• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks

    2023-02-20 13:15:38NingjingYang楊檸境HaiYang楊海andGuojunJin金國(guó)鈞
    Chinese Physics B 2023年1期
    關(guān)鍵詞:金國(guó)

    Ningjing Yang(楊檸境), Hai Yang(楊海),?, and Guojun Jin(金國(guó)鈞),2,?

    1School of Physics Science and Technology,Kunming University,Kunming 650214,China

    2National Laboratory of Solid State Microstructures,Department of Physics,and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: polyphenylene,interface,band structure,Zak phase,edge state

    1. Introduction

    Topological materials have maintained a hot topic in the last two decades. Common topological materials include topological insulators, topological superconductors, topological semimetals,topological metals,and magnetic topological insulator.[1–6]The general feature of topological materials is that they have topologically protected edge states, which are generated by non-trivial bulk bands. The earliest topological materials all have non-zero Berry curvature caused by spin–orbit coupling and are protected by time-reversal symmetry.[7]Integrating over the momentum space results in a topological invariant characterized by the Chern number.[8]Later on,new topological systems were discovered,which are protected by space inversion symmetry. In these topological systems,although the Berry curvature is zero, their topological edge states are protected by the non-zero vectored Zak phase.[9–13]The Zak phase refers to the integration of Berry connection,resulting in strongly non-trivial topological effects.[14,15]This kind of topological materials protected by space inversion symmetry regardless of spin–orbit coupling has attracted more and more attention.

    Since it was prepared in 2004, graphene has started a research upsurge in carbon-based materials. At present, various carbon allotropes are being investigated in experimental measurements and theoretical calculations.[16–19]Among them, biphenylene is a newly prepared carbon monolayer,[20]which has been confirmed to be a topological material.[21]Moreover, biphenylene exhibits polarization, that is, its topological edge states appear in one direction and trivial behavior in the other. As is well known,for graphene carbon nanotubes and nanoribbons at finite scales, it has been predicted that they have a 3p-rule.[22,23]For their topological properties,both armchair nanoribbon junction states and nanotube systems have the topological rule related to their system size.[24–27]In addition, the 3prule is also exhibited in bilayer and twodimensional carbon materials.[28–31]The origin of this rule is inseparable from the nature of graphene itself and the additional restrictions. Researches on carbon-based materials emerge in an endless stream,including Dirac fermions,nodal rings, Weyl semimetals, etc., but most of them are demonstrated by numerical calculations, and there are lacking of physical analyses.[32,33]Moreover, many of the Dirac materials with topological properties are confirmed in the type-I,in contrast to other possible types.

    In this paper, we theoretically study a series of network structures polymerized by polyphenyls, which has 3ptopological periodicity. It can be found that one third of them are topological material protected byC2space inversion symmetry and have a non-zero Zak phase. The topological rule is verified by first-principles calculations. Simultaneously, the topological phase has the Dirac point. Then, we obtain two kinds of topological phases in the band structures, one has gapless bulk dispersion and the other with gapped bulk dispersion. The gapped bulk dispersion with a non-trivial edge state is rare in space-inversion symmetric systems.[10,21,32,33]This topological property is caused by the periodic interface conditions. For a bulk gapless non-trivial phase,we construct a virtual potential in nanoribbon by doping B and N atoms,so as to open a gap in the bulk and make the system change from the gapless phase to the gapped phase.

    2. Computational method

    The electronic properties of the polyphenylene networks are calculated by the toolkit ATK’s first-principles method.[34,35]In the first-principles calculations, Perdew–Burke–Ernzerhof (PBE) functional is chosen under the generalized gradient approximation(GGA),the cut-off energy of 150 Ry and 10×10×1k-points grid are used. The lattice parameters and atomic positions are completely relaxed,and the convergence standards for energy and force are set to 10-5eV and 10-3eV/?A, respectively. The temperature is chosen at room temperature. We use a sufficiently large vacuum interval and add at least 15 ?A in the direction perpendicular to the electron transport plane to avoid interactions between layers.

