• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of preparation parameters on growth and properties of β-Ga2O3 film

    2023-02-20 13:15:40ZiHaoChen陳子豪YongShengWang王永勝NingZhang張寧BinZhou周兵JieGao高潔YanXiaWu吳艷霞YongMa馬永HongJunHei黑鴻君YanYanShen申艷艷ZhiYongHe賀志勇andShengWangYu于盛旺
    Chinese Physics B 2023年1期
    關(guān)鍵詞:艷霞永勝張寧

    Zi-Hao Chen(陳子豪), Yong-Sheng Wang(王永勝), Ning Zhang(張寧), Bin Zhou(周兵),Jie Gao(高潔), Yan-Xia Wu(吳艷霞), Yong Ma(馬永), Hong-Jun Hei(黑鴻君),Yan-Yan Shen(申艷艷), Zhi-Yong He(賀志勇), and Sheng-Wang Yu(于盛旺)

    College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China

    Keywords: β-Ga2O3,magnetron sputtering,growth parameters,optical and electrical properties

    1. Introduction

    With the excellent physicochemical properties, the wide bandgap semiconductor materials(such as SiC,GaN,AlGaN)are very suitable for high-temperature, high-frequency, and high-power semiconductor devices including diodes, detectors, and high-power electronic devices.[1–3]However, these devices are rarely able to go out of the laboratory and enter into industrialization because of the high cost of fabrication. Therefore, to reduce the cost of wide bandgap semiconductor devices is necessary for their practical application.As a wide bandgap semiconductor, Ga2O3has a band gap of~4.9 eV, a Baliga’s figure of merit (BFOM) of 3400, and a breakdown field strength of 8 MV/cm.[4]Compared with SiC or GaN, the single-crystal Ga2O3wafer with a size of 4 inch(1 inch=2.54 cm)has been synthesized by using several standard melt growth methods.[5]The polycrystalline Ga2O3film has similar semiconductor characteristics to and lower fabrication cost than single crystal,these advantages make Ga2O3receive increasing attention in the field of electroluminescent devices,[6,7]gas sensitive sensors,[8–10]photodetectors,[11–13]field-effect transistor,[14–16]etc.

    The crystal structures of Ga2O3, includingα,β,γ,δ,andε, could transform into each other under given conditions.[17]Among them,defects in the growth ofβ-Ga2O3thin film include VO(oxygen vacancy), Oi(oxygen interstitial),VGa(gallium vacancy), and Gai(gallium interstitial) due to a monoclinic crystal with theC2/mspace group. Owing to the VOand Gaiwith the lower formation energy,[18]β-Ga2O3is prone to forming oxygen vacancies and gallium interstitial during growth. Therefore, theβ-Ga2O3, as a most stable phase,has aroused extensive interest in the semiconductor devices due to its promising future in the industrial application. Sasakiet al. found that the Pt/β-Ga2O3Schottky diode fabricated by the floating-zone has a Schottky barrier height in a range of 1.3 eV–1.5 eV.[19]Shimboriet al. reported that NiO/β-Ga2O3heterojunction diode has a higher breakdown voltage and lower leakage current than Ni/β-Ga2O3Schottky diodes.[20]Ohet al.reported that aβ-Ga2O3MSM photodetector with the transparent graphene electrode increases the photosensitive area and rejection ratio of the photodetector.[21]Zhanget al.reported that single-crystalline sphericalβ-Ga2O3particles with an average diameter of~200 nm are expected to be used in white-LED phosphors due to the blue–green and red–light emission.[22]Many methods have been used to prepare theβ-Ga2O3film and adjust defects. Greenet al.found that theβ-Ga2O3field-effect transistor fabricated by metal–organic vapor phase epitaxy has a gate-to-drain electric field of~3.8 MV/cm.[23]Moreover, Chenet al. found that the growth ofβ-Ga2O3film is dependent on the oxygen pressure of pulsed laser deposition,such as mainly along(201)plane at an oxygen pressure of 0.5 Pa, but along (400) plane for oxygen pressure in a range from 0.5 Pa to 2 Pa.[24]Chenet al.reported that the pressure ofβ-Ga2O3film can affect the preferred orientation and growth rate by metal–organic chemical vapor deposition on GaAs substrate.[25]Shihet al.found that theβ-Ga2O3MOS-HEMT has excellent performance caused byβ-Ga2O3gate dielectric and surface passivation layer.[26]Liaoet al.found that the crystal quality ofβ-Ga2O3film can be adjusted by RF magnetron sputtering under growth pressure in a range of 0.5 Pa–3 Pa,resulting in a similar variation trend to that of the optical bandgap ofβ-Ga2O3film.[27]Ma and Fan preparedβ-Ga2O3nanomaterials by the thermal evaporation method,and found that the photoelectric properties of the nanomaterials change due to the oxygen existing.[28]Based on these results, the preparation method and parameter have important effects on the growth and properties of theβ-Ga2O3film.

