• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7

    2023-02-20 13:16:08TinaRaoufiJinchengHe何金城BinbinWang王彬彬EnkeLiu劉恩克andYoungSun孫陽(yáng)
    Chinese Physics B 2023年1期
    關(guān)鍵詞:金城圖書(shū)館評(píng)價(jià)

    Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬),Enke Liu(劉恩克), and Young Sun(孫陽(yáng))

    1Beijing National Laboratory for Condensed Matter Physics,and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100190,China

    3Center of Quantum Materials and Devices,Chongqing University,Chongqing 401331,China

    Keywords: magnetocaloric effect,cobaltite,phase transition,Griffiths phase

    1. Introduction

    Global warming has made society more aware of the need to reduce its energy consumption. Since living standards and economic growth are improved along with the increasing population, the demand for cooling technology and thermal energy harvesting systems is expected to increase substantially over the next 30 years. Refrigeration accounts for a substantial portion of global electricity consumption. Therefore, improving energy conversion efficiency is crucial in this branch of technology. The magnetic refrigeration and cryogenic systems based on the magnetocaloric effect(MCE)are a viable alternative to traditional gas-compression refrigeration because of their high thermodynamic performance,low noise,and environmental friendliness.[1,2]Magnetic refrigeration technology around room temperature is important for household refrigeration and air conditioner, but magnetic refrigeration in low-temperature regions is essential for liquefaction of helium,hydrogen,and nitrogen,which is commonly used in lowtemperature physics, superconductors, medicine, and space technology.[3,4]

    The MCE is a magneto-thermodynamic character for magnetic solid materials,which represents the reversible temperature variation or entropy change when it is magnetized or demagnetized under adiabatic or isothermal conditions.[5]The MCE is regarded as an inherent effect in magnetic materials when a magnetic material is exposed to magnetic fields. Up to date,the magnetic properties and magnetocaloric efficiency of a wide range of magnetic materials with various characterization and preparation techniques such as oxides, alloys, amorphous, intermetallic, and composites have been investigated and reviewed in literature.[6–8]

    In recent years, the oxide CaBaCo4O7(CBCO), which belongs to the “114” cobaltite from a new class of geometrically frustrated magnets,has attracted interest due to its complex geometrically frustrated network. The CBCO compound crystallizes in the orthorhombicPbn21symmetry in the entire temperature range from the room temperature to 4 K.[9]The magnetic unit cell of CBCO includes four equivalent Co sites, leading to an alternate stacking of two types of corner shared CoO4tetrahedral: Co1 sits in the triangular layer,while Co2, Co3, and Co4 atoms are in the kagome layer,causing considerable magnetic frustration.[10,11]The geometrical frustration in the kagome and triangular lattice of this compound can be partially lifted due to large orthorhombic structural distortion and charge ordering (the stoichiometric formula),leading to a ferrimagnetic order state below 60 K.[12]

    In this work,the magnetic and magnetocaloric properties of the 114 cobaltite CaBaCo4O7compound are studied with the aims at better understanding the low-temperature physical properties of CBCO and developing new magnetic materials for magnetic refrigeration. We use comprehensive magnetization calculation to describe the magnetic phase transition by applying the Banerjee criterion,as well as recent methods such as universal scaling and a quantitative technique based on the field dependence of the magnetic entropy change to find the order of magnetic phase transition to gain a better understanding of the nature of magnetic transitions and MCE properties of the system.

    2. Experiments

    Polycrystalline samples of CaBaCo4O7were synthesized by the conventional solid-state reaction method. The stoichiometric quantities of all the initial reactants with high-purity,including CaCO3,BaCO3,and Co3O4,were ground in an agate mortar for 2 h, and then heated at 900°C in air for 12 h for decarbonization. After another 1 h grinding process,the mixture was then pressed in the form of cylindrical bars to make pellets, heated in air at 1100°C for 14 h, and finally cooled down to room temperature.

    The temperature-dependent dc magnetization and magnetization versus applied magnetic field up to 7 T were measured by using a Quantum Design magnetic properties measurement system(MPMS).The crucial MCE characteristics,such as-ΔSM(T), refrigerant capacity (RC), and relative cooling power (RCP),were calculated from the magnetization versus applied magnetic fields.

    3. Results and discussions

    3.1. Structural characterization

    The structural properties of the CBCO samples were investigated by using the x-ray diffraction(XRD)at room temperature. Figure 1 shows the diffraction pattern of a CBCO sample and Rietveld refinement analysis using the FullProf program.

    Fig.1.The x-ray diffraction pattern of the prepared CaBaCo4O7 sample at room temperature.

