentiation of the free energy with regard to temperature:

    Here,a′(T),b′(T), andc′(T) have been obtained from the temperature derivatives of Landau parameters. Figure 5(d)shows the experimental (red symbols) and calculated (black line)-ΔSM(T)versus temperature under 7 T obtained by the Maxwell integration and the Landau theory fromM(T,H),respectively. According to recent studies, the magnetoelastic coupling induced a large change in electrical polarization at the PM to FIM phase transition aroundTC,as well as explaining the temperature dependence of unit-cell characteristics and volume belowTC.[33,34]The good agreement between the two curves for the CBCO sample implies that the magnetic entropy change versus temperature could be described by magnetoelastic coupling and electron interaction. It can be seen that in theT >TCregion, there is a small discrepancy between the two curves. The difference could be explained by the presence of short-range FM interaction in this area.

    Another method for determining the magnetic phase transition order is to obtained powernfrom the function-ΔSM(T)=a(Hn).[35]Figure 4(b) displays the temperature dependence ofnversusTin 7 T.Then(T)was calculated for a high field because the multi-domain state exists in a small field. It is impossible to consider the value ofnfor a small field. According to the CW law,the value of exponentnmust be 2 for SOPT in the PM area, whereas in FOPT-type transition it should ben >2. Around theTC,the minimum ofn(T)is obvious and in the area below theTC, the value ofn(T) is found to be nearly 1. Above theTC(T <~65 K), the curve predicts the second-order phase transition,but there is a significant overshoot in the PM region above 65 K,which indicates the first-order transition.Therefore,it is possible that there is a cross from second-order to first-order transition with increasing temperature.

    Franco and co-workers introduced the phenomenological universal master curve as an additional approach to confirm the magnetic phase transition order.[36,37]According to this process, for material undergoing a SOPT, the universal curve assembled by the normalizing magnetic entropy change(ΔSM/) in various applied fields versus rescaling the temperature axis(θ)below and aboveTCwould converge into a single curve. For the CBCO compound,the universal curve is shown in Fig.6,which is defined as

    whereTr1andTr2are temperatures for each curve corresponding to the reference points below and above theTC, respectively.(ΔSM/)=fis used to evaluate the reference temperature, in whichfcan be selected from 0 to 1, but too large a value and too small a value would cause large numerical errors. In our case,f=0.5 has been selected for all the curves. As is evident from Fig.6, the rescaled curves are not completely collapsed into a single curve(especially forθ <0),confirming the presence of both magnetic transitions.

    Fig.6. Universal scaling plot of normalized magnetic entropy change as a function of rescaled temperature.

    The large magnetic entropy change is not a sufficient tool to determine the suitability of the material used in magnetic refrigeration. There is a figure of merit to identify the cooling capacity of MCE performance of a magnetic refrigeration material named as refrigeration capacity. The physical concept of refrigeration capacity(RC)is the amount of thermal energy transferred between the hot and cold sources in an ideal cooling cycle.[38]The RC value depends on the height and width of the peak on the magnetic entropy change versus the temperature curve. The common and popular methods to calculate the cooling capacity are given as RCP=||·δTFWHM(relative cooling power), whereδTFWHMis the full width at half maximum of the maximum entropy change, while RC=|ΔSM|dT. The RCP and RC values of CBCO at 7 T are 42 J/kg and 32.7 J/kg,respectively,as shown in Fig.7.The large value of RCP obtained for the sample compared to that reported by Dhanasekharet al.[16]because of the border peak can be used to demonstrate the crossover of the first-order to second-order magnetic phase transition, as well as the effect of the preparation condition method. The results give new aspects of the properties of CBCO as potential candidates for such applications.

    Fig.7. The relative cooling power curves of the CBCO sample as a function of temperature under different magnetic fields up to 7 T.