    3. Results and discussion

    3.1. Structure and stability

    We first characterize the structure of a polyphenylene network,as shown in Fig.1(a),and correspondingly the first Brillouin zone(BZ)shown in Fig.1(b).It can be seen that in a unit cell there are serial benzene rings connected by two quaternary rings at their periodic interface.Of course,the possible experimental preparation of these carbon allotropes is always important.In the recent experiments,net C and net Y,corresponding toN= 1 and 2, have been successfully prepared.[20,36]Especially for net C, which has been discussed as a topological material,[21]it has a topological phase with unidirectional charge polarization. Unlike the Chern topological insulators,it is protected by the space inversion symmetry. Topological adjustability in graphene nanoribbons and graphene nanotubes has recently attracted much attention,[24,25]especially for the armchair-type boundary conditions. Therefore, the unidirectional polarized topological properties similar to net C will appear for the systems withN >1 as well. For 2D monolayer materials,the structural stability is very important in the applications of practical electronic devices. Although biphenyl(net C)and net Y have been successfully prepared,we also need to find more graphene structures. We use the formation energy to evaluate their stability,defnied asEform=,whereEtotis the total energy of an allotrope,ECis the energy of a single carbon atom,andnCis the number of carbon atoms in the system. We calculate several sets of data and compare them with graphene,as shown in Fig.1(c). Moreover,the mechanical properties of allotropes are discussed(see the supplement material III).

    Fig.1. (a) Structural diagram of a polyphenylene network, forming a four-membered ring at the splicing. (b) The first Brillouin zone in the two-dimensional reciprocal space. (c)Formation energy of polyphenylene networks.

    3.2. Origin of topological properties

    Starting from a low-energy effective model, we investigate a polyphenylene network, which consists of finite polyphenyl molecules spliced together by four-membered rings at the longitudinal interface and is periodic in the transverse direction. By choosing the length and width of the quaternary rings to be equal,we can derive its wave function(for a detailed derivation,see supplement material I)

    wherew=2N+1, which represents the number of rows of carbon atoms andais the lattice constant. The phase factor has the form

    with

    We definef(k)= e-iφ(k)as an eigenvalue of the parity operatorP,Pun(Γ)=fn(Γ)un(Γ). Taking the periodicity of the polyphenylene network in the vertical direction,kyneeds to be discretized,i.e.,

    where the subband indexn=1,2,3,...,wrepresents all the occupied states. We discuss the importance of the interface condition in the supplement material II and confirm the robustness of this topological interface condition by means of density functional theory(DFT)calculations.

    In fact, the topological property of this system is characterized by the non-zero Zak phase, which is defined as the integral of the Berry connection. The Berry connection of thenth band is defined asAn=〈unk|i?k|unk〉. When the Zak phase is non-zero, the system has charge polarization, resulting in topologically protected boundary states. The electric polarization is the quantization of the Zak phase,which is also the wave polarization given by the expression

    In a two-dimensional crystal system, the electric polarization can be viewed as a vectorP=(Pi,Pj),whose components depend on the direction of the wave vectorki(j). Since the polyphenylene network hasC2(πrotation along the out-ofplane direction)symmetry,hereki=kx,kj=ky,andPx/=Py.From the topological properties of biphenylene,it can be seen that the bulk–edge correspondence appears in the direction of the armchair boundary, while at the zigzag boundary, due to the intervention of the quaternary ring,the original bulk–edge correspondence in this direction is broken. That is to say,the charge is unidirectional polarized,and its electric polarization can be expressed as (0, 1/2). The space inversion symmetry has a strong constraint on the value ofP, which is independently determined by the parity of theΓpoint and theX(Y)point,[14]i.e.,

    whereηrepresents parity,andqyis a topological invariant,0 or 1,so the value of the Zak phase depends on the electric polarization,which depends on the parity of the high symmetry point. From Eq.(6),we calculate thePyof the polyphenylene network,and its expression is

    The above formula reveals the topological rule of theyaxis electric polarization of the polyphenylene network with a period of 3: if the number of benzene rings takes the remainder of 3 to be 1, we getPy=1/2, which is the topological phase. On the other hand,the remainder is 0 or 2,Py=0,and the system is a trivial phase. That is to say, the polyphenylene network can be further divided into topological phase and trivial phase according to the electric polarization parameters.

    3.3. DFT calculation results

    According to the above theoretical analyses, we calculate the band structures of polyphenylene networks at different cell-sizes. It is found that the electronic properties of these structures have a 3prepetition rule. When the remainder ofNto 3 is 1, the Dirac points appear near the Fermi level of the two-dimensional carbon allotropes, and along the high symmetry line ofΓ–Y, as shown in Figs. 2(a)–2(c). For other sizes,the valence or conduction bands of the two-dimensional carbon allotropes cross the Fermi level,so they are all metallic states(see the supplement material IV).All the DFT calculation results are consistent with the results in Refs.[21,37]. It is interesting to note that the Dirac cone undergoes a transition from type-II to type-III and then to type-I as the unit cell size increases,shown by the enlarged views at the Dirac point in Figs. 2(j)–2(l). Actually, this property is derived from the square rings,which brings the anisotropy to the whole system.As the size increases, the proportion of the projected density states of the quaternary ring gradually decreases,as shown in Figs.2(d)–2(f).The trend of the bond angles of the central carbon atom shows that the anisotropy of the system reduces with the increase of the cell size,as shown in Figs.2(g)–2(i).Therefore,the Dirac cone shifts toward isotropy. In fact,the 3p-rule has also been found in other similar 2D materials.[30,31]It can be understood that the key element of this topological 3p-rule is the periodic interface condition.