    The results of the refinement demonstrate that the sample crystalizes in the orthorhombic crystal structure with thePbn21space group and the cell parametersa=6.277(1) ?A,b=10.987(9) ?A,c=10.180(9) ?A, andV=702.198(5) ?A3.In comparison to previous work,the value of the volume was decreased.[13]There is also a small extra peak related to BaO2in the XRD pattern. The sintering temperature and annealing time are important factors in the solid-state reaction process. The grain size grows as the annealing time and sintering temperature increase. The variation in annealing time in the process of preparing our sample compared to the work of Dhansekharet al. could explain the decrease in volume cell and observation of inhomogeneity(extra peak)in XRD.[14–16]

    3.1.1 LibQUAL+TM的演變。LibQUAL+TM是基于SERVQUAL提出的一種適用于圖書(shū)館的質(zhì)量評(píng)價(jià)模型[4]。

    3.2. Magnetic characterization

    Figure 2(a) displays the FC magnetization for polycrystalline CBCO measured as a function of temperature in 0.05 T magnetic field over a temperature range of 20–300 K. The FC curve exhibits a sharp increase of magnetization at the Curie temperature (TC) of a ferrimagnetic (FIM) to paramagnetic(PM)transition.[17]The temperature derivative of theM–Tcurve is shown in the inset of Fig. 2(a), which can be used to unambiguously calculateTC. The value ofTCis evaluated to be 60 K, which is close to other reports.[16,17]One of the principal capabilities of the CBCO compound is that the structural distortion lifts exchange-interaction frustration which leads to the unique geometry of the kagome lattice. The exchange interaction in the system would be influenced by the precise Co3+/Co2+=1 ratio, resulting in the appearance of the FIM ordering.[10,12]

    The inverse magnetic susceptibility versus temperature is presented in Fig.2(b). The linear behavior ofχ-1versusTat higher temperatures suggests thatχ-1obeys the Curie–Weiss(CW)law in this region:[18]

    whereθPis the CW temperature,andCis the Curie constant.The black line in Fig.2(b)depicts the fit to the CW law with parametersθP=13.6 K andC=1.1010 K·A·m2/T·kg. The small value of the CW temperature is expected for the ferrimagnetic state.[19]The small value of intercept can be referred to competition between AFM and FM phase interaction before the Griffiths temperatures (TG) and the persistence of inhomogeneity in the PM regime. The assumption thatχ-1does not follow the CW law aboveTCis evident from this diagram. The downturn behavior of inverse susceptibility versus temperature aboveTCis clear from Fig.2(b),which is considered as a sign of Griffiths phase (GP) singularity rather than a pure PM region. The appearance of short-range FM/AFM correlation well aboveTCis signaled by the faster reduction ofχ-1belowTG.

    Fig.2. (a)Magnetization as a function of temperature in the field-cooled mode under a magnetic field of 0.05 T.The inset presents the dM/dT versus T curves. (b)Temperature evolution of inverse magnetic susceptibility. The black solid line indicates the linear fit to the CW law. (c)The T-dependent susceptibility data following Eq.(2),plotted in double logarithmic scale.

    The exponentλ, which can be calculated from the following equation, is commonly used to evaluate the Griffiths phase:[20]

    whereλis a constant to obtain the degree of deviation from the CW behavior andis the critical transition temperature of the random ferromagnetic where susceptibility diverges. The choice of=θPis generally good one because it ensuresλ~0 in the paramagnetic region. The difference betweenTCandθPin the present system makes it reasonable to choose=TC. In Fig. 2(c) the log–log plot shows the power-law behavior inχ-1(T) and the slope of the fitted straight line[Eq. (2)] gives theλGPandλPMvalues. The value ofλPMis estimated to be zero in the pure PM regime.Here,λPMis positive and less than unite,andTC<<TG,which confirm the appearance of GP. Susceptibility measurements were carried out in another magnetic field to establish the feature and to identify the magnetic field limit where the Griffith phase disappeared. Griffith phase is present even in the high magnetic field of 7 T(the results are not shown here).

    Previous research demonstrated that the strong AFM Co–Co interaction facilitated by Co–O–Co super-exchange in kagome and triangular layers generates complex magnetic properties in CBCO.Because of the critical function of significant structural distortion,cobalt valence,and charge ordering in forming a long-range magnetic order, geometrical frustration in CBCO is partially lifted.[21]The partially lifted geometrical frustration phenomenon generates a slight disordering of the cobalt spins in the long-range magnetic order. The presence of GP is attributed to a complicated magnetic interaction,competition between AFM and FM orders,while remaining geometrical frustration,which results in inhomogeneity in CBCO.

    A series of isothermal magnetization curves around the magnetic transition temperature are assessed to examine the magnetic and magnetocaloric properties of materials. Figure 3(a)shows theM–Hcurves of the CBCO aroundTCunder 0 to 7 T. As the temperature rises, the magnetization curves progressively shift from a nonlinear to a linear shape, representing the transition process from FIM to PM. It is worth noting that theM–Hcurves exhibit a nonlinear behavior at a temperature segment higher thanTC(60–70 K)in the PM region,implying that the PM state is incomplete. Moreover,the sudden change in the slope of someM–Hcurves suggests the presence of magnetic inhomogenity in this sample.

