• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-induced stable structures and physical properties of Sr–Ge system

    2023-02-20 13:15:30ShuaiHan韓帥ShuaiDuan段帥YunXianLiu劉云仙ChaoWang王超XinChen陳欣HaiRuiSun孫海瑞andXiaoBingLiu劉曉兵
    Chinese Physics B 2023年1期
    關(guān)鍵詞:陳欣王超海瑞

    Shuai Han(韓帥), Shuai Duan(段帥), Yun-Xian Liu(劉云仙),2,?, Chao Wang(王超),2,Xin Chen(陳欣),2, Hai-Rui Sun(孫海瑞),2, and Xiao-Bing Liu(劉曉兵),2,?

    1Laboratory of High Pressure Physics and Material Science,School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Advanced Research Institute of Multidisciplinary Sciences,Qufu Normal University,Qufu 273165,China

    Keywords: high pressure, first-principle calculation, germanium–strontium compounds, superconductivity,

    1. Introduction

    The electronic configuration is an essential quality that determines the material function, while the valence election distributions are influenced by the chemical composition and atomic organization. Compounds formed by the group IV elements with electropositive partners of the alkaline-, alkaline earth-, and rare earth metals exhibit a rich variety of binary systems with semiconductors or metals. In these compounds,tetrel atoms can form different motifs due to rather atypical interactions. Such a rich structural diversity naturally brings interesting physical phenomena and properties, which can be used in solar-cells,thermoelectricity,and optoelectronics.[1,2]For example,an excellentZTvalue=1.1 was achieved in the n-type Mg2(Si,Sn)system under ambient condition,and they can be seen as promising thermoelectric materials.[3]Both BaGe2and SrGe2show high optical absorption coefficients(7.5×104cm-1and 7.8×104cm-1athω=1.5 eV),indicating that they are ideal solar cell candidates.[4]

    Pressure has become a useful tool to expand the variety of materials, and modify accessible structure patterns with excellent properties. In recent years, novel stoichiometries with superconductivity were studied in compounds constituted by metals and group IV elements associated with the wellknown effect of pressure. Some lanthanide metal germanides with new compositions(LaGe3,LaGe5,ScGe2,YGe2,YGe3,LuGe2, LuGe3) were synthesized under high-pressure and high-temperature conditions (HPHT). They all exhibit superconductivity with critical temperatureTc=1.3 K–7.4 K.[5–11]For alkali and alkaline earth metal germanides,they also show novel compositions and properties.For exapmle,a new BaGe3stoichiometric structure was reported by Castilloet al.,with aTc=6.5 K.[12]Mg–Ge was studied under pressure, in which novelCmcmMg2Ge andP4/mmmMgGe structures are superconductors withTcof 10.3 K and 9.07 K at 5 GPa.[13]Moreover,in these compounds(alkaline metal,alkaline earth metal and rare earth metal germanides), Ge atoms form different motifs, such as Ge2dumbbells, regular triangular Ge3cluster units, Ge4tetrahedron, Ge5square-pyramidal units, edgesharing Ge6rings,Ge6octahedrons,Ge–Ge zigzag chains,and Ge cages. These structural polymorphism features completely lead to different bonding arrangements, and could bring various properties.

    Owing to a large electronegativity between Sr and Ge atoms, Sr–Ge system can also have structural diversity and rich properties. As is well known, some compositions (such as Sr2Ge, SrGe2-δ, SrGe2, SrGe3, SrGe6-δ) of Sr–Ge have been studied and synthesized under pressure and show excellent properties.[4,14–18]For instance,I4/mmmSrGe3phase was synthesized at 13 GPa and 1100°C.[14]It showed superconductivity withTc= 6.0 K. SrGe2-δwas obtained at 2 GPa and 900°C, which is a superconductor withTcabout 7.3 K.[15]Furthermore,PnmaSrGe2, a semiconductor with good optical property, was synthesized by the Ar arc-melting technique.[4]However, some problems remain to be further solved: (i) whether the new Sr–Ge compounds are stable at moderate conditions;(ii)the ground-state structures and properties of Sr–Ge system under high pressure; and (iii) the unit of germanium in the Sr–Ge compounds.

    In this work, the Sr–Ge binary system under highpressure is systematically studied by using the evolutionary algorithm Universal Structure Predictor: Evolutionary Xtallography(USPEX),which has been successfully used in other systems.[19–23]Six stoichimetric structures (Sr3Ge, Sr2Ge,SrGe,SrGe2,SrGe3,and SrGe4)are predicted. In these compounds, Ge atoms present diverse motifs forming covalent boding. Metallic structures exhibit superconductivity withTcof 0.23 K–8.94 K.SemiconductorPnmaSr2Ge shows a high optical absorption coefficient (α(ω) = 1.05×105cm-1at 1.5 eV).The p-type Sr2Ge and the n-type SrGe2exhibit maximalZTvalues of about 0.82 and 1.55 along theydirection at 500 K,respectively.