    In this work,the Ga2O3films are prepared on the silicon and quartz substrates by radio frequency(RF)magnetron sputtering, then transformed intoβ-Ga2O3by annealing. The effects of preparation parameters on the structure and properties ofβ-Ga2O3film are studied by tailoring argon–oxygen flow ratio,sputtering power,sputtering time and annealing temperature.

    2. Experimental details

    The Ga2O3films were fabricated on the surface of(100) silicon substrates by the RF magnetron sputtering method. The monocrystalline silicon wafers were ultrasonically cleaned in ethanol solution for 10 min and washed with deionized water and dried, then placed into the deposition chamber of magnetron sputtering apparatus. In order to remove impurities from the surface of gallium oxide target as much as possible, the pre-sputtering was carried out in argon atmosphere for 5 min, then the presetting sputtering power and gas flow were adjusted. The atmospheric pressure of the chamber was adjusted to 0.8 Pa by controlling the outlet valve.A small amount of O2is added in addition to argon to improve crystallinity of the film and reduce internal defects.[29]Under the combined action of electric field, magnetic field and argon particles, gallium particles in the target were bombarded and reacted with oxygen to form amorphous Ga2O3film on the substrate. Theβ-Ga2O3film was obtained after being annealed.[30]The effects of preparation parameters including argon–oxygen flow ratio,sputtering power,sputtering time and annealing temperature on the growth and properties ofβ-Ga2O3thin films were studied as shown in Table 1. All samples were annealed in air for 120 min. In each experiment,a quartz substrate (optical transmittance>90%) was placed in the sputtering system so as to be used for characterizing the optical properties of the films.

    Table 1. Detailed growth parameters of β-Ga2O3 thin films. AO:argon–oxygen flow ratio,SP:sputtering power,Pre:sputtering pressure,ST:sputtering time,AT:annealing temperature.

    Fig.1. Schematic diagram of preparation process of β-Ga2O3 thin films.

    The metal electrodes were prepared on the film to study the electrical property. Theβ-Ga2O3film samples were ultrasonically cleaned in ethanol solution for 5 min,then rinsed with deionized water and dried. The Ti could form Ohmic contact withβ-Ga2O3under a certain condition.[31]The metal electrodes were obtained by depositing Ti(40 nm)/Ag(80 nm)on the surface of sample by vacuum evaporation via a special mask. Each electrode has a size of 1 mm×1 mm and the spacing between adjacent electrodes is 2 mm. The samples with metal electrodes were annealed in air for 30 s at 400°C.Figure 1 shows a schematic diagram of the preparation process and the final product.

    The crystal structure ofβ-Ga2O3were characterized by x-ray diffraction (XRD, Smartlab X, Rigaku). The morphology ofβ-Ga2O3and Ti/Ag electrodes were characterized by scanning electron microscope (SEM, ZEISS GeminiSEM 300). The optical properties were obtained by UV-vis spectrophotometer(Agilent cary 100). TheI–Vcurve of the films were measured by Hall effect measurement(Lake shore 8400 Series).

    3. Results and discussion

    Figure 2 shows the XRD patterns of Ga2O3films deposited under different conditions. The broad diffraction patterns of Ga2O3samples indicate the amorphous structures under different argon–oxygen flow ratios (Fig. 2(a)). The obvious diffraction peaks at 30.5°, 35.2°, and 64.7°correspond to (ˉ401), (111), and (403) planes ofβ-Ga2O3by examining the standard card of JCPDS43-1012, and superimpose on the broad diffraction pattern of the amorphous Ga2O3, suggesting that the amorphous Ga2O3films have transformed intoβphase after being annealed.The oxygen content increases with the argon–oxygen flow ratio dropping, leading to the shift of diffraction peak in the crystal plane of(403). The crystal lattice contains the increased amount of VOunder the hypoxia environment,and in an oxygen-rich environment,enough oxygen atoms exist as Oi, leading to the lattice distortion. When the sputtering power is 140 W (Fig. 2(b)), the crystal plane of (ˉ401) dominates the process of crystallization. With the increase of sputtering power, the diffraction peak in the crystal plane of (111) instead of in the crystal plane of (ˉ401) is enhanced, indicating the preferential growth of the film. According to the Scherrer formula[32]

    whereDis the grain size perpendicular to the lattice plane,kis the Scherrer constant with a value of 0.9,λis the wavelength of x-ray radiation,Bis the full width at half maximum(FWHM)of diffraction peaks,andθis the corresponding Bragg angle. Here, the FWHM of the diffraction peak at crystal plane of(ˉ401)increases with the augment of sputtering power(Fig.2(b)),indicating that the grain size decreases. The increase of sputtering power leads to a strong bombardment effect. So,more atoms bombarded out of Ga2O3target result in more deposited-nanocrystals.

    Fig.2. XRD patterns of β-Ga2O3 films deposited under different parameters: (a)argon–oxygen flow ratio;(b)sputtering power;(c)sputtering time;(d)annealing temperature.