    Fig.3. (a)Series of isothermal M–H curves under magnetic field up to 7 T in the temperature range of 40–80 K.(b)The Arrott plots obtained from the M–H curves.

    3.3. Magnetocaloric characterization

    To determine the magnetocaloric properties, the isothermal magnetization was measured as a function of the magnetic field in the range 0–7 T and the temperature range of 20 K around the magnetic phase transition temperature. The magnetic entropy change ΔSM(T), an essential parameter to represent the magnetocaloric effect of a material,can be indirectly evaluated from the total isothermal magnetization using Maxwell’s thermodynamic relation:

    Based on the fact that the isothermalM(H) curve is determined by different changes in the magnetic field and Eq. (4)gives the value of ΔSM(T)at different temperatures and fields,ΔSM(T)can be expressed as

    whereMiandMi+1are the magnetization values measured atTiandTi+1under a magnetic field ofH, respectively. Figure 4(a)shows the magnetic entropy-ΔSM(T)calculated using Eq. (5) against temperature for a magnetic field change up to 7 T with steps of 1 T. The maximum peaks occur nearTC, and the values rise as the magnetic field increases. At the field of 7 T, the maximum-ΔSM(T) is about 3 J/kg·K at~60 K.It is specially essential to mention that the behaviors of-ΔSM(T)below and aboveTCdiffer from each other.A progressive increase in-ΔSM(T) occurs belowTC, which is the signature of the second-order phase transition (SOPT);whereas aboveTC,the rapid change in-ΔSM(T)suggests the first-order phase transition(FOPT)behavior in this region.

    The ΔSM(T)value of CBCO is comparable with those of some potential magnetic refrigerant material in a similar temperature region under a 5 T magnetic field,such as Gd2Ni2Sn(4.6 J/kg·K at 75 K),[23]Tb2Ni2Sn (2.9 J/kg·K at 66 K),[23]Sm2Co2Ga(1.31 J/kg·K at 62 K),[24]Nd6Co2Si3(5.3 J/kg·K at 84.5 K),[25]TbPtMg(5.1 J/kg·K at 58 K),[26]and GdCuMg(5.6 J/kg·K at 78 K).[27]

    Fig.4. (a) The -ΔSM(T) curves versus temperature under different magnetic fields up to 7 T.(b)The corresponding exponent n as a function of temperature for 7 T.

    Dhanasekharet al. reported that the magnetic entropy change of a polycrystalline CBCO sample sintered under various conditions has different values.[16]Compared to the previous report with the decrease in sintering time,a broad peak in magnetic entropy change with the width of half maximum of ΔS–Tcurve about 14 K is observed in our case. Reduced sintering time contributes to increased porosity.The saturation magnetization decreases with reduced sintering times, which can be attributed to the core/shell morphology,lower grain size and the spin structure on the core and surface. The effect of reducing the sintering time on saturation magnetization is consistent with the previous studies.[28,29]

    The Landau theory is a theoretical model which is defined based on the magnetoelastic contribution and electron interaction. This theory is used to determine the nature of the magnetic phase transition in magnetic materials.[30]The Landau theory can verify the nature of the phase transition indicated by other models, as well as explain the magnetic entropy change dependence on temperature variation.The Gibbs free energy for a magnetic system can be described as a function of the magnetic field, magnetization, and temperature in the Landau theory around the Curie temperature transitionTC.TheG(M,T) can be defined in terms of the order parameter of powerM, and the coefficients are smooth functions of temperature:[31]

    where the coefficientsa(T),b(T),andc(T)are known as Landau coefficients,and they describe temperature-dependent parameters. The energyG(M,T) corresponds to the minimum value at the phase transition under the condition of equilibrium energy minimization,(dG/dM)=0,leading to the following magnetic equation of state:

    The temperature-dependent parameters ofa(T),b(T), andc(T)obtained from the polynomial fit of theM–Hdata using Eq.(7)allow us to determine the order of magnetic phase transition as depicted in Figs.5(a)–5(c). It is clear from Fig.5(a)that the parametera(T) changes from negative to positive as the temperature increases, and the temperature corresponding to zero is almost close toTC. According to the Inoue–Shimizu model,[32]the sign of theb(TC)determines the order of the magnetic phase transition, which indicates the FOMT ifb(TC)<0 and the SOPT ifb(TC)≥0. The sign ofb(TC)is positive in the CBCO sample, confirming the SOPT atTC.However, as seen above theTC(near 65 K), the trend of theb(T)is changed. This conclusion matches with the results of the Arrott plots.

    Fig.5. (a)–(c)The temperature dependence of the Landau parameters. (d)Comparison of experimental and calculated values by the Landau theory of the magnetic entropy change under magnetic field of 7 T for the CBCO sample.