    In order to verify its real topological properties, for the topological phase with unidirectional polarization in theyaxis, there must be a bulk–edge correspondence in the onedimensional nanoribbon system. We calculate the dispersion relations of nanoribbons for the two topological phase systemsN=1 and 4,as shown in Figs.3(a)and 3(b). The Bloch wave functions at the two pointsD1andD2are shown in Figs.3(c)and 3(d). It can be seen that they are non-trivial edge states near the Fermi level. But one is bulk gapless and the other is bulk gapped, the latter band gapEgis about 125 meV.This gapped phase ofN= 4 is a very good result and discovery,because such a large band gap is rare for space inversion symmetry-protected topological systems,which are usually bulk gapless.[10,21,32,33,38,39]An ideal quantum Hall device is internally non-conductive, but when a topological phase is bulk gapless,the interior will conduct electrically,and will inevitably affect the quantized conductance. This is unfavorable for observation and applications. It is also the difference between this system and a Chern topological insulator, which can open the bulk band gap through the spin–orbit coupling,thereby realizing edge states for a gapped bulk. For topological materials protected by space inversion symmetry,it is difficult for edge states to appear with a gapped bulk dispersion.

    Fig.2. Band structures corresponding to N =1, 4, 7 polyphenylene networks are shown in (a), (b) and (c); (d), (e) and (f) correspond to the PDOSs of the left systems, where the blue lines represent the carbon atoms in the quaternary ring, the red lines represent the remaining six-membered ring carbon atoms, and the black lines represent the whole; (g), (h) and (i) correspond to the three bond angles of the carbon atoms at their central positions,respectively. The enlarged views of the Dirac points in the energy band structures are shown in(j),(k)and(l).

    Fig.3. (a),(b)Dispersion relations of two nanoribbons for N=1 and N=4,respectively. Bulk(edge)states are indicated by solid black(red)lines. The gap between the upper and lower bands is labeled as Eg. (c),(d)The Bloch waves corresponding to D1 and D2 points,respectively.

    3.4. Regulation of the build-in electric field

    Although we obtain a very nice topological phase forN=4, it is still desirable to investigate the caseN=1, i.e.,a biphenylene nanoribbon as well. In favor of experimental observation,we consider to open the gapless bulk band by introducing a potential difference. For simplicity, we utilize a tight-binding model to perform the calculations for the dispersion relation. The Hamiltonian is

    The first term is the transition term,andEiin the second term is the on-site energy. For this two-dimensional periodic system,we can see that the linearly intersecting bands are opened when an electric field is applied in theydirection with the strength of 0.2 V/?A, as shown in Fig. 4(a). But such a theoretical model is very difficult to realize in practice, so we can apply a virtual electric field by doping B and N atoms within the cell. This is easy to achieve experimentally.[40]At this time,Eiis expressed as the on-site-potential energy at the grid point position. With the help of the previous DFT calculation results,[41]we takeEB=3.34 eV,EN=-1.4 eV,tCN=2.6 eV,tCB=2.89 eV.At the same time,in order to well characterize the edge polarization scale of the wave function at each wave vector position,we refer to the inverse participation ratio(IPR),[42]which is defined as

    whereMis the total number of lattice points in the nanoribbon. Its value ranges from-1 to 0,and the more closer to 0,the more polarized wave function,as shown in Fig.4(c).When we only dope B and N atoms at the two ends of the biphenylene nanoribbon, we can open a small band gap, and the previously merged edge states are separated from each other, as shown in Fig.4(b). When the built-in electric field increases,we find that the bulk states are compressed, and the original dispersion relation of edge modes becomes a linear intersection, as shown in Fig.4(c). The wave-function moduli of the two selected points are shown in Fig. 4(d), which are indeed polarized at the boundaries. Besides,we reproduce the results very well by first-principles calculations for doping, see supplement material V.