    4. Conclusion

    In summary,we have investigated the magnetic and magnetocaloric features of CBCO,including the type of magnetic transition, the GP-singularity, the universal curve, and power law dependence of magnetic entropy on the magnetic field.The crossover between the first-order and second-order magnetic phase transitions is noticeable in the experimental results and theoretical estimations of the MCE and magnetization of the CBCO compound. The mixed valence of Co, charge ordering, and structural disordering distortion, which generate geometrical frustration, are assumed to govern the physical mechanism. It is worth noting that geometrical frustration has persisted in the PM region, producing inhomogeneity and inducing disordering of the Co spins. The evidence reveals that short-range magnetic clusters occur in the PM region. The presence of the GP in CBCO is also confirmed. The magnetic entropy changes calculated by the experimental data and the Landau theory have a good match, indicating that magnetoelastic coupling and electron interaction are significant in the magnetocaloric properties of this sample.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation(Grant No.Z180009).

    猜你喜歡
    金城圖書(shū)館評(píng)價(jià)
    金城所致 金石為開(kāi)
    金城謎朦
    金城化學(xué)(江蘇)有限公司
    SBR改性瀝青的穩(wěn)定性評(píng)價(jià)
    石油瀝青(2021年4期)2021-10-14 08:50:44
    圖書(shū)館
    金城造紙廠研制成功以草代木的新型紙
    飛躍圖書(shū)館
    基于Moodle的學(xué)習(xí)評(píng)價(jià)
    去圖書(shū)館
    保加利亞轉(zhuǎn)軌20年評(píng)價(jià)
    国产精品人妻久久久久久| 欧美97在线视频| 联通29元200g的流量卡| 天天一区二区日本电影三级| 午夜日本视频在线| 亚洲18禁久久av| 一区二区三区四区激情视频| av卡一久久| 亚洲高清免费不卡视频| 国产亚洲一区二区精品| 亚洲av在线观看美女高潮| 亚洲性久久影院| 成人毛片60女人毛片免费| 亚洲精品日韩av片在线观看| 激情 狠狠 欧美| 日本av手机在线免费观看| 少妇猛男粗大的猛烈进出视频 | 91久久精品国产一区二区三区| 日韩欧美精品免费久久| 国产久久久一区二区三区| 国产午夜精品论理片| 寂寞人妻少妇视频99o| 搡女人真爽免费视频火全软件| 欧美性猛交╳xxx乱大交人| 国产片特级美女逼逼视频| 久久精品国产亚洲av天美| 国产伦一二天堂av在线观看| 国产精品无大码| 一级毛片电影观看| 好男人视频免费观看在线| 色视频www国产| 美女被艹到高潮喷水动态| 你懂的网址亚洲精品在线观看| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 2022亚洲国产成人精品| 