    The magnetic entropy change is estimated theoretically using the Landau theory through differentiation of the free energy with regard to temperature:

    Here,a′(T),b′(T), andc′(T) have been obtained from the temperature derivatives of Landau parameters. Figure 5(d)shows the experimental (red symbols) and calculated (black line)-ΔSM(T)versus temperature under 7 T obtained by the Maxwell integration and the Landau theory fromM(T,H),respectively. According to recent studies, the magnetoelastic coupling induced a large change in electrical polarization at the PM to FIM phase transition aroundTC,as well as explaining the temperature dependence of unit-cell characteristics and volume belowTC.[33,34]The good agreement between the two curves for the CBCO sample implies that the magnetic entropy change versus temperature could be described by magnetoelastic coupling and electron interaction. It can be seen that in theT >TCregion, there is a small discrepancy between the two curves. The difference could be explained by the presence of short-range FM interaction in this area.

    Another method for determining the magnetic phase transition order is to obtained powernfrom the function-ΔSM(T)=a(Hn).[35]Figure 4(b) displays the temperature dependence ofnversusTin 7 T.Then(T)was calculated for a high field because the multi-domain state exists in a small field. It is impossible to consider the value ofnfor a small field. According to the CW law,the value of exponentnmust be 2 for SOPT in the PM area, whereas in FOPT-type transition it should ben >2. Around theTC,the minimum ofn(T)is obvious and in the area below theTC, the value ofn(T) is found to be nearly 1. Above theTC(T <~65 K), the curve predicts the second-order phase transition,but there is a significant overshoot in the PM region above 65 K,which indicates the first-order transition.Therefore,it is possible that there is a cross from second-order to first-order transition with increasing temperature.

    Franco and co-workers introduced the phenomenological universal master curve as an additional approach to confirm the magnetic phase transition order.[36,37]According to this process, for material undergoing a SOPT, the universal curve assembled by the normalizing magnetic entropy change(ΔSM/) in various applied fields versus rescaling the temperature axis(θ)below and aboveTCwould converge into a single curve. For the CBCO compound,the universal curve is shown in Fig.6,which is defined as

    whereTr1andTr2are temperatures for each curve corresponding to the reference points below and above theTC, respectively.(ΔSM/)=fis used to evaluate the reference temperature, in whichfcan be selected from 0 to 1, but too large a value and too small a value would cause large numerical errors. In our case,f=0.5 has been selected for all the curves. As is evident from Fig.6, the rescaled curves are not completely collapsed into a single curve(especially forθ <0),confirming the presence of both magnetic transitions.

    Fig.6. Universal scaling plot of normalized magnetic entropy change as a function of rescaled temperature.

    The large magnetic entropy change is not a sufficient tool to determine the suitability of the material used in magnetic refrigeration. There is a figure of merit to identify the cooling capacity of MCE performance of a magnetic refrigeration material named as refrigeration capacity. The physical concept of refrigeration capacity(RC)is the amount of thermal energy transferred between the hot and cold sources in an ideal cooling cycle.[38]The RC value depends on the height and width of the peak on the magnetic entropy change versus the temperature curve. The common and popular methods to calculate the cooling capacity are given as RCP=||·δTFWHM(relative cooling power), whereδTFWHMis the full width at half maximum of the maximum entropy change, while RC=|ΔSM|dT. The RCP and RC values of CBCO at 7 T are 42 J/kg and 32.7 J/kg,respectively,as shown in Fig.7.The large value of RCP obtained for the sample compared to that reported by Dhanasekharet al.[16]because of the border peak can be used to demonstrate the crossover of the first-order to second-order magnetic phase transition, as well as the effect of the preparation condition method. The results give new aspects of the properties of CBCO as potential candidates for such applications.

    Fig.7. The relative cooling power curves of the CBCO sample as a function of temperature under different magnetic fields up to 7 T.

    4. Conclusion

    In summary,we have investigated the magnetic and magnetocaloric features of CBCO,including the type of magnetic transition, the GP-singularity, the universal curve, and power law dependence of magnetic entropy on the magnetic field.The crossover between the first-order and second-order magnetic phase transitions is noticeable in the experimental results and theoretical estimations of the MCE and magnetization of the CBCO compound. The mixed valence of Co, charge ordering, and structural disordering distortion, which generate geometrical frustration, are assumed to govern the physical mechanism. It is worth noting that geometrical frustration has persisted in the PM region, producing inhomogeneity and inducing disordering of the Co spins. The evidence reveals that short-range magnetic clusters occur in the PM region. The presence of the GP in CBCO is also confirmed. The magnetic entropy changes calculated by the experimental data and the Landau theory have a good match, indicating that magnetoelastic coupling and electron interaction are significant in the magnetocaloric properties of this sample.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation(Grant No.Z180009).