    From the response of the biphenylene nanoribbon to the built-in electric field,we can see that the voltage strength has a powerful and effective effect on the system. We then return to a more systematic discussion about the 2D graphene nanoribbon withN=4. We integrate over a unit cell to obtain the potential by accumulating the built-in electric field,guaranteed not to be canceled. It is worth noting that here each unit cell of the nanoribbon is doped, which is different from the form of constructing an electric field at both ends of a nanoribbon. We can move the position of the B atoms to adjust the distribution and magnitude of the built-in electric field,and obtain their band structures shown Figs.5(a)and 5(b). As the field is changed, the concurrence of the dispersion curves of the two edge modes decreases and becomes linear at the intersection. Under the built-in electric field,the original space inversion symmetry is broken,and the intrinsic topological polarization property will not be protected. The built-in electric field caused by doping modifies the original bulk polarization.From this, we can make the edge localized states disappear or degenerate by setting the form of the built-in electric field,as shown in Fig. 5(c). With intrinsic polarization, the edge modes of the nanoribbon will be regulated by the built-in electric field. For the discussion of the built-in electric field, rich energy spectrum and polarization properties are exhibited. A more detailed discussion will be provided in supplement material V.

    Fig.4. (a)The band structures of the biphenyl network under transverse electric fields of 0 and 0.2 V/?A. (b)The dispersion relation of doping B and N atoms at both ends of the nanoribbon. (c)Band structure at high doping rate. (d)Wave-function moduli corresponding to D3 and D4 in panel(c).

    Fig.5. (a),(b)Band structures under two different built-in electric fields,where the doping positions of B and N atoms are shown in the upper left corners. (c)Band structure with the total potential of per unit cell being zero.

    4. Conclusions

    In summary,through the theoretical researches above,we have constructed a series of two-dimensional materials in the form of polyphenylene networks. The 3prule for these topological polyphenylene networks has been found: when the remainder of 3 for the number of benzene rings in each unit cell is 1, the system is a topological phase protected byC2space symmetry, accompanied by the Dirac point. The reliability and robustness of the 3prule have been verified by firstprinciples calculations. For the bulk–edge correspondence of the quasi one-dimensional nanoribbons of the topological 2D graphenes,we have further analyzed the two kinds of topological edge states. Meanwhile,through the tight-binding model,we have predicted that the bulk bandgap can be opened by doping B and N atoms, which is also verified by first-principles calculations. By adjusting the strength of the built-in electric field, the dispersion relations of the boundary modes become linearly intersecting Dirac shape. Our results suggest a strategy for searching carbon allotropes with topological properties, and an efficient approach for the experimental modulation and observation of space-inversion symmetry-induced edge states.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12074156 and 12164023)and the Yunnan Local College Applied Basic Research Projects(Grant No.2021Y710).