    Moreover,as the sputtering time increases(Fig.2(c)),the intensities of diffraction peaks increase. Specially,the diffraction peaks appear at 19.0°and 59.2°corresponding to the crystal planes of (ˉ201) and (ˉ603) for 150 min. As for samples of the different annealing temperatures(Fig.2(d)),the diffraction peaks at 30.5°and 64.7°superimpose on the broad diffraction pattern of the amorphous Ga2O3for sample annealed at 600°C.With the temperature increasing to 900°C,the diffraction peaks are enhanced in(111),(ˉ201),(002),and(401)crystal planes. We find that each crystal plane of all samples annealed at 600°C shows the low diffraction peak intensity and the large FWHM,but the diffraction peak intensity of samples annealed at 900°C all increase(Figs.2(a)–2(d)). It means that the crystallinity ofβ-Ga2O3films increases with the annealed temperature rising.

    Fig.3. (a)Cross-sectional SEM image of β-Ga2O3 film and(b)plot of thickness versus sputtering time, sputtering power, and argon–oxygen flow rate of β-Ga2O3 film.

    Figure 3(a) shows the cross-sectional morphology ofβ-Ga2O3film. Theβ-Ga2O3film has the uniform and dense cross-sectional morphology without internal holes. Under this preparation condition, the thickness of theβ-Ga2O3film is 197.2 nm. Moreover, the thickness values of theβ-Ga2O3films at various preparation parameters are summarized via the cross-sectional image(Fig.3(b)). Obviously,the thickness of theβ-Ga2O3film increases with the increase of the argon–oxygen flow ratio, sputtering power and time. The annealing temperature has almost no influence on the thickness of the film(not shown). With the enlargement of argon–oxygen flow ratio,more argon particles bombard Ga2O3target,resulting in the increase of growth rate. Moreover, with the increase of sputtering power,more Ga2O3particles are generated and react with the oxygen due to the enhanced bombardment effect on the Ga2O3target,resulting in the increased thickness of the film.

    Figure 4(a)shows the surface morphologies ofβ-Ga2O3films annealed at different temperatures. The flat surface morphologies of films annealed at 600°C shows small grains of Ga2O3, which are due to the incomplete crystallization. The formation of small nanocrystalline grains forβ-Ga2O3can be confirmed by the weaker diffraction peak intensity and larger FWHM (Fig. 2(d)). With the increase of annealing temperature,the crystallinity of the film can be greatly improved,and the obvious spherical protrusions can be observed on the surface of sample annealed at 800°C.When the annealing temperature is further increased to 900°C, the spherical grains on the surface become dense, and more spherical grains with diameters ranging from 20 nm to 30 nm form.

    The 3D contour image of the sample surface is characterized, and the roughness-related parameters are obtained as follows: average roughness (Ra), maximum peak of contour(Rp)and minimum valley of contour(Rv). Figure 4(b)shows the 3D contour image of the sample annealed at 600°C, the overall surface of the film is smooth and flat without obvious pits and spikes, which is consistent with the scenario of SEM image in Fig. 4(a). With the enlargement of argon–oxygen flow ratio(Fig.4(c)),theRaof the film first decreases,then increases. A minimumRa-value can be obtained at an argon–oxygen flow ratio of 8:1. The higherRa-value means the oxygen-deficient situation, which is caused by stronger bombardment of the film surface at low oxygen content. The growth rate ofβ-Ga2O3thin film slows down with the increase of oxygen content. Moreover, the oxygen-rich environment reduces surface defects of the films. However, with the increase of sputtering power, theRa-value decreases by nearly half, thus improving the surface quality. The increased sputtering power means the strengthening of bombardment effect,which improves the adatom mobility and contributes to the surface quality of film. There has little effect on theRa-values of samples annealed at different temperature,but the values ofRpandRvincrease with the annealing temperature increasing(Rp:7.8 nm→145.9 nm;Rv: 43.5 nm→-245.2 nm). With the increase of sputtering time, theRaofβ-Ga2O3thin film increases gradually to 2.8 nm at 150 min. The increase of time can lead to the accumulation of defects to accumulate,resulting in uneven distribution of grains on the surface.

    Fig.4. (a) Top-view SEM images of β-Ga2O3 thin films annealed at different temperatures, (b) three-dimensional (3D) contour image of β-Ga2O3 thin film annealed at 600 °C for 120 min,(c)plot of average roughness(Ra)versus argon–oxygen flow ratio and sputtering power,and(d)plot of average roughness versus annealing temperature and sputtering time of β-Ga2O3 thin films.

    Figure 5(a) shows the SEM cross-section image of the prepared electrode structure.By combining the EDS results of the cross-section (Fig. 5(b)), the obvious layered structure of Ag/Ti/Ga2O3/Si-substrate can be confirmed. The O element not only exists in the gallium layer, but also penetrates into the Si layer and diffuses into the Ti/Ag electrode after being annealed (EDS result). In addition, Si also diffuses toward the Ga2O3layer,which has a similar mechanism to that of Si dopedβ-Ga2O3affecting the bandgap ofβ-Ga2O3thin films.