    猜你喜歡
    金城圖書(shū)館評(píng)價(jià)
    金城所致 金石為開(kāi)
    金城謎朦
    金城化學(xué)(江蘇)有限公司
    SBR改性瀝青的穩(wěn)定性評(píng)價(jià)
    石油瀝青(2021年4期)2021-10-14 08:50:44
    圖書(shū)館
    金城造紙廠研制成功以草代木的新型紙
    飛躍圖書(shū)館
    基于Moodle的學(xué)習(xí)評(píng)價(jià)
    去圖書(shū)館
    保加利亞轉(zhuǎn)軌20年評(píng)價(jià)
    看黄色毛片网站| 国产欧美日韩精品亚洲av| 在线观看免费高清a一片| 欧美日韩亚洲综合一区二区三区_| 成人国产一区最新在线观看| 新久久久久国产一级毛片| 天天影视国产精品| 国产av一区二区精品久久| 午夜免费观看网址| 亚洲av成人av| 亚洲第一av免费看| 午夜两性在线视频| 国产亚洲精品久久久久久毛片 | 大片电影免费在线观看免费| 成年女人毛片免费观看观看9 | 久久久久国产精品人妻aⅴ院 | 日本五十路高清| 老司机午夜福利在线观看视频| 国产97色在线日韩免费| 国产精品亚洲av一区麻豆| 女人被狂操c到高潮| xxx96com| 欧美人与性动交α欧美软件| 亚洲中文字幕日韩| 人人妻,人人澡人人爽秒播| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲高清精品| 自线自在国产av| 激情视频va一区二区三区| 欧美 日韩 精品 国产| 亚洲精品国产区一区二| 日韩免费av在线播放| 人妻 亚洲 视频| 国产男靠女视频免费网站| 成年动漫av网址| 国产三级黄色录像| 香蕉丝袜av| 丝袜人妻中文字幕| 高清毛片免费观看视频网站 | 91字幕亚洲| 在线视频色国产色| 女人高潮潮喷娇喘18禁视频| 悠悠久久av| 国产乱人伦免费视频| 老司机亚洲免费影院| 日本黄色视频三级网站网址 | 国产欧美日韩精品亚洲av| 黄色女人牲交| 亚洲成国产人片在线观看| 国产成人精品久久二区二区免费| 成熟少妇高潮喷水视频| 国产男女内射视频| 亚洲国产欧美网| 女同久久另类99精品国产91| 亚洲专区中文字幕在线| av在线播放免费不卡| 人妻 亚洲 视频| 热99久久久久精品小说推荐| 丝瓜视频免费看黄片| 久久国产精品影院| 18禁观看日本| 精品一区二区三卡| 欧美精品啪啪一区二区三区| 亚洲在线自拍视频| 法律面前人人平等表现在哪些方面| 丰满人妻熟妇乱又伦精品不卡| 成人国语在线视频| 色综合欧美亚洲国产小说| 国产激情久久老熟女| 黄色丝袜av网址大全| 国内久久婷婷六月综合欲色啪| www.熟女人妻精品国产| 国产99久久九九免费精品| 9191精品国产免费久久| 一边摸一边抽搐一进一出视频| 国产亚洲一区二区精品| 三上悠亚av全集在线观看| 精品久久久久久,| 黄片小视频在线播放| 久久精品人人爽人人爽视色| 丝袜人妻中文字幕| 亚洲欧美激情综合另类| 免费在线观看视频国产中文字幕亚洲| 天天影视国产精品| 1024视频免费在线观看| 久久久久精品国产欧美久久久| 亚洲五月色婷婷综合| 久久久精品免费免费高清| 欧美在线一区亚洲| 多毛熟女@视频| av免费在线观看网站| 午夜福利乱码中文字幕| 欧美日韩成人在线一区二区| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 黑丝袜美女国产一区| 精品一区二区三区四区五区乱码| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免费看| 久久精品成人免费网站| 国产高清国产精品国产三级| 飞空精品影院首页| 极品教师在线免费播放| 免费久久久久久久精品成人欧美视频| 亚洲五月色婷婷综合| 国产精品免费一区二区三区在线 | av网站在线播放免费| 国产乱人伦免费视频| 热99久久久久精品小说推荐| 别揉我奶头~嗯~啊~动态视频| 窝窝影院91人妻| 欧美成人午夜精品| 国产一区有黄有色的免费视频| 一夜夜www| 制服诱惑二区| 精品一区二区三区av网在线观看| 大型黄色视频在线免费观看| 91av网站免费观看| 伦理电影免费视频| 每晚都被弄得嗷嗷叫到高潮| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区| 亚洲欧美激情在线| 国产亚洲欧美在线一区二区| 国产成人欧美在线观看 | tocl精华| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区| 桃红色精品国产亚洲av| 少妇猛男粗大的猛烈进出视频| 99久久人妻综合| 免费观看人在逋| 一级片'在线观看视频| 亚洲专区国产一区二区| 亚洲精品粉嫩美女一区| 亚洲成国产人片在线观看| 国产乱人伦免费视频| 黄片小视频在线播放| 欧美日韩一级在线毛片| av不卡在线播放| 在线观看免费视频网站a站| 色精品久久人妻99蜜桃| 欧美久久黑人一区二区| 啦啦啦视频在线资源免费观看| bbb黄色大片| 