    2. Computational details

    In the present work, we used the evolutionary method USPEX[24–26]to search for the thermodynamically stable candidates of Sr–Ge system under 0 GPa–200 GPa. Structural optimization and calculation of electronic properties were calculated by the Viennaab initiosimulation package(VASP)[27]based on the density functional theory(DFT)framework. The generalized gradient approximation of the Perdew–Burke–Ernzerhof (GGA-PBE)[28]was used to ascertain the exchange correlation functional. And projectoraugmented wave (PAW)[29]with 4s24p2and 4s24p65s2electrons was used as valence electrons for Ge and Sr atoms, respectively. A cutoff energy of 500 eV and ak-point grid spacing of 2π×0.03 ?A-1were used to ensure a good convergence of enthalpy. Phonon calculations were conducted by exercising a supercell technique[30]through using the finite displacement method as accomplished in the PHONOPY code.[31]The integrated crystal orbital Hamilton populations (-ICOHPs)were calculated by LOBSTER package.[32]The electron localization function(ELF)[33]and Bader charge analysis[34–36]were used to analyze the chemical bonds and the electronic charge transfer. Molecular dynamics (MD) simulations were performed in the fixed particle number, volume, and temperature(NVT)ensemble by using the Nose–Hoover thermostat,lasting 9 ps in time steps of 1.5 fs.[37]Quantum ESPRESSO software was used to calculate the electron–phonon coupling(EPC) parameters and phonon dispersion curves.[38]The kinetic energy cutoff was chosen to be 90 Ry. TheTcwas estimated from Allen–Dynes-modified McMillan[39]formula The absorption coefficientα(ω) was obtained directly from the calculated complex dielectric functionε(ω) =ε1(ω)+iε2(ω)(whereε1is the real part andε2is the imaginary part ofε).[40]Based on a well-converged electronic structure within the dense Monkhorst–Packk-point spacing of 0.05 ?A-1, the transport properties were calculated by BoltzTraP program.[41]

    3. Results and discussion

    3.1. Phase stability of Sr–Ge compounds under pressure

    To find the stable stichiometric structures,we extensively search for each member of SrxGey(x=1–3,y=1;x=1,y=2–4) with 1–4 formula units at 0 K, and 0, 50, 100, 150,and 200 GPa. Then the formation enthalpy (ΔHf) of Sr–Ge system is provided at corresponding pressure. The ΔHfis calculated according to the following equation:

    Fig.1. (a) Relative enthalpies of formation per atom with respect to elemental Ge and Sr for predicted Sr–Ge system at 0, 5, 50, 150, and 200 GPa,with stable compounds represented by solid symbols and connected by solid line(convex hull). (b)Pressure–composition phase diagram of stable Sr–Ge system. Fm-3m Sr and Fd-3m,Cmca,Fm-3m Ge are adopted as reference structures.

    Because of the formation enthalpies,a convex hull can be created as shown in Fig.1(a). In general, the thermodynamically stable phases are located on the convex hull, which are anticipated to be synthesized experimentally. Whereas the unstable or metastable phases are above the convex hull(dotted line),and will decompose into the pure elements and/or compounds located on the hull. At 0 GPa,only Sr2Ge,SrGe,and SrGe2are located on the convex hull,which are stable against decomposition. And the already knownPnmaSr2Ge,CmcmSrGe, andPnmaSrGe2are reproduced, which manifests the accuracy of our results. As pressure increases up to 5 GPa,besides the above three stoichiometric structures that remain on the hull, SrGe3emerges on the convex hull. At 50 GPa,the whole compositions stay on the hull, indicating that they are thermodynamically stable. At 100 GPa and 150 GPa, except that SrGe decomposes into Sr2Ge and SrGe2,all the other compositions fall on the convex hull. At 200 GPa, there are four compositions (Sr2Ge, SrGe2, SrGe3, and SrGe4) sitting on the hull. The pressure–composition phase diagram of Sr–Ge system is given in Fig.1(b).

    3.2. Structures and stabilities of Sr–Ge compounds

    Besides the known candidate structures (Fig. S1) which are consistent with our predicted results,[4,14,42,43]some new structures were found as shown in Fig. 2. We see that in Sr3Ge and Sr2Ge(space groupPnma), germanium atoms exist in isolated atomic form, while in other phases Ge atoms present distinct units. For Sr3Ge, an orthorhombicPmmn(Fig.2(a))is predicted, which is stable in a pressure range of 27 GPa–156 GPa. The “isolated” Ge atoms occupy the crystallographic 2bsites, while Sr atoms hold 2aand 4fsites.Figure 2(b) gives the new high-pressure phase ofP6/mmmSr2Ge, it remains stable in 46 GPa–200 GPa, in which the Ge atoms form Ge–Ge.Ge linear chains with the shortest Ge–Ge distance of 2.8374 ?A. For SrGe stoichiometeric structure,a new phase withI4/mmmsymmetry (Fig. 2(c)) is predicted,where Ge atoms exist in the Ge4square units. And it keeps stable from 12 GPa to 88 GPa. Turning to SrGe2,a high phaseP63/mmc(Fig. 2(d)) is found to be stable in a pressure range from 12 GPa to 200 GPa. It is composed of Sr atoms, Ge3trigonal units and the Ge5hexahedrons, with three types of Ge–Ge distances,namely 2.330,2.448,2.454 ?A,respectively.TheP63/mmcandPm-3mphases of SrGe3are also given in Figs. 2(e) and 2(f), and they are stable in a pressure range of 3 GPa–74 GPa and 74 GPa–200 GPa, respectively. For the former,it contains Ge3equilateral triangles with a side length of 2.596 ?A, and each layer of Ge triangles is twisted by 60°,which is similar to the scenarios of BaGe3and EuGe3.[44,45]For the latter, each Ge12cage contains an Sr atom, and the shortest distance between Ge and Ge is 2.630 ?A. Turning to SrGe4,the predicted orthorhombicImma(Fig.2(g))consists of Ge8rings,Ge atoms and Sr atoms and keeps stable at pressures in a range of 45 GPa–95 GPa. Then it transforms into a monoclinic structure withC2/msymmetry (Fig. 2(h)), in which there are Ge3triangles,Ge6hexagons,Ge and Sr atoms.As seen in the new predicted Sr–Ge compounds,the Ge atoms’arrangement reveals multiple structure evolution behavior with the increase of germanium content, from isolated anions in Sr3Ge, chains in Sr2Ge, square units in SrGe, trigonal units and hexahedrons in SrGe2,cages in SrGe3,and hexagons and Ge8rings in SrGe4. These distinct structural features can result in exotic properties. The detailed structural parameters can be obtained in Table S1.