成人国产麻豆网| 精品国产三级普通话版| 五月玫瑰六月丁香| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件| 国产精品久久久久久av不卡| 一本一本综合久久| 日韩 亚洲 欧美在线| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 99热这里只有精品一区| 一级毛片aaaaaa免费看小| 亚洲av中文字字幕乱码综合| 久久亚洲国产成人精品v| 特级一级黄色大片| 亚洲电影在线观看av| 亚洲欧美精品自产自拍| 日韩欧美精品v在线| 久久久久久久午夜电影| 天堂俺去俺来也www色官网 | 有码 亚洲区| 久久国内精品自在自线图片| 亚洲三级黄色毛片| 精品熟女少妇av免费看| 天堂√8在线中文| 高清欧美精品videossex| 精品久久久久久久久久久久久| 欧美不卡视频在线免费观看| 黄片wwwwww| 校园人妻丝袜中文字幕| 欧美高清性xxxxhd video| 国产成人freesex在线| av播播在线观看一区| 中国国产av一级| 国产黄色视频一区二区在线观看| 久久久久免费精品人妻一区二区| 亚洲成人中文字幕在线播放| 国产黄色小视频在线观看| 欧美3d第一页| 女人久久www免费人成看片| 黄片wwwwww| 女人十人毛片免费观看3o分钟| 国产v大片淫在线免费观看| 十八禁网站网址无遮挡 | 精品久久久久久成人av| 国产精品一区二区在线观看99 | 欧美3d第一页| 白带黄色成豆腐渣| 97超视频在线观看视频| 国产成人aa在线观看| 美女被艹到高潮喷水动态| 国产永久视频网站| 我要看日韩黄色一级片| 晚上一个人看的免费电影| 日本熟妇午夜| 亚洲av.av天堂| 亚洲婷婷狠狠爱综合网| 成人美女网站在线观看视频| 两个人的视频大全免费| 成人特级av手机在线观看| 最近2019中文字幕mv第一页| 麻豆成人av视频| 91aial.com中文字幕在线观看| 一级毛片久久久久久久久女| 国产久久久一区二区三区| 国产男女超爽视频在线观看| 免费电影在线观看免费观看| 久99久视频精品免费| a级一级毛片免费在线观看| 日韩av在线免费看完整版不卡| 亚洲国产欧美人成| 婷婷色av中文字幕| .国产精品久久| 久久久久久伊人网av| 日韩欧美精品免费久久| 精品国内亚洲2022精品成人| 国产黄频视频在线观看| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 亚洲欧美精品专区久久| av卡一久久| 日韩欧美国产在线观看| 亚洲av日韩在线播放| 少妇的逼好多水| 少妇人妻精品综合一区二区| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 久久久久网色| 精品一区二区三区视频在线| 人人妻人人看人人澡| 日本与韩国留学比较| 免费观看性生交大片5| 中文字幕制服av| 黄色日韩在线| 我的女老师完整版在线观看| 在线免费十八禁| 中文字幕av在线有码专区| 国产永久视频网站| 国产综合精华液| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 久久久久精品久久久久真实原创| 久久国内精品自在自线图片| 97超碰精品成人国产| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 成人美女网站在线观看视频| 91aial.com中文字幕在线观看| 日日摸夜夜添夜夜爱| 精品久久久久久久久久久久久| 亚洲欧美一区二区三区黑人 | 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 毛片一级片免费看久久久久| 啦啦啦韩国在线观看视频| 日韩av在线免费看完整版不卡| 免费大片18禁| 伊人久久国产一区二区| 亚洲av中文av极速乱| 69人妻影院| 日韩一区二区三区影片| 韩国高清视频一区二区三区| 色哟哟·www| 亚洲国产欧美人成| 淫秽高清视频在线观看| 91av网一区二区| 黄片无遮挡物在线观看| 亚洲国产精品专区欧美| 91av网一区二区| 亚洲精品,欧美精品| 亚洲美女视频黄频| 日韩制服骚丝袜av| 97人妻精品一区二区三区麻豆| 亚洲国产欧美在线一区| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 狠狠精品人妻久久久久久综合| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 国产精品av视频在线免费观看| 