国内久久婷婷六月综合欲色啪| 国产精品一区二区在线不卡| 最新美女视频免费是黄的| 99久久99久久久精品蜜桃| 777久久人妻少妇嫩草av网站| 18禁观看日本| 一区二区日韩欧美中文字幕| 伊人久久大香线蕉亚洲五| 极品少妇高潮喷水抽搐| 国产一区二区激情短视频| 精品无人区乱码1区二区| 亚洲va日本ⅴa欧美va伊人久久| 一区二区日韩欧美中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美乱色亚洲激情| a级片在线免费高清观看视频| tocl精华| 欧美国产精品va在线观看不卡| 国产免费av片在线观看野外av| 欧美成狂野欧美在线观看| 久久影院123| 精品福利观看| 亚洲av成人不卡在线观看播放网| 一区二区日韩欧美中文字幕| 精品国产乱码久久久久久男人| 免费不卡黄色视频| 91老司机精品| 在线观看免费视频日本深夜| 男女高潮啪啪啪动态图| 这个男人来自地球电影免费观看| 亚洲熟女精品中文字幕| 日韩欧美在线二视频 | 午夜两性在线视频| av在线播放免费不卡| 亚洲人成77777在线视频| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 不卡av一区二区三区| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人| 久久午夜综合久久蜜桃| 午夜影院日韩av| 免费看十八禁软件| 久久精品国产综合久久久| av欧美777| 国产欧美日韩一区二区精品| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 90打野战视频偷拍视频| 欧美大码av| 日韩欧美国产一区二区入口| 最新的欧美精品一区二区| 久久国产亚洲av麻豆专区| av在线播放免费不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 水蜜桃什么品种好| 国产精品一区二区在线观看99| 免费久久久久久久精品成人欧美视频| 国产深夜福利视频在线观看| 大香蕉久久成人网| 高清欧美精品videossex| 亚洲第一青青草原| 大码成人一级视频| 91字幕亚洲| 老鸭窝网址在线观看| 丁香六月欧美| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 国产一区二区三区在线臀色熟女 | 亚洲欧美日韩另类电影网站| 久久中文字幕人妻熟女| 久久人妻av系列| 新久久久久国产一级毛片| 99riav亚洲国产免费| 亚洲国产欧美网| 久久天堂一区二区三区四区| 中出人妻视频一区二区| 亚洲 国产 在线| 亚洲av欧美aⅴ国产| 精品高清国产在线一区| 精品乱码久久久久久99久播| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 成人黄色视频免费在线看| 国产在视频线精品| 欧美日本中文国产一区发布| 在线播放国产精品三级| 欧美av亚洲av综合av国产av| 热99re8久久精品国产| 变态另类成人亚洲欧美熟女 | 日韩欧美三级三区| 熟女少妇亚洲综合色aaa.| 亚洲 国产 在线| 久久精品成人免费网站| 欧美日韩瑟瑟在线播放| 午夜福利在线免费观看网站| 我的亚洲天堂| 午夜福利一区二区在线看| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片 | 欧美成人午夜精品| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 国产高清激情床上av| aaaaa片日本免费| 久久久精品区二区三区| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 99re6热这里在线精品视频| 成人三级做爰电影| 精品人妻1区二区| 亚洲人成电影观看| 欧美性长视频在线观看| 国产av精品麻豆| 精品一区二区三区av网在线观看| 在线永久观看黄色视频| 老司机福利观看| 中文字幕制服av| 中国美女看黄片| 中文字幕精品免费在线观看视频| 色94色欧美一区二区| 伦理电影免费视频| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 亚洲精品中文字幕在线视频| 亚洲一区二区三区欧美精品| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 韩国av一区二区三区四区| 精品人妻熟女毛片av久久网站| 日韩欧美在线二视频 | 国产片内射在线| 欧美av亚洲av综合av国产av| 亚洲成a人片在线一区二区| 久久婷婷成人综合色麻豆| 国产精品 国内视频| 亚洲专区字幕在线| 国产精品自产拍在线观看55亚洲 | 精品国产一区二区三区久久久樱花| 91老司机精品| 99热只有精品国产| svipshipincom国产片| 色在线成人网| 夜夜夜夜夜久久久久| 身体一侧抽搐| 成年人黄色毛片网站| av免费在线观看网站| 性色av乱码一区二区三区2| 看免费av毛片| 亚洲成人国产一区在线观看| 