    Fig.2. Crystal structures of Sr–Ge compounds. (a)Pmmn Sr3Ge,(b)P6/mmm Sr2Ge,(c)I4/mmm SrGe,(d)P63/mmc SrGe2,(e)P63/mmc SrGe3,(f)Pm-3mSrGe3,(g)Imma SrGe4,and(h)C2/mSrGe4 with large blue and small red balls representing Sr and Ge atoms,respectively.

    In order to determine whether the structure satisfies the dynamic stability condition, the phonon spectra and partial phonon density of states(PHDOS)of these structures are calculated. As shown in Fig.S2,no imaginary phonon frequency exists in the whole Brillouin zone, indicating that the above structures are dynamic stable under stable pressure. In addition, on the basis of PHDOS analysis, the motions of Ge and Sr cover almost all frequency regions, which may be caused by the approximate atomic mass of them.

    Moreover, the elastic constantsCijare essential for investigating the mechanical properties. The calculated elastic constantsCijof these Sr–Ge binary structures are listed in Table S3. These values satisfy the Born–Huang criterion,[46,47]indicating that they are all mechanically stable under pressure.

    3.3. Electronic properties and chemical bonds of Sr–Ge compounds

    In order to understand the electronic properties of Sr–Ge compounds, we calculate the electronic band structures and projected density of states (PDOS). From Fig. S3, we see thatPnmaSr2Ge andPnmaSrGe2are semiconductors,in which the band gaps are located almost in the center of Brillouin zone. While the other structures show metallic behaviors with their valence bands and conduction bands overlap. In the following,we mainly focus on the metallic phases ofP6/mmmSr2Ge(Ge-rich compound),P63/mmcSrGe3,andPm-3mSrGe3(Sr-rich compounds)because of their wide stable pressure ranges and different Ge motifs, as well as two semiconductors ofPnmaSr2Ge andPnmaSrGe2. The electron properties of the other predicted Sr–Ge compounds are given in the supplement materials.

    Fig.3. Calculated projected density of states (PDOS) of (a) P6/mmm Sr2Ge, (b) P63/mmc SrGe3, and (c) Pm-3mSrGe3. The electron localization function(ELF)plotted on(d)(–1–1 0)plane of P6/mmm Sr2Ge,(e)(0 0-1)plane of P63/mmc SrGe3,and(f)(0 0-1)plane of Pm-3m SrGe3. (g)Free energy as MD time at temperature of 1000 K and structure snapshots taken after equilibration of P6/mmm Sr2Ge.

    The calculated projected densities of states are shown in Fig. 3. ForP6/mmmSr2Ge andP63/mmcSrGe3,Pm-3mSrGe3, the states around the Fermi level are mainly composed of Sr-d and Ge-p orbitals with almost no Sr-s component, demonstrating that the 5s electrons of Sr are nearly transferred to the Ge unites. Then, the electron localization function (ELF) calculations are performed to study the bond nature. Generally, larger ELF values (>0.5) usually correspond to inner shell, lone pair electrons and covalent bonds,whereas the ionic and metallic bonds correspond to small ELF values(<0.5). The ELF calculations show that Ge–Ge bonds are covalent inP6/mmmSr2Ge andP63/mmcSrGe3,Pm-3mSrGe3(Figs. 3(d)–3(f)), while the Sr–Ge bonding is weakly ionic. The calculated projected crystal orbital Hamilton population(pCOHP)are shown in Fig.S6. We see that most of the states below the Fermi level correspond to Ge–Ge bonding,which sustains the existence of Ge–Ge covalent bonds within the Ge units.Bader charge analysis shows that charges transfer from Sr atoms to the Ge atoms as given in Table S2,supporting the above PDOS’s analyzing. In addition, first-principles molecular dynamics(MD)simulations are performed to verify their thermal stability at 600 K and 1000 K by using the NVT ensemble and Nose–Hoover thermostat. The MD time step is 1.5 fs,and we monitor the time evolution of free energy during the MD simulations as shown in Figs. 3(g) and S7. The free energy values reach equilibrium speedily and fluctuate near the equilibrium value with no structural reconstructions,which indicates that theP6/mmmSr2Ge andP63/mmcSrGe3,Pm-3mSrGe3remain stable at these temperatures.