    猜你喜歡
    金國(guó)
    岳元帥看馬識(shí)敵情
    心力衰竭患者白細(xì)胞介素6、CRP表達(dá)水平與預(yù)后的相關(guān)性探討
    MULTIPLICITY OF POSITIVE SOLUTIONS FOR A NONLOCAL ELLIPTIC PROBLEM INVOLVING CRITICAL SOBOLEV-HARDY EXPONENTS AND CONCAVE-CONVEX NONLINEARITIES *
    淺析金國(guó)少數(shù)民族包裝設(shè)計(jì)的特點(diǎn)
    幼兒教育·父母孩子版(2017年7期)2017-10-12 00:16:33
    趙金國(guó) 挑戰(zhàn)自我擔(dān)重任
    北方人(2017年10期)2017-07-03 14:07:20
    洪邁的“擺頭”
    鋒刃
    龍舟賽
    海峽影藝(2012年1期)2012-11-30 08:17:02
    云南金國(guó)農(nóng)資開(kāi)進(jìn)嵩明縣
    中国国产av一级| 亚洲欧美精品专区久久| 国内精品美女久久久久久| 国产极品精品免费视频能看的| 国产高潮美女av| 久久亚洲精品不卡| 久久久精品欧美日韩精品| 日本一二三区视频观看| 国产av一区在线观看免费| 日日摸夜夜添夜夜添av毛片| av在线观看视频网站免费| 久久久成人免费电影| 亚洲精品国产成人久久av| 国产亚洲av嫩草精品影院| 中文字幕制服av| 亚洲丝袜综合中文字幕| 国产午夜福利久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 日韩 亚洲 欧美在线| 国产在视频线在精品| 一级爰片在线观看| 免费看av在线观看网站| 亚洲欧美成人综合另类久久久 | 国产高清有码在线观看视频| 中国国产av一级| 亚洲精品影视一区二区三区av| 男女视频在线观看网站免费| 91久久精品国产一区二区三区| 国产精品日韩av在线免费观看| 亚洲精品成人久久久久久| 久久99蜜桃精品久久| 成人亚洲欧美一区二区av| 色5月婷婷丁香| 高清在线视频一区二区三区 | 国产精华一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 一夜夜www| 日韩制服骚丝袜av| 精品人妻视频免费看| 欧美日韩在线观看h| 人妻夜夜爽99麻豆av| 亚洲经典国产精华液单| 日韩视频在线欧美| 欧美色视频一区免费| videossex国产| 国语对白做爰xxxⅹ性视频网站| 色播亚洲综合网| 午夜免费激情av| 免费大片18禁| 高清av免费在线| 国产精品三级大全| 亚州av有码| 亚洲精品国产成人久久av| 在线观看美女被高潮喷水网站| 毛片一级片免费看久久久久| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 嘟嘟电影网在线观看| 国产在视频线在精品| 赤兔流量卡办理| h日本视频在线播放| 亚洲av日韩在线播放| 亚洲精品日韩av片在线观看| 老女人水多毛片| 日本色播在线视频| 色噜噜av男人的天堂激情| 在线播放国产精品三级| 色尼玛亚洲综合影院| 国产精华一区二区三区| 免费在线观看成人毛片| 建设人人有责人人尽责人人享有的 | 在线观看一区二区三区| 搞女人的毛片| 男人舔奶头视频| 天堂√8在线中文| 欧美日韩一区二区视频在线观看视频在线 | 久久人妻熟女aⅴ| 亚洲av成人精品一二三区| 午夜福利在线观看免费完整高清在| 男人舔女人的私密视频| 亚洲高清免费不卡视频| 视频中文字幕在线观看| 日韩一本色道免费dvd| 满18在线观看网站| 欧美激情 高清一区二区三区| 成年女人在线观看亚洲视频| 国产伦理片在线播放av一区| 美女xxoo啪啪120秒动态图| 一区在线观看完整版| 香蕉丝袜av| 一级,二级,三级黄色视频| 精品福利永久在线观看| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区| 欧美另类一区| 黄片播放在线免费| 亚洲欧美日韩卡通动漫| 国产精品女同一区二区软件| 在线观看美女被高潮喷水网站| 97在线视频观看| 国产高清国产精品国产三级| 国产精品秋霞免费鲁丝片| 大香蕉久久成人网| 香蕉丝袜av| 国产免费福利视频在线观看| 精品熟女少妇av免费看| 黄色配什么色好看| 看免费成人av毛片| 免费看光身美女| 久久久久精品人妻al黑| 国产av一区二区精品久久| 最近手机中文字幕大全| 日韩熟女老妇一区二区性免费视频| 亚洲情色 制服丝袜| 亚洲精品,欧美精品| 亚洲av中文av极速乱| 国产色婷婷99| 国产日韩欧美亚洲二区| 高清欧美精品videossex| 免费大片黄手机在线观看| 成人国语在线视频| 久久综合国产亚洲精品| 