中文字幕最新亚洲高清| 黄色女人牲交| 国产精品欧美亚洲77777| 亚洲美女黄片视频| 国产成人免费观看mmmm| 国产成人av激情在线播放| 在线观看一区二区三区激情| 亚洲成国产人片在线观看| 韩国精品一区二区三区| 久99久视频精品免费| 精品国产超薄肉色丝袜足j| 亚洲av欧美aⅴ国产| 亚洲专区字幕在线| 日韩欧美免费精品| 欧美日韩国产mv在线观看视频| 亚洲精品美女久久av网站| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 国产区一区二久久| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 亚洲中文字幕日韩| 久久精品亚洲av国产电影网| 在线观看www视频免费| 啪啪无遮挡十八禁网站| 国产乱人伦免费视频| 亚洲七黄色美女视频| 黑人操中国人逼视频| 女人久久www免费人成看片| 人人澡人人妻人| 人妻 亚洲 视频| 成人三级做爰电影| 国产精品香港三级国产av潘金莲| 99久久综合精品五月天人人| 午夜福利欧美成人| 熟女少妇亚洲综合色aaa.| 国产成人系列免费观看| 少妇的丰满在线观看| 涩涩av久久男人的天堂| 首页视频小说图片口味搜索| 波多野结衣av一区二区av| 精品一区二区三区四区五区乱码| 日本五十路高清| 精品国产一区二区久久| 欧美+亚洲+日韩+国产| 一区在线观看完整版| 精品国产亚洲在线| 丝袜人妻中文字幕| 久久久精品区二区三区| 男人操女人黄网站| 中文字幕制服av| 国产熟女午夜一区二区三区| ponron亚洲| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 超色免费av| 变态另类成人亚洲欧美熟女 | 极品教师在线免费播放| 成人永久免费在线观看视频| 午夜亚洲福利在线播放| 久久久久国产精品人妻aⅴ院 | 国产亚洲精品久久久久久毛片 | 嫩草影视91久久| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| av福利片在线| av线在线观看网站| 99热网站在线观看| 在线观看一区二区三区激情| 美女扒开内裤让男人捅视频| 久热这里只有精品99| svipshipincom国产片| 一区二区日韩欧美中文字幕| 久久ye,这里只有精品| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 午夜福利一区二区在线看| 成人18禁在线播放| 久久中文看片网| 国产日韩一区二区三区精品不卡| 99re在线观看精品视频| 国产欧美日韩一区二区精品| 国产1区2区3区精品| 欧美最黄视频在线播放免费 | 国产免费男女视频| 人人妻人人爽人人添夜夜欢视频| 免费久久久久久久精品成人欧美视频| av中文乱码字幕在线| 中文字幕人妻熟女乱码| 色老头精品视频在线观看| 女人久久www免费人成看片| 制服人妻中文乱码| 午夜福利视频在线观看免费| 制服诱惑二区| 亚洲自偷自拍图片 自拍| 国产精品免费一区二区三区在线 | 看黄色毛片网站| 18禁国产床啪视频网站| 亚洲免费av在线视频| 在线观看www视频免费| 亚洲aⅴ乱码一区二区在线播放 | 99热国产这里只有精品6| 亚洲专区国产一区二区| 中文字幕人妻丝袜制服| 中文字幕av电影在线播放| 久久精品国产亚洲av香蕉五月 | 国产深夜福利视频在线观看| 嫁个100分男人电影在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产三级黄色录像| 黄色视频,在线免费观看| 久久人妻av系列| 久久久精品免费免费高清| 欧美黄色淫秽网站| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 久久久久久久久免费视频了| 在线观看www视频免费| 俄罗斯特黄特色一大片| 欧美精品av麻豆av| 在线观看www视频免费| 黄色视频,在线免费观看| 久久人妻av系列| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 女同久久另类99精品国产91| 亚洲国产精品一区二区三区在线| 精品高清国产在线一区| 99热只有精品国产| 亚洲综合色网址| 国产精品久久久久久精品古装| 亚洲黑人精品在线| 一级毛片高清免费大全| 亚洲男人天堂网一区| 99久久综合精品五月天人人| 国产一区二区三区视频了| 免费人成视频x8x8入口观看| 天天躁日日躁夜夜躁夜夜| 19禁男女啪啪无遮挡网站| 久久影院123| 亚洲精品久久成人aⅴ小说| 亚洲一区高清亚洲精品| 国产野战对白在线观看| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 18禁美女被吸乳视频| 在线国产一区二区在线| 亚洲熟妇熟女久久| 久久国产精品人妻蜜桃| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 黑人巨大精品欧美一区二区蜜桃| 久久午夜亚洲精品久久| 少妇 