    3.4. Superconductivity of Sr–Ge compounds

    To explore the possibility of phonon-mediated superconductivity in the predicted phases ofP6/mmmSr2Ge,P63/mmcSrGe3, andPm-3mSrGe3, we calculate the electron–phonon coupling (EPC) parameter (λ), the logarithmic mean phonon frequency (ωlog), the electron density of states at the Fermi level (N(Ef)), and the superconducting critical temperature(Tc). Figure 4(a)gives the calculated values ofλ,ωlog,N(Ef),andTcas a function of pressure forP6/mmmSr2Ge,to investigate the effect of pressure on superconductivity. The result shows that the calculatedTcvalue increases and then decreases with pressure increasing. As seen,the tendency ofλis similar toTcupon compression. Therefore,we think that the variation of theTcvalues with pressure may mainly be due to theλ. As is well known,the“softness”of phonon dispersion can result in strengthening EPC(λ). Then the phonon dispersion curves at different pressures are calculated, and the results are given in Figs.4b–4(e). It is found that theλis mainly form the contribution of low-frequency phonon modes,which is dominated by Sr atoms. In addition, we see that“softness”behavior occurs in low-frequency vibrations alongK →Hdirection from 50 GPa to 150 GPa,and then vanishes at 200 GPa,which leads to the increase/decrease inλwith pressure increasing.

    Fig.4. (a)Calculated values of λ, ωlog, N(Ef), and Tc as a function of pressure for P6/mmm Sr2Ge. P6/mmm Sr2Ge phonon dispersion curves at(b)50 GPa,(c)100 GPa,(d)150 GPa,and(e)200 GPa. Red circle on phonon dispersion curve represents the discrete electron–phonon coupling,electro–acoustic coupling parameters,and the size of red circle is proportional to the strength of electron–phonon coupling electro–acoustic coupling.

    Fig.5. Electron–phonon coupling parameters(λ),logarithmic average phonon frequency(ωlog),electronic density of states at the Fermi level(N(Ef))(states/spin/Ry/unit cell),and superconducting critical temperatures (Tc) for (a) P63/mmc XGe3 (X =Na, K, Rb, Sr, Ba) at 50 GPa and(b)Pm-3m MGe3 (M=Li,Na,K,Mg,Ca,Sr)at 100 GPa.

    Based on the fact thatP63/mmcSrGe3appears in other systems(BaGe3and EuGe3), as well as the cages forming inPm-3mSrGe3, we then construct some hypothetical models ofP63/mmc XGe3andPm-3m XGe3,whereXdenotes alkali metal elements and alkaline earth elements. The calculated phonon dispersion curves show thatP63/mmc XGe3(X=Na,K,Rb,Ba)andPm-3m MGe3(M=Li,Na,K,Mg,Ca)remain stable at different pressures (Fig. S8). Moreover, they all exhibit metallic feature(Fig.S9). To investigate their superconductivities, and the values ofλ,ωlog,N(Ef), andTcat different pressures are shown in Fig.5. It can be seen thatP63/mmcSrGe3andPm-3mNaGe3have highest values ofTcof 4.3 K and 2.3 K in theP63/mmc XGe3hypothetical model andPm-3m MGe3hypothetical model,respectively.Moreover,we find that for bothP63/mmc XGe3phase andPm-3m MGe3phase,theTcvalues are mainly influenced by the value ofλ. In other words,the bigger the value ofλ,the higher the temperatureTcis. For other predicted phases of Sr–Ge system, theλ,ωlog,N(Ef),andTcvalues are listed in Table S3.

    3.5. Potential optical and thermoelectric application of Pnma Sr2 Ge and Pnma SrGe2

    On the basis of the above discussion, we calculate the optical and thermoelectric properties ofPnmaSr2Ge andPnmaSrGe2. The fundamental band gap isEg=0.78 eV for Sr2Ge (Fig. S10) andEg=0.89 eV for SrGe2.[4]Extensive researches have been carried out in the past decades on metal germanides to investigate their optical properties,[4,48]such as SrGe2,BaGe2,Ca2Ge. We calculate the absorption coefficient of Sr2Ge with the help of HSE06 functional. It does not show any sizable anisotropy like some other metal germanides. As shown in Fig. S11, the average polarization-independent absorption ofPnmaSr2Ge isα(ω)=1.05×105cm-1at 1.5 eV.The large absorption coefficient reveals its better optical properties,indicating that thePnmaSr2Ge has a potential application prospect in solar-cells.

    Here, we illustrate the calculated band structures and electrical transport coefficients for thePnmaSr2Ge andPnmaSrGe2in Figs. 6 and S12–S14. Interestingly, the SrGe2exhibits a multi-valley conduction band structure near Fermi level, realizes high-valley degeneracy with small energy difference and possess more states for electrons to occupy and contribute to transport, which is of great help in improving thermoelectric performance. Furthermore,we can notice from the calculated partial DOS in Fig. 6 that the coupling between d state of Sr atom and p state of Ge atom in SrGe2is stronger than in Sr2Ge. Therefore, the SrGe2has a much steeper DOS for the bottom of the conduction band(CB)than pristine SrGe2,indicating a higher room-temperature Seebeck coefficient in SrGe2system.

    Fig.6. PBE functional calculated band structures and density of states for(a)Pnma Sr2Ge and(b)Pnma SrGe2. (c)and(d)PBE functional calculated Seebeck coefficient and electrical conductivity varying with carrier concentration in the y direction at 300 K for Pnma Sr2Ge and Pnma SrGe2,respectively.