国产精品爽爽va在线观看网站| 一级毛片我不卡| 一本久久精品| 美女cb高潮喷水在线观看| 成人午夜高清在线视频| 精品熟女少妇av免费看| 国产精品一区二区在线观看99 | 国产av码专区亚洲av| 日韩中字成人| 亚洲精品国产成人久久av| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 久久久欧美国产精品| 身体一侧抽搐| 高清日韩中文字幕在线| 好男人视频免费观看在线| 免费看日本二区| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 色吧在线观看| 亚洲va在线va天堂va国产| 如何舔出高潮| 成人高潮视频无遮挡免费网站| 亚洲欧美精品专区久久| 久久综合国产亚洲精品| 免费在线观看成人毛片| av播播在线观看一区| 在线免费十八禁| 秋霞在线观看毛片| 亚洲精品中文字幕在线视频 | 老司机影院成人| 老师上课跳d突然被开到最大视频| 国产黄片美女视频| 亚洲精品成人久久久久久| 免费看美女性在线毛片视频| 99热全是精品| 午夜免费观看性视频| 午夜福利高清视频| 一边亲一边摸免费视频| 狂野欧美白嫩少妇大欣赏| 特级一级黄色大片| eeuss影院久久| 搡老妇女老女人老熟妇| 97精品久久久久久久久久精品| 一个人免费在线观看电影| 一个人看的www免费观看视频| 日韩 亚洲 欧美在线| 免费观看性生交大片5| 日韩精品有码人妻一区| 国产又色又爽无遮挡免| 精品99又大又爽又粗少妇毛片| 在线免费十八禁| videossex国产| 卡戴珊不雅视频在线播放| 一级a做视频免费观看| 国产精品一区二区三区四区久久| 日韩av免费高清视频| 九色成人免费人妻av| 亚洲av电影在线观看一区二区三区 | 国产亚洲5aaaaa淫片| 麻豆久久精品国产亚洲av| freevideosex欧美| 久久99蜜桃精品久久| 欧美bdsm另类| 亚洲国产av新网站| 日日撸夜夜添| 久久人人爽人人爽人人片va| 国内揄拍国产精品人妻在线| 亚洲怡红院男人天堂| 97在线视频观看| 国精品久久久久久国模美| 久久久久精品性色| 久久精品国产鲁丝片午夜精品| 午夜精品一区二区三区免费看| 99久久人妻综合| 欧美日韩国产mv在线观看视频 | 美女内射精品一级片tv| 国产精品爽爽va在线观看网站| 久久人人爽人人爽人人片va| 日本wwww免费看| 美女主播在线视频| 蜜臀久久99精品久久宅男| 亚洲欧美一区二区三区黑人 | 美女脱内裤让男人舔精品视频| 成年女人看的毛片在线观看| 天天躁夜夜躁狠狠久久av| 草草在线视频免费看| 国产成人福利小说| 一夜夜www| 毛片女人毛片| 男人狂女人下面高潮的视频| 成年女人在线观看亚洲视频 | 99久国产av精品国产电影| www.色视频.com| 亚洲欧美一区二区三区黑人 | 国产男女超爽视频在线观看| 色综合色国产| 九草在线视频观看| 亚洲电影在线观看av| 日本免费在线观看一区| 免费人成在线观看视频色| 亚洲精华国产精华液的使用体验| 国产午夜精品一二区理论片| 国产成人freesex在线| 中文字幕人妻熟人妻熟丝袜美| 亚洲天堂国产精品一区在线| 99久久精品一区二区三区| 久久久久久久久久久免费av| 精品人妻偷拍中文字幕| 亚洲成人中文字幕在线播放| 久久久久久久午夜电影| 国产精品久久久久久av不卡| 午夜激情福利司机影院| 午夜精品一区二区三区免费看| 国产成人freesex在线| 蜜臀久久99精品久久宅男| 最近最新中文字幕免费大全7| 美女xxoo啪啪120秒动态图| 99久国产av精品国产电影| 别揉我奶头 嗯啊视频| 亚洲精品一二三| 夜夜看夜夜爽夜夜摸| 亚洲精品自拍成人| 精华霜和精华液先用哪个| 九色成人免费人妻av| 国产高清有码在线观看视频| 三级毛片av免费| 色尼玛亚洲综合影院| 特级一级黄色大片| 男的添女的下面高潮视频| 一级毛片 在线播放| 毛片一级片免费看久久久久| 欧美极品一区二区三区四区| 97超碰精品成人国产| 天堂中文最新版在线下载 | 亚洲最大成人手机在线| 国产v大片淫在线免费观看| 国产成人一区二区在线| av播播在线观看一区| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 如何舔出高潮| 国产久久久一区二区三区| 别揉我奶头 嗯啊视频| 国产午夜精品论理片| 少妇高潮的动态图| 深夜a级毛片| av免费观看日本| 精品一区在线观看国产| 免费看美女性在线毛片视频| 国产人妻一区二区三区在| 水蜜桃什么品种好| 亚洲精品成人av观看孕妇| 