亚洲av免费高清在线观看| a级毛片在线看网站| 99久久人妻综合| 91aial.com中文字幕在线观看| 精品国产一区二区三区四区第35| 9191精品国产免费久久| 中文字幕另类日韩欧美亚洲嫩草| 大片电影免费在线观看免费| 久久精品人人爽人人爽视色| 亚洲美女黄色视频免费看| 丝袜脚勾引网站| h视频一区二区三区| 22中文网久久字幕| 99久久综合免费| 亚洲欧洲国产日韩| 久久久久精品人妻al黑| 9热在线视频观看99| 美女福利国产在线| 女人被躁到高潮嗷嗷叫费观| 亚洲四区av| 久久久久精品久久久久真实原创| 美女主播在线视频| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 最黄视频免费看| 亚洲精品视频女| 香蕉丝袜av| 精品一品国产午夜福利视频| 51国产日韩欧美| av福利片在线| 韩国精品一区二区三区 | 国产乱来视频区| 女人久久www免费人成看片| 又黄又粗又硬又大视频| 大香蕉久久成人网| 久久精品国产a三级三级三级| 日韩成人av中文字幕在线观看| 亚洲精品乱码久久久久久按摩| 多毛熟女@视频| 亚洲国产成人一精品久久久| 成人毛片a级毛片在线播放| 国产在线视频一区二区| 亚洲在久久综合| 亚洲欧美成人精品一区二区| 亚洲欧美一区二区三区国产| 多毛熟女@视频| 啦啦啦在线观看免费高清www| 亚洲av.av天堂| 天堂俺去俺来也www色官网| 国国产精品蜜臀av免费| 在线观看免费日韩欧美大片| 色网站视频免费| 黄色 视频免费看| 亚洲精品456在线播放app| 在线免费观看不下载黄p国产| 亚洲av男天堂| 亚洲欧洲国产日韩| 99热这里只有是精品在线观看| 久久久久精品性色| 久久亚洲国产成人精品v| av国产久精品久网站免费入址| 久久99蜜桃精品久久| 亚洲国产欧美日韩在线播放| 国产在视频线精品| 最新的欧美精品一区二区| 在现免费观看毛片| 亚洲精品久久久久久婷婷小说| 精品人妻熟女毛片av久久网站| 婷婷成人精品国产| 亚洲国产av影院在线观看| 亚洲精华国产精华液的使用体验| 乱码一卡2卡4卡精品| 国产亚洲欧美精品永久| 青春草亚洲视频在线观看| 久久久精品94久久精品| 亚洲国产欧美在线一区| av一本久久久久| 高清不卡的av网站| 色婷婷av一区二区三区视频| 91国产中文字幕| 乱码一卡2卡4卡精品| 欧美 日韩 精品 国产| 香蕉精品网在线| 久久午夜福利片| 久久午夜福利片| 成人亚洲欧美一区二区av| 夫妻性生交免费视频一级片| 日本黄色日本黄色录像| www日本在线高清视频| 国产黄色视频一区二区在线观看| 久久青草综合色| 国产精品成人在线| 国产有黄有色有爽视频| 国产乱来视频区| av国产久精品久网站免费入址| 午夜91福利影院| 大片电影免费在线观看免费| 色哟哟·www| av福利片在线| 两性夫妻黄色片 | 日本爱情动作片www.在线观看| 亚洲人成77777在线视频| 欧美 日韩 精品 国产| 99久久人妻综合| 美女xxoo啪啪120秒动态图| 青春草亚洲视频在线观看| 两个人看的免费小视频| 亚洲欧洲国产日韩| 国产激情久久老熟女| 涩涩av久久男人的天堂| 两个人免费观看高清视频| 国产成人一区二区在线| 精品人妻熟女毛片av久久网站| 亚洲中文av在线| 18禁在线无遮挡免费观看视频| 日本av手机在线免费观看| 国产色爽女视频免费观看| av女优亚洲男人天堂| 国产精品成人在线| 亚洲国产av影院在线观看| 亚洲av综合色区一区| 国产一区二区在线观看av| 精品国产乱码久久久久久小说| 如日韩欧美国产精品一区二区三区| 卡戴珊不雅视频在线播放| 亚洲熟女精品中文字幕| 久久女婷五月综合色啪小说| 亚洲国产欧美日韩在线播放| 欧美3d第一页| 看免费成人av毛片| 一级黄片播放器| 自拍欧美九色日韩亚洲蝌蚪91| 精品熟女少妇av免费看| 人成视频在线观看免费观看| 人妻一区二区av| 国产精品99久久99久久久不卡 | 999精品在线视频| 亚洲天堂av无毛| 国产在线免费精品| av有码第一页| 精品人妻熟女毛片av久久网站| 80岁老熟妇乱子伦牲交| 黄色毛片三级朝国网站| 波野结衣二区三区在线| 国产一区二区三区综合在线观看 | 黄色配什么色好看| 色网站视频免费| 一区二区日韩欧美中文字幕 | 亚洲欧美成人综合另类久久久| 亚洲av.av天堂| 久久av网站| 亚洲精品国产av成人精品| 亚洲欧美成人综合另类久久久| 国产片内射在线| 国产熟女午夜一区二区三区| 制服诱惑二区| 日韩av不卡免费在线播放| 五月伊人婷婷丁香| xxxhd国产人妻xxx| 国产淫语在线视频| 国产成人欧美| 国产亚洲一区二区精品| 日本av手机在线免费观看| 国产男人的电影天堂91| 成人影院久久| 91国产中文字幕| 国产午夜精品一二区理论片| 国产在视频线精品| 丰满乱子伦码专区| 人妻一区二区av| 亚洲国产精品专区欧美| 99精国产麻豆久久婷婷| 