    Fig.5. (a) Cross-section SEM image of prepared electrode structure, and(b)corresponding EDS mapping element distributions.

    Figure 6 shows the optical transmittance spectra of currentβ-Ga2O3films at different preparation parameters. Allβ-Ga2O3films display the good optical transmittances in the visible range of 380 nm–780 nm. An obvious absorption edge appears near to 250 nm, which indicates thatβ-Ga2O3films are suitable for the detection of UVC.Fabry–Perot oscillation of the transmission curve implies good interface quality betweenβ-Ga2O3films and substrates.[33]The optical transmittance of the film is enhanced with the increase of sputtering power and annealing temperature, which is related to the improvement of film quality. Moreover,it is notable that the absorption edge has a red shift with the increase of sputtering time and power. Since main defects of VOaccumulate in the process of deposition and growth of film, these VOexist in the energy band as the donor energy, leading to the shifting of band structure. As Liet al.[34]believed, that was a degradation of quantum size effect. Becauseβ-Ga2O3is a direct bandgap semiconductor,[35]the bandgap ofβ-Ga2O3thin film can be calculated from Tauc formula[36]

    whereαis the absorption coefficient,hνis the incident photon energy,Ais the constant,andEgis the bandgap,the value ofEgcan be derived by fitting the linear region of the(αhν)2versus hνplot and taking the intercept on thehν-axis(Fig.6). Here,the bandgap of theβ-Ga2O3decreases with the decrease of oxygen,which can be attributed to the increase of point defects dominated by oxygen vacancies. In addition,the bandgap also gradually decreases with the increase of sputtering power and annealing temperature. In short,the surface quality can be improved by increasing the sputtering power,resulting in the reducing bandgap;the crystal quality increases with the increase of temperature,leading to the decrease of bandgap. All these results indicate that the bandgap ofβ-Ga2O3films is affected by the film quality.

    Fig.6. Variations of optical transmittance spectra of β-Ga2O3thin films: with(a)argon–oxygen flow ratio,(b)sputtering power,(c)sputtering time,and(d)annealing temperature,with inset showing variations of(αhν)2 with photon energy(hν).

    Fig.7. (a) The I–V curves of β-Ga2O3 thin films annealed at different temperatures and (b) current flowing through the thin film versus annealing temperature at a bias voltage of 1 V.

    TheI–Vcurves ofβ-Ga2O3thin films at different growth parameters are tested. The sample annealed at 900°C shows the Ohmic behavior between Ti andβ-Ga2O3,and the remaining samples exhibit the Schottky contact behavior(Fig.7(a)).Moreover,the forward/reverse current at 1-V bias voltage are calculated (Fig. 7(b)). The current flowing through theβ-Ga2O3film increases almost with the increase of annealing temperature,indicating that the resistance of the film gradually decreases. It is closely related to the crystallization quality of the film (Fig. 2(d)). There is a higher intensity of diffraction peak and a smaller FWHM at 900°C, thus the currents can flow across the grain boundaries.[37]

    TheEg-values obtained at different preparation parameters are calculated in Fig. 8(a). TheEg-value represents the distance from the top of valence band to the bottom of conduction band in the band structure,which varies from 4.94 eV to 5.34 eV depending on the preparation process. However,almost all samples(except for the sample annealed at 900°C)are of Schottky contact,indicating that the formation of Ohmic contact is not just related to the band gap of the film. In fact,for n-type intrinsic semiconductor such asβ-Ga2O3,the formation of Ohmic contact depends on the Schottky barrier heightφB:

    whereφMis the metal work function, andχsis the electron affinity of the semiconductor. Usually, theφBwith a negative value is achieved by choosing a metal of lowφMat the constantχs(4.00±0.05 eV),named Ohmic contact.[38]However,theφBofβ-Ga2O3does not rely onφMdirectly because of the surface states, metal-induced gap-states and near surface defects.[39]Previous report found that there can be the upward bending of the band onβ-Ga2O3surface,[40]causing the contacts formed betweenβ-Ga2O3and metals to be always Schottky contacts(Fig.8(b)). The Ohmic contact between the metal andβ-Ga2O3forms at 900°C temperature. As mentioned above,the point defects inβ-Ga2O3film are dominated by oxygen vacancies,thus introducing additional defect levels into the band structure. However, it is too deep to be excited according to previous report,so it is not generally considered to be the source of charge carriers. When the annealing temperature reaches 900°C,the high temperature provides a large amount of energy for the thermal motion of the electrons,thus leading a large number of electrons to be excited and transit to the conduction band. So, the Ohmic contact is achieved through the tunneling effect.

    Fig.8. (a)The Eg values of β-Ga2O3 thin films at different growth parameters,(b)energy band of Schottky contact between Ti and β-Ga2O3,and(c)mechanism for Ohmic contact formation annealed at 900 °C.