    From the electronic structures discussed above,it can be seen from Fig. 6(c) that SrGe2exhibits the highest Seebeck coefficient along theydirection within electron doping, derived from the flat conduction band dispersions and sharp DOS near CBM as shown in Fig. 6(b). A high Seebeck coefficient can reach up to-230 μV/K with the electron doping of 1.03×1020cm-3at 300 K,roughly 4.65 times larger than the counterpart that Sr2Ge has. Forxdirection andzdirection,the Seebeck coefficient of n-type SrGe2is also much larger than that of Sr2Ge,as shown in Figs.S12(a)and S12(b). Moreover,we note that the SrGe2has great electrical conductivity,which is mainly attributed to their favorable electronic band structures,like multi-valley conduction band structures. Combined with the Seebeck coefficients discussed above,our current results indicate that the n-type SrGe2can have better thermoelectric performance than the Sr2Ge, particularly along theydirection.

    Based on the electrical transport coefficients discussed above, the thermoelectric performance can be quantitatively estimated from

    whereL0(=2.45×10-8WΩ/K2)is the Lorenz number. The lattice thermal conductivity with respect to scattering timeκL/τ=1014W·m-1·K-1·s-1is used. For the comprehensive analysis,the calculatedZTvalues forPnmaSr2Ge andPnmaSrGe2are shown in Table 1. We note that the n-type SrGe2has the uppermostZTvalue of 0.76 along theydirection at 300 K, distinctly larger than the highest value of 0.17 in ntype Sr2Ge. When temperature increases to 500 K, a higherZTvalue(1.55)can be obtained in n-type SrGe2,roughly 3.37 times larger than the counterpart of Sr2Ge.

    Table 1. Optimized ZT values of Pnma Sr2Ge and Pnma SrGe2 at 300 K and 500 K along x,y,and z directions.

    4. Conclusions

    In summary, we have reported the phase diagram, crystal structure and physical properties in Sr–Ge system at pressures ranging from 0 GPa to 200 GPa. We predict six stable compounds (Sr3Ge, Sr2Ge, SrGe, SrGe2, SrGe3, SrGe4)by first-principles calculations. Our results reveal that multiple Ge units in diverse structures(Ge2,Ge3,Ge4,Ge–Ge...Ge chains,Ge cage,etc.) can be formed by covalent bonds under high pressure conditions. Among them,most of Sr–Ge phases exhibit superconducting behaviors (Tc=0.23 K–8.94 K). A semiconducting structure ofPnmaSr2Ge shows a high optical absorption coefficientα(ω)=1.05×105cm-1at 1.5 eV.Most importantly, the p-type Sr2Ge and the n-type SrGe2exhibit maximalZTvalues of 0.82 and 1.55,respectively,along theydirection at 500 K,implying potential candidates serving as high-performance thermoelectrics.

    Acknowledgements

    Theoretical calculations were performed in the High Performance Computing Center(HPCC)of Qufu Normal University.

    Project supported by the National Natural Science Foundation of China(Grant Nos.52102335,11704220,11804184,11974208, and 11804185) and the Shandong Provincial Natural Science Foundation, China(Grant Nos.ZR2021MA050,ZR2017BA020, ZR2018PA010, ZR2019MA054, and ZR2017BA012).