黄片播放在线免费| 国产亚洲精品第一综合不卡 | 色吧在线观看| av不卡在线播放| 色视频在线一区二区三区| 精品人妻偷拍中文字幕| 超碰97精品在线观看| 免费黄频网站在线观看国产| 欧美国产精品一级二级三级| 有码 亚洲区| 国产一区亚洲一区在线观看| 中国国产av一级| 黄色怎么调成土黄色| 亚洲,一卡二卡三卡| 两个人看的免费小视频| av天堂久久9| 91在线精品国自产拍蜜月| 黑丝袜美女国产一区| 日韩欧美一区视频在线观看| 十八禁高潮呻吟视频| 亚洲四区av| 草草在线视频免费看| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 2021少妇久久久久久久久久久| 国产在视频线精品| 18禁在线无遮挡免费观看视频| 天美传媒精品一区二区| 观看av在线不卡| 国产一区有黄有色的免费视频| 日韩中字成人| 大陆偷拍与自拍| 男女边摸边吃奶| 成人黄色视频免费在线看| 亚洲精品色激情综合| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久影院| 精品久久国产蜜桃| 国产精品一区二区在线不卡| 亚洲精品第二区| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 99热这里只有是精品在线观看| 少妇人妻久久综合中文| 搡老乐熟女国产| 黑人猛操日本美女一级片| 激情五月婷婷亚洲| 一级a做视频免费观看| 日韩伦理黄色片| 国产亚洲午夜精品一区二区久久| 日韩一区二区三区影片| 成年av动漫网址| 久热这里只有精品99| 男女边摸边吃奶| 午夜福利,免费看| 九色成人免费人妻av| 在线 av 中文字幕| 久久亚洲国产成人精品v| 国产色婷婷99| 日韩成人伦理影院| 天堂中文最新版在线下载| www.色视频.com| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| 两性夫妻黄色片 | 久久精品国产亚洲av天美| av在线app专区| 久久精品久久久久久久性| 在线观看三级黄色| 观看美女的网站| 国产1区2区3区精品| 欧美性感艳星| 久久久久久伊人网av| 亚洲一码二码三码区别大吗| 国国产精品蜜臀av免费| 免费看不卡的av| 久久久国产精品麻豆| 精品人妻偷拍中文字幕| 久久久久久人妻| 七月丁香在线播放| 91国产中文字幕| 伦理电影免费视频| 日本与韩国留学比较| 黄色配什么色好看| 精品国产露脸久久av麻豆| 91精品三级在线观看| 青春草视频在线免费观看| 18+在线观看网站| 亚洲欧洲日产国产| 日本色播在线视频| 岛国毛片在线播放| 18在线观看网站| 日韩大片免费观看网站| 99久久综合免费| 精品亚洲成a人片在线观看| 大香蕉久久网| 日韩人妻精品一区2区三区| 国产麻豆69| 国产麻豆69| 久久久久精品性色| videos熟女内射| 亚洲在久久综合| 亚洲中文av在线| 秋霞伦理黄片| 亚洲国产日韩一区二区| 天堂中文最新版在线下载| 亚洲熟女精品中文字幕| 国产亚洲午夜精品一区二区久久| 欧美日韩视频高清一区二区三区二| 欧美国产精品va在线观看不卡| 91在线精品国自产拍蜜月| 精品一区在线观看国产| 久久99热这里只频精品6学生| 综合色丁香网| 在线免费观看不下载黄p国产| 涩涩av久久男人的天堂| 高清视频免费观看一区二区| 秋霞伦理黄片| 国产成人一区二区在线| 伦理电影大哥的女人| 中文字幕另类日韩欧美亚洲嫩草| 伊人亚洲综合成人网| 久久这里只有精品19| 在线观看美女被高潮喷水网站| 22中文网久久字幕| 欧美激情极品国产一区二区三区 | 91aial.com中文字幕在线观看| 国产精品欧美亚洲77777| 嫩草影院入口| 久久国内精品自在自线图片| 99热国产这里只有精品6| 免费观看无遮挡的男女| 精品亚洲乱码少妇综合久久| 18在线观看网站| 国产精品三级大全| 一区二区三区乱码不卡18| 成人综合一区亚洲| 亚洲欧美精品自产自拍| 亚洲精品色激情综合| 美女视频免费永久观看网站| 亚洲精品美女久久av网站| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 十八禁网站网址无遮挡| 国产精品国产三级国产专区5o| 国产又爽黄色视频| 国产精品一国产av| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 国产精品 国内视频| 久久久久久久精品精品| 日韩在线高清观看一区二区三区| 国产熟女午夜一区二区三区| 老司机影院成人| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 国产一级毛片在线| 成人免费观看视频高清| 青春草亚洲视频在线观看| 国产成人aa在线观看| 亚洲av电影在线进入| 国产免费视频播放在线视频| 亚洲性久久影院| www.