    4. Conclusions

    Theβ-Ga2O3thin films are prepared on the silicon substrates by RF magnetron sputtering method. The effects of preparation parameters are studied including argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature. The annealing temperature plays a vital role in the crystallinity of theβ-Ga2O3film. The thickness ofβ-Ga2O3films depend on argon–oxygen flow ratio, sputtering power and sputtering time. The surface roughness of Ga2O3film increases with the augment of argon–oxygen flow ratio and sputtering time,while decreases with the sputtering power increasing. The transmission spectra of the films are tested by UV-vis, and the bandgap are calculated according to the Tauc formula. The bandgap is closely related to the quality of the film and affected by the number of oxygen vacancy defects. The Ti/Ag electrode is deposited on the surface of the films for testing theI–Vcurve. Ohmic contact is obtained at 900°C, which is probably related to the transition behavior of electrons at the defect level when gain enough energy. The resistance of the film is reduced by increasing the annealing temperature because of the improved crystallinity.

    Acknowledgements

    Project supported by the Science and Technology Major Project of Shanxi Province,China(Grant No.20181102013),the “1331 Project” Engineering Research Center of Shanxi Province, China (Grant No. PT201801), and the Natural Science Foundation of Shanxi Province, China (Grant No.201801D221131).

    猜你喜歡
    艷霞永勝張寧
    一杯茶
    捧卷傍春山
    牡丹(2023年1期)2023-01-14 06:36:22
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    敬廉 守廉 踐廉
    樂普 《欣忭》
    唱一首祖國的贊歌
    Umbrella Day傘日
    There
    一種兩級(jí)雙吸管道輸油泵
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    九九久久精品国产亚洲av麻豆| 国产亚洲最大av| 国产黄频视频在线观看| 老师上课跳d突然被开到最大视频| 国产视频内射| 少妇熟女欧美另类| 熟妇人妻不卡中文字幕| 久久久精品免费免费高清| 欧美变态另类bdsm刘玥| 久久久久国产网址| 99精国产麻豆久久婷婷| 肉色欧美久久久久久久蜜桃 | 在线观看一区二区三区| 搡女人真爽免费视频火全软件| 99久久中文字幕三级久久日本| 一本色道久久久久久精品综合| 国产精品一及| 国产男人的电影天堂91| 国产亚洲91精品色在线| 有码 亚洲区| 欧美一区二区亚洲| 人妻系列 视频| 成年女人在线观看亚洲视频 | 久久精品夜色国产| 中国美白少妇内射xxxbb| av在线蜜桃| 日韩大片免费观看网站| 日本欧美国产在线视频| 成人欧美大片| 亚洲一区二区三区欧美精品 | 国产探花极品一区二区| 在线观看一区二区三区| 一区二区三区免费毛片| 国产亚洲av片在线观看秒播厂| 成年版毛片免费区| 国产成人免费观看mmmm| 高清欧美精品videossex| 中文在线观看免费www的网站| 国产白丝娇喘喷水9色精品| freevideosex欧美| 18禁在线播放成人免费| 性色av一级| 国产精品不卡视频一区二区| 国产一区二区三区av在线| 噜噜噜噜噜久久久久久91| 色婷婷久久久亚洲欧美| av线在线观看网站| 亚洲成人av在线免费| 国产 一区精品| 国产视频首页在线观看| 国产视频内射| 尾随美女入室| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 亚洲av二区三区四区| 