    猜你喜歡
    陳欣王超海瑞
    王超美術(shù)作品
    陳欣運(yùn)用補(bǔ)腎益精法治療育齡期月經(jīng)過(guò)少腎虛證經(jīng)驗(yàn)
    “海瑞定理Ⅰ”的歷史性反思
    蛋白質(zhì)計(jì)算問(wèn)題歸納
    延伸小游戲
    愛(ài)心義賣(mài)
    生死連環(huán)計(jì)
    Three-Dimensional Planning of Arrival and Departure Route Network Based on Improved Ant-Colony Algorithm
    論海瑞的“廉名”傳播及歷史啟示
    MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
    自拍欧美九色日韩亚洲蝌蚪91 | 国产视频内射| 亚洲精品国产成人久久av| 精品人妻视频免费看| 国产极品天堂在线| 大香蕉久久网| 国产精品99久久久久久久久| 国产又色又爽无遮挡免| 涩涩av久久男人的天堂| 国产精品麻豆人妻色哟哟久久| 久久99热这里只有精品18| 免费大片黄手机在线观看| 日本-黄色视频高清免费观看| 亚洲欧美一区二区三区黑人 | 91久久精品电影网| 日韩av在线免费看完整版不卡| 久久99蜜桃精品久久| 在线观看免费视频网站a站| 激情五月婷婷亚洲| 国产日韩欧美亚洲二区| 国产一级毛片在线| 午夜精品国产一区二区电影| 久久久久久人妻| 久久这里有精品视频免费| 久久国产精品男人的天堂亚洲 | a级毛片免费高清观看在线播放| 各种免费的搞黄视频| 午夜激情久久久久久久| 我要看日韩黄色一级片| 久久青草综合色| 亚洲av免费高清在线观看| 女性被躁到高潮视频| 51国产日韩欧美| 欧美成人精品欧美一级黄| 日韩欧美 国产精品| 亚洲一区二区三区欧美精品| 国产精品无大码| 一本—道久久a久久精品蜜桃钙片| 91久久精品国产一区二区三区| 日韩三级伦理在线观看| 伦理电影免费视频| 国产男人的电影天堂91| 精品一区二区三卡| 在线观看免费视频网站a站| 在线观看免费视频网站a站| 久久久久久人妻| 尾随美女入室| 国产高清不卡午夜福利| 精华霜和精华液先用哪个| 成人特级av手机在线观看| 亚洲四区av| 一本一本综合久久| 秋霞在线观看毛片| 晚上一个人看的免费电影| 九九爱精品视频在线观看| 联通29元200g的流量卡| 欧美激情极品国产一区二区三区 | 日韩一本色道免费dvd| 久久久亚洲精品成人影院| 黄片无遮挡物在线观看| 久久人人爽人人爽人人片va| 亚洲内射少妇av| 天美传媒精品一区二区| 国产成人a∨麻豆精品| 久久久久网色| 国产精品蜜桃在线观看| 在线观看人妻少妇| 18+在线观看网站| 精品国产一区二区三区久久久樱花 | 国产精品久久久久久久久免| 精品少妇黑人巨大在线播放| 永久网站在线| 少妇的逼好多水| 中文乱码字字幕精品一区二区三区| 美女中出高潮动态图| 永久免费av网站大全| 亚州av有码| 国产亚洲精品久久久com| 少妇精品久久久久久久| 久久久亚洲精品成人影院| 日韩强制内射视频| 三级国产精品片| 中文资源天堂在线| 亚洲av中文av极速乱| 伦理电影免费视频| 久久久久久人妻| 夫妻性生交免费视频一级片| 七月丁香在线播放| 亚洲国产精品成人久久小说| 国产毛片在线视频| 欧美bdsm另类| 国语对白做爰xxxⅹ性视频网站| 国产 一区 欧美 日韩| 国产熟女欧美一区二区| 一级a做视频免费观看| 日韩 亚洲 欧美在线| 午夜免费男女啪啪视频观看| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 午夜视频国产福利| 看非洲黑人一级黄片| 在线观看免费高清a一片| 亚洲av在线观看美女高潮| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 99热网站在线观看| 中文乱码字字幕精品一区二区三区| 国产欧美日韩精品一区二区| av国产免费在线观看| 91精品伊人久久大香线蕉| 又爽又黄a免费视频| 免费观看在线日韩| 国产精品精品国产色婷婷| 一级av片app| 国产精品一区二区三区四区免费观看| xxx大片免费视频| 人妻少妇偷人精品九色| 岛国毛片在线播放| 国产亚洲91精品色在线| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 亚洲av.av天堂| 中文字幕精品免费在线观看视频 | 国产精品爽爽va在线观看网站| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 久久久成人免费电影| 亚洲av免费高清在线观看| 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 成人无遮挡网站| 日本欧美视频一区| 亚洲精品久久久久久婷婷小说| 校园人妻丝袜中文字幕| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 国产日韩欧美在线精品| 精品人妻视频免费看| 高清不卡的av网站| 一级毛片aaaaaa免费看小| freevideosex欧美| 最后的刺客免费高清国语| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 欧美xxxx黑人xx丫x性爽| 国产色爽女视频免费观看| 天天躁夜夜躁狠狠久久av| 视频中文字幕在线观看| 亚洲第一av免费看| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 亚洲av二区三区四区| 久久久久视频综合| 特大巨黑吊av在线直播| 午夜福利高清视频| 美女福利国产在线 | 26uuu在线亚洲综合色| 国产在视频线精品| 伦精品一区二区三区| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 亚洲人成网站在线观看播放| 欧美bdsm另类| 久久久色成人| 国产欧美亚洲国产| 搡女人真爽免费视频火全软件| 女性被躁到高潮视频| 中国美白少妇内射xxxbb| 精品国产三级普通话版| 在线免费观看不下载黄p国产| 欧美激情国产日韩精品一区| 一级片'在线观看视频| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 久久久久人妻精品一区果冻| 国产成人a区在线观看| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 午夜免费观看性视频| 亚洲成人中文字幕在线播放| 亚洲人与动物交配视频| 欧美区成人在线视频| 