中文字幕制服av| 久久精品国产鲁丝片午夜精品| 中文字幕人妻熟人妻熟丝袜美| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 国产精品日韩av在线免费观看| 一本久久精品| 中文字幕人妻熟人妻熟丝袜美| 白带黄色成豆腐渣| 国产午夜精品久久久久久一区二区三区| 一级二级三级毛片免费看| 国产精品一区www在线观看| 高清在线视频一区二区三区| 国产毛片a区久久久久| 午夜福利在线观看免费完整高清在| 三级经典国产精品| 国产大屁股一区二区在线视频| 最近的中文字幕免费完整| 最近的中文字幕免费完整| 老女人水多毛片| 亚洲无线观看免费| av福利片在线观看| 热99在线观看视频| 免费看美女性在线毛片视频| 国产淫片久久久久久久久| 免费黄网站久久成人精品| 成人一区二区视频在线观看| 欧美激情久久久久久爽电影| 日韩av不卡免费在线播放| 免费观看a级毛片全部| 少妇的逼好多水| 久久97久久精品| 能在线免费观看的黄片| 乱码一卡2卡4卡精品| 亚洲成色77777| 男女下面进入的视频免费午夜| 国产一区二区亚洲精品在线观看| 最近2019中文字幕mv第一页| 国产色婷婷99| 欧美精品一区二区大全| 97在线视频观看| 18禁裸乳无遮挡免费网站照片| 成人性生交大片免费视频hd| 亚洲天堂国产精品一区在线| 国产成人freesex在线| 国产极品天堂在线| 免费看美女性在线毛片视频| 99热这里只有精品一区| 国产精品.久久久| 午夜福利高清视频| 日韩伦理黄色片| 搡老妇女老女人老熟妇| 美女高潮的动态| 看免费成人av毛片| 免费av毛片视频| 性插视频无遮挡在线免费观看| 久热久热在线精品观看| 欧美日本视频| 国产乱人视频| 校园人妻丝袜中文字幕| 一级av片app| 久久久欧美国产精品| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 最近2019中文字幕mv第一页| 精品亚洲乱码少妇综合久久| 伊人久久精品亚洲午夜| 人体艺术视频欧美日本| 丰满人妻一区二区三区视频av| 日韩强制内射视频| 禁无遮挡网站| 韩国高清视频一区二区三区| 真实男女啪啪啪动态图| 人人妻人人看人人澡| 熟女电影av网| 3wmmmm亚洲av在线观看| 2018国产大陆天天弄谢| 国产精品熟女久久久久浪| 尤物成人国产欧美一区二区三区| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 在线观看av片永久免费下载| 搡老乐熟女国产| 成年人午夜在线观看视频 | 最近的中文字幕免费完整| 十八禁网站网址无遮挡 | 亚洲,欧美,日韩| 精品一区二区免费观看| 国产在视频线精品| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| av在线天堂中文字幕| 国产精品美女特级片免费视频播放器| 国产欧美日韩精品一区二区| 一个人看视频在线观看www免费| 我的老师免费观看完整版| 精华霜和精华液先用哪个| 听说在线观看完整版免费高清| 免费在线观看成人毛片| 欧美+日韩+精品| 国产三级在线视频| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 国产毛片a区久久久久| 亚洲怡红院男人天堂| 男人和女人高潮做爰伦理| 国产日韩欧美在线精品| 国产免费一级a男人的天堂| 久久久精品94久久精品| 国产美女午夜福利| 久久久精品免费免费高清| 自拍偷自拍亚洲精品老妇| 午夜亚洲福利在线播放| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 波多野结衣巨乳人妻| 亚洲欧美一区二区三区黑人 | 免费观看性生交大片5| 九九爱精品视频在线观看| av福利片在线观看| 久久鲁丝午夜福利片| 精品一区二区免费观看| 在线免费十八禁| 亚洲国产日韩欧美精品在线观看| 美女大奶头视频| 精品久久久久久久末码| 国产成人午夜福利电影在线观看| 黄片无遮挡物在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美性猛交╳xxx乱大交人| 国产亚洲av嫩草精品影院| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 日本wwww免费看| 欧美成人a在线观看| 乱码一卡2卡4卡精品| 久久精品人妻少妇| 精品久久国产蜜桃| 亚洲成人一二三区av| av在线亚洲专区| 婷婷色麻豆天堂久久| 日本免费a在线| 