在线a可以看的网站| 免费观看在线日韩| 大话2 男鬼变身卡| 国产真实伦视频高清在线观看| 久久99热这里只有精品18| 少妇的逼好多水| 欧美国产精品一级二级三级 | 国产视频首页在线观看| 老司机影院成人| 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| 亚洲欧洲国产日韩| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 寂寞人妻少妇视频99o| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| 亚洲精品,欧美精品| 99九九线精品视频在线观看视频| 99热6这里只有精品| 国产伦精品一区二区三区四那| 午夜福利网站1000一区二区三区| 久久久精品欧美日韩精品| 少妇熟女欧美另类| 日韩,欧美,国产一区二区三区| 亚洲欧美一区二区三区黑人 | 日韩电影二区| 欧美精品人与动牲交sv欧美| 国产综合精华液| 啦啦啦啦在线视频资源| 一个人看的www免费观看视频| 亚洲欧美成人综合另类久久久| 王馨瑶露胸无遮挡在线观看| 午夜精品一区二区三区免费看| 久久精品熟女亚洲av麻豆精品| 嫩草影院精品99| 青春草亚洲视频在线观看| 一区二区三区四区激情视频| 狠狠精品人妻久久久久久综合| 国产一区二区三区综合在线观看 | 国产av不卡久久| 国产片特级美女逼逼视频| 成人综合一区亚洲| 久久99精品国语久久久| 亚洲,一卡二卡三卡| 如何舔出高潮| 色综合色国产| 18禁裸乳无遮挡动漫免费视频 | freevideosex欧美| av在线播放精品| 一级av片app| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 18禁裸乳无遮挡免费网站照片| 精品人妻一区二区三区麻豆| 97超碰精品成人国产| 欧美日本视频| 人人妻人人看人人澡| 精品少妇黑人巨大在线播放| 色综合色国产| 日韩av在线免费看完整版不卡| 亚洲欧洲国产日韩| 一级片'在线观看视频| av在线天堂中文字幕| 在线观看免费高清a一片| 亚洲av免费高清在线观看| 午夜激情福利司机影院| 亚洲av不卡在线观看| 国产综合懂色| 国产亚洲av片在线观看秒播厂| 日韩欧美一区视频在线观看 | 黑人高潮一二区| 一本色道久久久久久精品综合| 欧美精品国产亚洲| 午夜激情久久久久久久| 精品午夜福利在线看| av国产精品久久久久影院| 国产精品久久久久久av不卡| 亚洲最大成人手机在线| 亚洲欧美日韩卡通动漫| 久久国内精品自在自线图片| 成年人午夜在线观看视频| 一本一本综合久久| 简卡轻食公司| 免费黄频网站在线观看国产| 国产探花极品一区二区| 久久久亚洲精品成人影院| 一区二区三区精品91| 婷婷色综合大香蕉| 成人国产av品久久久| 免费播放大片免费观看视频在线观看| 最近最新中文字幕免费大全7| 精品少妇久久久久久888优播| 国产 精品1| 在线观看人妻少妇| 免费看光身美女| 国产免费一级a男人的天堂| 少妇被粗大猛烈的视频| 国产亚洲最大av| 大香蕉97超碰在线| 久久精品国产a三级三级三级| av在线亚洲专区| 日韩欧美 国产精品| 最新中文字幕久久久久| 国产视频首页在线观看| 久久国内精品自在自线图片| 又爽又黄无遮挡网站| 久久精品熟女亚洲av麻豆精品| av福利片在线观看| 深夜a级毛片| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 婷婷色综合大香蕉| 超碰av人人做人人爽久久| 午夜爱爱视频在线播放| 久久久久久久亚洲中文字幕| 国产男女超爽视频在线观看| 精品国产乱码久久久久久小说| 少妇裸体淫交视频免费看高清| 久久久久国产精品人妻一区二区| 男人添女人高潮全过程视频| 在线天堂最新版资源| 免费av毛片视频| 亚洲高清免费不卡视频| 欧美极品一区二区三区四区| 国产一区二区三区综合在线观看 | 色5月婷婷丁香| 中文字幕av成人在线电影| 国产男女内射视频| 日本欧美国产在线视频| 又黄又爽又刺激的免费视频.| 波野结衣二区三区在线| 久久久久精品久久久久真实原创| av在线播放精品| 亚洲av不卡在线观看| 在线播放无遮挡| 亚洲真实伦在线观看| 大码成人一级视频| 2018国产大陆天天弄谢| 青青草视频在线视频观看| 国产成人精品婷婷| 嫩草影院新地址| 毛片一级片免费看久久久久| 国产老妇伦熟女老妇高清| 国产乱来视频区| 香蕉精品网在线| 国产精品麻豆人妻色哟哟久久| 免费av观看视频| h日本视频在线播放| 日本黄大片高清| av播播在线观看一区| 搡女人真爽免费视频火全软件| 18禁裸乳无遮挡动漫免费视频 | 国产毛片在线视频| 赤兔流量卡办理| 国产探花在线观看一区二区| 国产成人freesex在线| 高清午夜精品一区二区三区| 亚洲电影在线观看av| 久久久久久九九精品二区国产| freevideosex欧美| 久久久久精品久久久久真实原创| 少妇人妻久久综合中文| 看非洲黑人一级黄片| 久久久成人免费电影| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品国产成人久久av| 国产成人a∨麻豆精品| 国产 精品1| 欧美极品一区二区三区四区| 国产成人a区在线观看| 欧美人与善性xxx| 亚洲国产高清在线一区二区三| 在线看a的网站| 国产精品福利在线免费观看| 又大又黄又爽视频免费| 亚洲精品成人久久久久久| 日日撸夜夜添| 日日撸夜夜添| 亚洲精品国产色婷婷电影| 丝袜美腿在线中文| 国产成人aa在线观看| 蜜桃久久精品国产亚洲av| 最近最新中文字幕大全电影3| 亚洲,欧美,日韩| 