一级毛片电影观看| 老女人水多毛片| 国产精品国产三级专区第一集| 亚洲欧美日韩卡通动漫| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 嫩草影院入口| 麻豆成人av视频| 七月丁香在线播放| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 夜夜骑夜夜射夜夜干| 亚洲精品一二三| 日韩中字成人| 少妇人妻精品综合一区二区| 国产av码专区亚洲av| 激情五月婷婷亚洲| 一级爰片在线观看| 26uuu在线亚洲综合色| 国产淫片久久久久久久久| 在线精品无人区一区二区三 | 亚洲人成网站在线观看播放| 最近最新中文字幕免费大全7| 秋霞在线观看毛片| 男女免费视频国产| 国产成人a∨麻豆精品| 美女高潮的动态| 色网站视频免费| 舔av片在线| 精品亚洲成国产av| 午夜福利高清视频| 夜夜骑夜夜射夜夜干| 中文资源天堂在线| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 好男人视频免费观看在线| 亚洲人成网站在线观看播放| 国产一区亚洲一区在线观看| 欧美成人午夜免费资源| 国产真实伦视频高清在线观看| 欧美成人a在线观看| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 人妻少妇偷人精品九色| 久久人妻熟女aⅴ| 久久青草综合色| 成人美女网站在线观看视频| 国产乱人视频| 欧美一区二区亚洲| 一本久久精品| 国产精品女同一区二区软件| 国内精品宾馆在线| 国产免费又黄又爽又色| 黄色日韩在线| 久久久久精品久久久久真实原创| 欧美成人一区二区免费高清观看| 欧美成人午夜免费资源| 国产精品99久久久久久久久| av国产免费在线观看| av在线播放精品| 晚上一个人看的免费电影| 亚洲最大成人中文| 国产精品福利在线免费观看| 国产综合精华液| 性色av一级| 国产在线视频一区二区| 哪个播放器可以免费观看大片| 黄色怎么调成土黄色| 亚洲成人一二三区av| 国产成人freesex在线| 日韩伦理黄色片| 欧美xxxx黑人xx丫x性爽| 国产淫语在线视频| 国产精品偷伦视频观看了| 国产综合精华液| 久久精品熟女亚洲av麻豆精品| av免费观看日本| 国产成人aa在线观看| kizo精华| 免费播放大片免费观看视频在线观看| 男人爽女人下面视频在线观看| 久久精品熟女亚洲av麻豆精品| 久久久午夜欧美精品| 我要看黄色一级片免费的| 不卡视频在线观看欧美| 舔av片在线| 精品久久久噜噜| 成人国产麻豆网| 99热全是精品| 中文字幕av成人在线电影| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 亚洲色图综合在线观看| 麻豆成人av视频| 一级a做视频免费观看| 新久久久久国产一级毛片| 少妇精品久久久久久久| 久久久久精品久久久久真实原创| 亚洲av综合色区一区| www.av在线官网国产| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 高清视频免费观看一区二区| 亚洲伊人久久精品综合| 一级毛片我不卡| 老女人水多毛片| 永久网站在线| 久久影院123| 欧美 日韩 精品 国产| 久久精品国产亚洲av涩爱| 99热国产这里只有精品6| 国模一区二区三区四区视频| 成人综合一区亚洲| 中文字幕av成人在线电影| 激情 狠狠 欧美| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 五月玫瑰六月丁香| 亚洲欧美日韩另类电影网站 | 制服丝袜香蕉在线| 激情 狠狠 欧美| 亚洲图色成人| 久久久午夜欧美精品| 自拍欧美九色日韩亚洲蝌蚪91 | 91午夜精品亚洲一区二区三区| 亚洲熟女精品中文字幕| 久久97久久精品| 欧美97在线视频| 欧美日韩精品成人综合77777| 国产淫片久久久久久久久| 伦理电影大哥的女人| 色哟哟·www| 直男gayav资源| 亚洲精品视频女| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 中文字幕av成人在线电影| 综合色丁香网| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| 22中文网久久字幕| 久久久国产一区二区| 久久久久精品性色| 老女人水多毛片| 久久精品人妻少妇| 日本猛色少妇xxxxx猛交久久| 51国产日韩欧美| 成人高潮视频无遮挡免费网站| 日韩伦理黄色片| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 成人亚洲欧美一区二区av| www.色视频.com| 中文乱码字字幕精品一区二区三区| 国产欧美日韩精品一区二区| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 日韩,欧美,国产一区二区三区| 中文欧美无线码| 精品人妻熟女av久视频| 女人久久www免费人成看片| 大码成人一级视频| 国产精品久久久久久久久免| 中文天堂在线官网| 亚洲婷婷狠狠爱综合网| 国产又色又爽无遮挡免| 欧美亚洲 丝袜 人妻 在线| 久久精品久久精品一区二区三区| 欧美日韩亚洲高清精品| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| 日韩视频在线欧美| 男女无遮挡免费网站观看| 国产精品福利在线免费观看| 久久久色成人| 三级经典国产精品| 国产视频首页在线观看| 国产乱人偷精品视频| 97在线人人人人妻| 久久毛片免费看一区二区三区| 日日撸夜夜添| 2021少妇久久久久久久久久久| 伊人久久精品亚洲午夜| 欧美精品国产亚洲| 婷婷色av中文字幕| 高清午夜精品一区二区三区| 国产视频首页在线观看| 国产乱人偷精品视频| 午夜福利高清视频| 免费大片18禁| 成年女人在线观看亚洲视频| 欧美日韩精品成人综合77777| 国产美女午夜福利| 美女脱内裤让男人舔精品视频| 天堂8中文在线网| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 水蜜桃什么品种好| 在线观看免费视频网站a站| 日韩电影二区| 最黄视频免费看| 欧美3d第一页| 日韩av不卡免费在线播放| 成人无遮挡网站| 三级经典国产精品| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 日本黄色日本黄色录像| 男女国产视频网站| 国产成人精品一,二区| 九九久久精品国产亚洲av麻豆| 美女高潮的动态| 在线观看av片永久免费下载| 男女边吃奶边做爰视频| 