熟女人妻精品国产 | 国产欧美日韩综合在线一区二区| 亚洲国产精品专区欧美| www.熟女人妻精品国产 | 久久精品久久久久久久性| 亚洲av欧美aⅴ国产| 国产在视频线精品| 免费高清在线观看日韩| 中文字幕av电影在线播放| 免费在线观看完整版高清| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲 | 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 综合色丁香网| 国产又爽黄色视频| 十八禁网站网址无遮挡| 哪个播放器可以免费观看大片| 日本av免费视频播放| 青春草亚洲视频在线观看| 91午夜精品亚洲一区二区三区| www.av在线官网国产| 国产熟女欧美一区二区| 久久久国产精品麻豆| 亚洲av电影在线进入| 精品国产乱码久久久久久小说| 我的女老师完整版在线观看| 午夜免费观看性视频| 日韩视频在线欧美| 99re6热这里在线精品视频| 91国产中文字幕| av一本久久久久| 97人妻天天添夜夜摸| 久久久a久久爽久久v久久| 国产毛片在线视频| 久久国产精品大桥未久av| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 免费看av在线观看网站| 亚洲精品美女久久久久99蜜臀 | 国产男女超爽视频在线观看| 亚洲国产av新网站| 18在线观看网站| 国产精品免费大片| 一级,二级,三级黄色视频| 久久久久国产网址| 狠狠婷婷综合久久久久久88av| www.av在线官网国产| av网站免费在线观看视频| 精品国产乱码久久久久久小说| 中文字幕av电影在线播放| 免费看av在线观看网站| 亚洲四区av| 夜夜骑夜夜射夜夜干| 亚洲三级黄色毛片| 人成视频在线观看免费观看| videosex国产| 日韩一本色道免费dvd| 日韩精品有码人妻一区| 青春草亚洲视频在线观看| 99久国产av精品国产电影| 男女边吃奶边做爰视频| 亚洲精品成人av观看孕妇| 亚洲第一av免费看| 欧美xxⅹ黑人| 国产精品人妻久久久影院| 久久精品aⅴ一区二区三区四区 | 精品一区二区三区四区五区乱码 | 制服诱惑二区| 亚洲,一卡二卡三卡| 老熟女久久久| 亚洲精品色激情综合| 天堂8中文在线网| 老熟女久久久| 一级片免费观看大全| 国产福利在线免费观看视频| 十八禁网站网址无遮挡| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 精品久久久精品久久久| 男女无遮挡免费网站观看| 男女无遮挡免费网站观看| 女性生殖器流出的白浆| 久久久国产欧美日韩av| 免费少妇av软件| 国产永久视频网站| 中文欧美无线码| 国产成人av激情在线播放| 国产激情久久老熟女| 桃花免费在线播放| 欧美精品av麻豆av| 天堂俺去俺来也www色官网| 91成人精品电影| 一区二区三区精品91| 亚洲欧美成人综合另类久久久| 亚洲 欧美一区二区三区| 日本91视频免费播放| 一区二区三区精品91| 丰满饥渴人妻一区二区三| 久久久精品免费免费高清| 日韩av不卡免费在线播放| 一级毛片电影观看| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av新网站| 国国产精品蜜臀av免费| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 亚洲国产欧美在线一区| 999精品在线视频| 欧美成人午夜精品| 久久午夜福利片| 国产黄色视频一区二区在线观看| 中国美白少妇内射xxxbb| 亚洲天堂av无毛| 午夜91福利影院| 九草在线视频观看| 女人精品久久久久毛片| 大香蕉97超碰在线| 久久综合国产亚洲精品| 免费看av在线观看网站| 中文字幕制服av| 成人免费观看视频高清| 午夜久久久在线观看| 亚洲av综合色区一区| av黄色大香蕉| 男的添女的下面高潮视频| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 亚洲精品视频女| 免费看不卡的av| 秋霞伦理黄片| 十八禁网站网址无遮挡| 国产欧美另类精品又又久久亚洲欧美| 久久影院123| 看免费av毛片| 免费看不卡的av| 亚洲国产欧美日韩在线播放| 国产成人午夜福利电影在线观看| 亚洲色图 男人天堂 中文字幕 | 少妇精品久久久久久久| 如何舔出高潮| 母亲3免费完整高清在线观看 | 国产男人的电影天堂91| 丝袜美足系列| 亚洲国产精品成人久久小说| 爱豆传媒免费全集在线观看| 亚洲国产欧美日韩在线播放| 三上悠亚av全集在线观看| 欧美老熟妇乱子伦牲交| 亚洲天堂av无毛| 观看美女的网站| 香蕉国产在线看| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 在线免费观看不下载黄p国产| 亚洲国产日韩一区二区|