免费观看av网站的网址| av在线观看视频网站免费| 丰满人妻一区二区三区视频av| 久久久精品欧美日韩精品| 成人无遮挡网站| 天堂俺去俺来也www色官网| 天堂网av新在线| 九草在线视频观看| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 亚洲av福利一区| 69av精品久久久久久| 欧美xxxx性猛交bbbb| 精品人妻一区二区三区麻豆| 麻豆成人av视频| 亚洲av日韩在线播放| 欧美bdsm另类| 丰满乱子伦码专区| 男插女下体视频免费在线播放| 香蕉精品网在线| 国产成人a区在线观看| 三级经典国产精品| 人体艺术视频欧美日本| 国产老妇女一区| 国产爱豆传媒在线观看| 美女国产视频在线观看| 亚洲内射少妇av| 国产免费视频播放在线视频| 国产人妻一区二区三区在| 蜜桃久久精品国产亚洲av| kizo精华| 1000部很黄的大片| 少妇丰满av| 我要看日韩黄色一级片| 日韩亚洲欧美综合| 久久精品国产亚洲av天美| 精品少妇黑人巨大在线播放| 亚州av有码| 91精品国产九色| 波野结衣二区三区在线| 久久久久久伊人网av| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 一本色道久久久久久精品综合| 成人二区视频| 欧美区成人在线视频| 黑人高潮一二区| 免费在线观看成人毛片| 欧美区成人在线视频| 亚洲aⅴ乱码一区二区在线播放| 新久久久久国产一级毛片| 国产高潮美女av| 综合色丁香网| 久久久久久久久久久丰满| 欧美激情久久久久久爽电影| 真实男女啪啪啪动态图| 国产爽快片一区二区三区| 最近最新中文字幕大全电影3| 岛国毛片在线播放| 亚洲精品久久久久久婷婷小说| 日韩不卡一区二区三区视频在线| 啦啦啦在线观看免费高清www| 日本爱情动作片www.在线观看| 毛片一级片免费看久久久久| 熟女人妻精品中文字幕| 国产日韩欧美亚洲二区| 国产精品麻豆人妻色哟哟久久| 国产探花极品一区二区| 欧美变态另类bdsm刘玥| 真实男女啪啪啪动态图| 特级一级黄色大片| 亚洲激情五月婷婷啪啪| 少妇人妻 视频| 十八禁网站网址无遮挡 | 亚洲国产精品国产精品| 精品熟女少妇av免费看| 午夜免费鲁丝| 欧美潮喷喷水| 久久久国产一区二区| 女人被狂操c到高潮| .国产精品久久| 日韩av免费高清视频| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 少妇裸体淫交视频免费看高清| 伊人久久国产一区二区| 国产亚洲5aaaaa淫片| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 嫩草影院新地址| 日本一本二区三区精品| 搡女人真爽免费视频火全软件| 日韩免费高清中文字幕av| 久久久精品免费免费高清| 少妇被粗大猛烈的视频| 国产精品99久久99久久久不卡 | 在线看a的网站| 18禁在线播放成人免费| 亚洲在线观看片| 国产亚洲5aaaaa淫片| 51国产日韩欧美| 白带黄色成豆腐渣| 高清av免费在线| 久久99热6这里只有精品| 大陆偷拍与自拍| 91久久精品国产一区二区三区| 欧美成人精品欧美一级黄| 蜜臀久久99精品久久宅男| 18禁在线无遮挡免费观看视频| 国产淫语在线视频| 哪个播放器可以免费观看大片| 国产亚洲精品久久久com| 免费看不卡的av| 91久久精品国产一区二区三区| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 王馨瑶露胸无遮挡在线观看| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站| 免费黄频网站在线观看国产| 国产 一区精品| 最后的刺客免费高清国语| 在线播放无遮挡| 亚洲av男天堂| 蜜桃亚洲精品一区二区三区| 日本-黄色视频高清免费观看| 亚洲va在线va天堂va国产| 国产成人午夜福利电影在线观看| 大码成人一级视频| 亚洲综合精品二区| 国产精品久久久久久精品古装| 老司机影院成人| 最近手机中文字幕大全| 好男人视频免费观看在线| 中文字幕亚洲精品专区| 国产毛片在线视频| 亚洲精品亚洲一区二区| 国产亚洲最大av| 51国产日韩欧美| 丝袜喷水一区| 午夜福利在线观看免费完整高清在| eeuss影院久久| 久久99热这里只频精品6学生| 国产精品伦人一区二区| 国产成人freesex在线| 视频区图区小说| 久久97久久精品| 欧美 日韩 精品 国产| 亚洲无线观看免费| 2021天堂中文幕一二区在线观| 2018国产大陆天天弄谢| 丰满少妇做爰视频| 亚洲av在线观看美女高潮| 国产精品久久久久久久电影| 又大又黄又爽视频免费| 亚洲精品国产成人久久av| 亚洲精品日本国产第一区| 直男gayav资源| 国产成人精品福利久久| 欧美亚洲 丝袜 人妻 在线| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 丝瓜视频免费看黄片| 插逼视频在线观看| 亚洲最大成人av| tube8黄色片| 日韩人妻高清精品专区| a级毛色黄片| 国产免费福利视频在线观看| 国模一区二区三区四区视频| 一个人看视频在线观看www免费| 亚洲精品久久午夜乱码| 久久久精品免费免费高清| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 久久久亚洲精品成人影院| 国语对白做爰xxxⅹ性视频网站| 国产探花极品一区二区| 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 成人国产av品久久久| 永久免费av网站大全| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 亚洲性久久影院| 久久精品国产自在天天线| 色视频在线一区二区三区| 国产视频内射| 国产精品.