99热这里只有是精品50| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 男女啪啪激烈高潮av片| 在线免费十八禁| 人体艺术视频欧美日本| 免费大片18禁| 成人综合一区亚洲| 日日啪夜夜撸| 毛片女人毛片| 高清视频免费观看一区二区| 亚州av有码| 美女高潮的动态| 全区人妻精品视频| 男女国产视频网站| 免费看av在线观看网站| 美女脱内裤让男人舔精品视频| 少妇裸体淫交视频免费看高清| 成年免费大片在线观看| 国产精品人妻久久久久久| 久久久国产一区二区| 高清在线视频一区二区三区| 五月伊人婷婷丁香| 国产精品一二三区在线看| 边亲边吃奶的免费视频| 99久久精品国产国产毛片| 五月开心婷婷网| 偷拍熟女少妇极品色| 亚洲国产毛片av蜜桃av| 99热网站在线观看| 中文字幕制服av| 久久99蜜桃精品久久| 乱系列少妇在线播放| 成年美女黄网站色视频大全免费 | 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 国产黄片美女视频| 超碰av人人做人人爽久久| 中文字幕久久专区| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 精华霜和精华液先用哪个| 亚洲精品中文字幕在线视频 | 麻豆成人av视频| 国产精品女同一区二区软件| 亚洲性久久影院| 观看美女的网站| 亚洲,欧美,日韩| 色视频在线一区二区三区| 亚洲久久久国产精品| 人人妻人人添人人爽欧美一区卜 | 日本av免费视频播放| 人妻系列 视频| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 天堂中文最新版在线下载| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看 | 国产日韩欧美在线精品| 成人国产麻豆网| 极品教师在线视频| 中文天堂在线官网| 插阴视频在线观看视频| 精品酒店卫生间| 久久久久人妻精品一区果冻| 最近2019中文字幕mv第一页| 国产精品久久久久成人av| 五月开心婷婷网| 亚洲成人手机| 亚洲av二区三区四区| 国产免费视频播放在线视频| 九草在线视频观看| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 91精品国产九色| 一区二区三区精品91| 韩国高清视频一区二区三区| 亚洲欧美日韩无卡精品| 一级黄片播放器| 久久久午夜欧美精品| 在线 av 中文字幕| 美女脱内裤让男人舔精品视频| av卡一久久| 欧美激情极品国产一区二区三区 | 亚洲激情五月婷婷啪啪| videossex国产| 伊人久久精品亚洲午夜| 美女中出高潮动态图| 亚洲国产精品999| xxx大片免费视频| 国产色婷婷99| 久久人人爽人人爽人人片va| 夜夜爽夜夜爽视频| 国产男人的电影天堂91| av线在线观看网站| av免费观看日本| 久久久亚洲精品成人影院| 午夜激情福利司机影院| 午夜福利在线在线| 久久精品久久久久久久性| 深夜a级毛片| 嘟嘟电影网在线观看| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 日韩欧美 国产精品| 免费黄色在线免费观看| 午夜福利在线在线| 99热这里只有是精品在线观看| 国产午夜精品久久久久久一区二区三区| 97精品久久久久久久久久精品| 午夜福利在线在线| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 99九九线精品视频在线观看视频| 激情 狠狠 欧美| 国产精品麻豆人妻色哟哟久久| 国产伦精品一区二区三区视频9| 嘟嘟电影网在线观看| 国产精品秋霞免费鲁丝片| 久久久a久久爽久久v久久| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx在线观看| 色5月婷婷丁香| 偷拍熟女少妇极品色| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 制服丝袜香蕉在线| 简卡轻食公司| 久久久久久九九精品二区国产| 日本黄色片子视频| 国产精品无大码| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 亚洲精品国产av蜜桃| 欧美日韩视频精品一区| 超碰97精品在线观看| 亚洲欧美日韩无卡精品| 极品教师在线视频| av免费观看日本| 丝瓜视频免费看黄片| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 新久久久久国产一级毛片| 日韩一本色道免费dvd| 大香蕉97超碰在线| 国产高潮美女av| 日本一二三区视频观看| 国产乱人视频| 99热全是精品| 成人国产麻豆网| 日韩视频在线欧美| 欧美性感艳星| 亚洲色图av天堂| av不卡在线播放| 久久精品人妻少妇| 欧美3d第一页| 少妇人妻 视频| 成人美女网站在线观看视频| 伦理电影免费视频| 国产精品一区二区三区四区免费观看| 日日摸夜夜添夜夜爱| av.在线天堂| 99热6这里只有精品| 亚洲美女黄色视频免费看| 亚洲av不卡在线观看| 国产精品无大码| 久久精品夜色国产| 日本色播在线视频| 高清毛片免费看| 欧美日韩精品成人综合77777| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看 | 少妇丰满av| 少妇人妻精品综合一区二区| 午夜日本视频在线| 日韩一区二区三区影片| 午夜福利高清视频| 国产亚洲5aaaaa淫片| 免费黄色在线免费观看| 久久99蜜桃精品久久| 欧美极品一区二区三区四区| 最近最新中文字幕免费大全7| 大又大粗又爽又黄少妇毛片口| 国国产精品蜜臀av免费| 亚洲国产精品999| 日本av手机在线免费观看| 亚洲av二区三区四区| 2021少妇久久久久久久久久久| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 黄片wwwwww| 亚洲不卡免费看| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 国产亚洲午夜精品一区二区久久| kizo精华| 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 在线免费十八禁| 久久99蜜桃精品久久| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 国产欧美亚洲国产| 成人无遮挡网站| 永久免费av网站大全| 少妇 在线观看| 深夜a级毛片| 国产在线一区二区三区精| 久久久久视频综合|