精品久久久久久久久久久久久| 成人毛片60女人毛片免费| 日日干狠狠操夜夜爽| 精品人妻一区二区三区麻豆| 国产黄片美女视频| 欧美一区二区亚洲| 乱码一卡2卡4卡精品| 少妇人妻一区二区三区视频| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 免费看不卡的av| 婷婷色综合大香蕉| 午夜免费激情av| 亚洲欧美成人精品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 午夜免费激情av| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 日韩欧美精品v在线| av在线天堂中文字幕| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧洲日产国产| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 日韩一区二区三区影片| 网址你懂的国产日韩在线| 天堂√8在线中文| 亚洲美女搞黄在线观看| 亚洲av日韩在线播放| 综合色丁香网| 日韩欧美一区视频在线观看 | 午夜免费男女啪啪视频观看| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 十八禁网站网址无遮挡 | 成人高潮视频无遮挡免费网站| 久久久久久久久大av| 成人av在线播放网站| 国产精品久久久久久久电影| 观看美女的网站| 免费看日本二区| 日韩精品青青久久久久久| 国模一区二区三区四区视频| 日韩欧美一区视频在线观看 | 精品国产露脸久久av麻豆 | 亚洲熟妇中文字幕五十中出| 国产老妇伦熟女老妇高清| 免费av观看视频| 婷婷六月久久综合丁香| 99热全是精品| av网站免费在线观看视频 | 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频 | 看黄色毛片网站| 又大又黄又爽视频免费| 亚洲一区高清亚洲精品| 人妻夜夜爽99麻豆av| 丰满少妇做爰视频| 亚洲国产日韩欧美精品在线观看| 97超视频在线观看视频| 精品久久久久久成人av| 亚洲精品视频女| 免费大片18禁| kizo精华| 一级片'在线观看视频| av黄色大香蕉| 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 天堂网av新在线| 欧美bdsm另类| 国产老妇伦熟女老妇高清| 久久久久国产网址| 久久久久久国产a免费观看| 免费看日本二区| 1000部很黄的大片| 欧美成人a在线观看| 欧美潮喷喷水| 看非洲黑人一级黄片| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99 | 亚洲熟妇中文字幕五十中出| 秋霞在线观看毛片| 精品一区二区三区人妻视频| 欧美日韩视频高清一区二区三区二| 久久久久久久亚洲中文字幕| 亚洲精品久久久久久婷婷小说| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 日韩大片免费观看网站| 尤物成人国产欧美一区二区三区| 美女大奶头视频| 亚洲成人一二三区av| 亚洲av国产av综合av卡| 国产美女午夜福利| 国产一级毛片七仙女欲春2| 2021少妇久久久久久久久久久| 中文字幕亚洲精品专区| 亚洲乱码一区二区免费版| 国产成人aa在线观看| 精品一区二区三区人妻视频| 能在线免费看毛片的网站| 精品不卡国产一区二区三区| 久久6这里有精品| 日韩电影二区| 精品久久国产蜜桃| 直男gayav资源| 在线观看一区二区三区| 久久人人爽人人片av| 两个人的视频大全免费| 免费观看的影片在线观看| 久久久久国产网址| 久久精品综合一区二区三区| 久久久精品免费免费高清| 国产一区亚洲一区在线观看| 最近最新中文字幕大全电影3| 少妇丰满av| 成人性生交大片免费视频hd| 日韩欧美 国产精品| 欧美日韩国产mv在线观看视频 | 男女下面进入的视频免费午夜| 三级国产精品片| 成人毛片a级毛片在线播放| 成人性生交大片免费视频hd| 精品熟女少妇av免费看| 国产精品熟女久久久久浪| 在线a可以看的网站| 综合色丁香网| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 亚洲无线观看免费| 色哟哟·www| 一级爰片在线观看| 亚洲18禁久久av| 久久久久久久国产电影| 免费看a级黄色片| 一级av片app| 亚洲精品,欧美精品| 亚洲精品中文字幕在线视频 |