久久久| 亚洲怡红院男人天堂| 免费在线观看成人毛片| 人人妻人人澡人人爽人人夜夜| 国产一区二区亚洲精品在线观看| 老司机影院成人| 91狼人影院| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 国产午夜精品久久久久久一区二区三区| 丝袜美腿在线中文| 亚洲精品国产成人久久av| 婷婷色综合www| 男女那种视频在线观看| 五月开心婷婷网| 日韩不卡一区二区三区视频在线| 97热精品久久久久久| 新久久久久国产一级毛片| 黄色配什么色好看| 高清av免费在线| 99热全是精品| 少妇高潮的动态图| 少妇丰满av| 婷婷色av中文字幕| 成人免费观看视频高清| 青春草亚洲视频在线观看| 国产极品天堂在线| 好男人在线观看高清免费视频| 久久精品国产亚洲av涩爱| 听说在线观看完整版免费高清| 成年女人在线观看亚洲视频 | 久久久久久久国产电影| 五月伊人婷婷丁香| 日本一本二区三区精品| 亚洲综合色惰| 99久久精品一区二区三区| 大片电影免费在线观看免费| 尤物成人国产欧美一区二区三区| 欧美国产精品一级二级三级 | 狂野欧美激情性bbbbbb| 成人毛片60女人毛片免费| 丰满少妇做爰视频| 日韩人妻高清精品专区| 亚洲欧美一区二区三区国产| 久久热精品热| 久久国内精品自在自线图片| 欧美精品人与动牲交sv欧美| 久久久色成人| 1000部很黄的大片| 久热久热在线精品观看| 亚洲熟女精品中文字幕| 国产精品伦人一区二区| 日韩人妻高清精品专区| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 色视频www国产| www.色视频.com| 直男gayav资源| 国产精品秋霞免费鲁丝片| 干丝袜人妻中文字幕| 国产伦精品一区二区三区视频9| 极品教师在线视频| 少妇被粗大猛烈的视频| 国产精品久久久久久久久免| 18禁裸乳无遮挡动漫免费视频 | 久久久久精品久久久久真实原创| 成年免费大片在线观看| 成人国产av品久久久| 亚洲av二区三区四区| 久久99热这里只频精品6学生| 亚洲在线观看片| 色视频在线一区二区三区| 欧美人与善性xxx| 亚洲精品国产成人久久av| 亚洲人成网站在线播| 在线观看三级黄色| 韩国高清视频一区二区三区| 国产黄片美女视频| 男女国产视频网站| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 天天躁日日操中文字幕| 人妻 亚洲 视频| 久久99热这里只有精品18| 99热6这里只有精品| 高清午夜精品一区二区三区| 少妇人妻久久综合中文| 国产成人91sexporn| 婷婷色综合www| www.av在线官网国产| 一级二级三级毛片免费看| 尤物成人国产欧美一区二区三区| 亚洲欧洲日产国产| 欧美97在线视频| 国国产精品蜜臀av免费| 久久这里有精品视频免费| 免费观看性生交大片5| 一个人看视频在线观看www免费| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 精品午夜福利在线看| 嘟嘟电影网在线观看| 婷婷色综合大香蕉| 亚洲欧美日韩另类电影网站 | 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| 国产伦精品一区二区三区四那| 国国产精品蜜臀av免费| 亚洲丝袜综合中文字幕| 国产精品久久久久久av不卡| 精品国产一区二区三区久久久樱花 | 内地一区二区视频在线| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 免费电影在线观看免费观看| 国产成人一区二区在线| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 大片电影免费在线观看免费| 超碰97精品在线观看| 亚洲电影在线观看av| 一级毛片电影观看| 97在线人人人人妻| 国产精品偷伦视频观看了| 高清欧美精品videossex| 免费看光身美女| 2021天堂中文幕一二区在线观| 亚洲四区av| 人人妻人人爽人人添夜夜欢视频 | 午夜视频国产福利| 99热国产这里只有精品6| 精品人妻熟女av久视频| av播播在线观看一区| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 蜜桃久久精品国产亚洲av| 丰满乱子伦码专区| 尾随美女入室| 日日摸夜夜添夜夜爱| 国产成人freesex在线| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 狂野欧美激情性bbbbbb| 99久久中文字幕三级久久日本| 精品一区二区三卡| 91久久精品国产一区二区三区| 人妻制服诱惑在线中文字幕| 午夜福利视频精品| 九九在线视频观看精品| 一级毛片我不卡| 亚洲成人中文字幕在线播放| 国产在线一区二区三区精| 一边亲一边摸免费视频| 欧美老熟妇乱子伦牲交| 久久97久久精品| 国产av码专区亚洲av| 美女cb高潮喷水在线观看| 亚洲精品亚洲一区二区| 国产乱来视频区| 日日啪夜夜撸| 99热6这里只有精品| 大码成人一级视频| 精品久久久久久久人妻蜜臀av| 嫩草影院精品99| 在线看a的网站| 97精品久久久久久久久久精品| 免费看a级黄色片| 日韩电影二区| 欧美一区二区亚洲| 少妇高潮的动态图| 久久99热6这里只有精品| 欧美日韩精品成人综合77777|