在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲熟女精品中文字幕| 老司机在亚洲福利影院| 精品视频人人做人人爽| 一区二区三区精品91| 精品福利观看| 狠狠狠狠99中文字幕| 成人永久免费在线观看视频| 一个人免费在线观看的高清视频| xxxhd国产人妻xxx| a级片在线免费高清观看视频| 法律面前人人平等表现在哪些方面| 亚洲欧美色中文字幕在线| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 69精品国产乱码久久久| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 91在线观看av| 国产一区二区三区在线臀色熟女 | 波多野结衣av一区二区av| 午夜成年电影在线免费观看| 亚洲熟妇熟女久久| 不卡av一区二区三区| 最新的欧美精品一区二区| 纯流量卡能插随身wifi吗| 夜夜夜夜夜久久久久| 一区二区日韩欧美中文字幕| 脱女人内裤的视频| 91av网站免费观看| 国产亚洲精品久久久久久毛片 | 精品国产一区二区三区四区第35| 久久人人爽av亚洲精品天堂| 精品国产一区二区三区久久久樱花| 欧美日韩av久久| 亚洲熟女精品中文字幕| 在线视频色国产色| 9色porny在线观看| 丝袜美腿诱惑在线| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 91av网站免费观看| 一区二区三区激情视频| 精品久久久久久电影网| 人妻 亚洲 视频| 国产激情欧美一区二区| 满18在线观看网站| 热re99久久精品国产66热6| 色婷婷av一区二区三区视频| 一进一出好大好爽视频| 亚洲av片天天在线观看| 夜夜爽天天搞| 日韩免费av在线播放| 人妻久久中文字幕网| 亚洲熟妇中文字幕五十中出 | 女人高潮潮喷娇喘18禁视频| 久久久久精品国产欧美久久久| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 成人黄色视频免费在线看| tube8黄色片| 搡老乐熟女国产| 色94色欧美一区二区| 老司机在亚洲福利影院| 一进一出抽搐动态| 人妻 亚洲 视频| 91精品国产国语对白视频| cao死你这个sao货| 午夜精品国产一区二区电影| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av高清一级| 国产亚洲一区二区精品| 亚洲成a人片在线一区二区| 久久天堂一区二区三区四区| 精品国产国语对白av| 中国美女看黄片| 99久久人妻综合| av一本久久久久| 亚洲av日韩精品久久久久久密| 老司机在亚洲福利影院| 国产成人av教育| 黄色女人牲交| 精品国产国语对白av| 18在线观看网站| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 叶爱在线成人免费视频播放| 动漫黄色视频在线观看| 欧美黄色淫秽网站| 99re6热这里在线精品视频| 超碰成人久久| 69精品国产乱码久久久| avwww免费| 亚洲精品av麻豆狂野| 欧美在线一区亚洲| 好男人电影高清在线观看| 国产精品永久免费网站| 午夜福利免费观看在线| 久久香蕉精品热| 在线av久久热| 亚洲av成人av| 手机成人av网站| 精品熟女少妇八av免费久了| 久久精品熟女亚洲av麻豆精品| 亚洲色图综合在线观看| 久久久久久久精品吃奶| 欧美+亚洲+日韩+国产| 亚洲精品国产色婷婷电影| 一个人免费在线观看的高清视频| 女同久久另类99精品国产91| 十分钟在线观看高清视频www| 99精品欧美一区二区三区四区| 韩国av一区二区三区四区| 久久性视频一级片| 美女午夜性视频免费| 国产1区2区3区精品| 午夜福利在线观看吧| 亚洲伊人色综图| 丰满迷人的少妇在线观看| 精品免费久久久久久久清纯 | 中文字幕色久视频| 一二三四社区在线视频社区8| a级毛片黄视频| 国产成人一区二区三区免费视频网站| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 亚洲一卡2卡3卡4卡5卡精品中文| 一区二区日韩欧美中文字幕| 韩国av一区二区三区四区| 如日韩欧美国产精品一区二区三区| 精品国产一区二区三区四区第35| 亚洲欧美日韩高清在线视频| 亚洲av电影在线进入| 在线十欧美十亚洲十日本专区| 在线观看午夜福利视频| 天天躁夜夜躁狠狠躁躁| 婷婷丁香在线五月| 国产精品国产av在线观看| 夜夜躁狠狠躁天天躁| 国产精品.久久久| 亚洲一区二区三区不卡视频| 交换朋友夫妻互换小说| 亚洲成人免费电影在线观看| 国产国语露脸激情在线看| 在线视频色国产色| 国产高清videossex| 国产欧美亚洲国产| 成人永久免费在线观看视频| av超薄肉色丝袜交足视频| 亚洲精品中文字幕在线视频| 99久久精品国产亚洲精品| 国产主播在线观看一区二区| 一级毛片女人18水好多| 久久中文字幕一级| 变态另类成人亚洲欧美熟女 | 天天躁狠狠躁夜夜躁狠狠躁| 国内久久婷婷六月综合欲色啪| 啦啦啦 在线观看视频| 无限看片的www在线观看|