• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas

    2023-02-20 13:15:28ZhencenHe何貞岑JiyanZhang張繼彥JiaminYang楊家敏BingYan閆冰andZhiminHu胡智民
    Chinese Physics B 2023年1期
    關(guān)鍵詞:楊家

    Zhencen He(何貞岑), Jiyan Zhang(張繼彥), Jiamin Yang(楊家敏),Bing Yan(閆冰), and Zhimin Hu(胡智民)

    1Key Laboratory of Radiation Physics and Technology of Ministry of Education,Institute of Nuclear Science and Technology,Sichuan University,Chengdu 610064,China

    2Institute of Modern Physics,Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE),Fudan University,Shanghai 200433,China

    3Laser Fusion Research Center,China Academy of Engineering Physics,Mianyang 621900,China

    4Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    Keywords: nanosecond laser irradiation,time-resolved x-ray spectra,characterization of plasma states,Multi-1D hydrodynamic simulations

    1. Introduction

    High-Zmaterials,such as gold,are usually used to make the hohlraum wall for the enhancement of laser to x-ray conversion efficiency in indirect-driven inertial confinement fusion (ICF) research.[1–3]The states of the plasmas produced by the interaction between laser and hohlraum wall materials are very important for the study of the coupling efficiency of laser–targets. Therefore,the plasmas of laser-irradiated high-Zmaterials need to be well characterized.[4–7]The plasmas produced by the laser-irradiated high-Zmaterials have a wide range of temperature and density. There are two main approaches to diagnose the states of hohlraum plasmas. One approach is the laser Thomson scattering,[8–10]which is an active diagnostic approach, and its theoretical model is mature and reliable. The laser Thomson scattering has been widely used in hohlruam-plasma experiments.[8,11–14]However, the probe laser used in the Thomson scattering has an unavoidable heating disturbance to the plasma. Moreover,the critical density effect restricts the application of laser Thomson scattering for denser plasmas. For the hohlraum target which is a semi-closed system,the experimental arrangement of the laser Thomson scattering is quite a challenge.The other approach is to use x-ray spectroscopy.[11–18]The plasma states can be obtained by pre-embedding a tracer layer in the high-Zmaterials and analyzing the x-ray emission spectra of the tracer layer element (medium-Zmaterials). The experimental arrangement of x-ray spectroscopy is more convenient and flexible. X-ray spectroscopy has been widely used in earlier laser-produced plasma experiments,and was partially replaced with the development of laser Thomson scattering technology. In the recent diagnostic plan on the National Ignition Facility, this method is reconsidered as an important development direction, indicating that this method has its unique advantages. In particular, the combination of spectroscopy and Thomson scattering technology has become an important trend in the hohlraum plasma experiments.[8,11–18]

    In this paper,we present a laser-produced Au plasma experiment at the 180 kJ laser facility.[19]The time-resolvedKshell spectra of titanium (Ti) tracer are measured by using a streaked crystal spectrometer, and they are compared to the synthetic spectra produced with the FLYCHK[20]to determine the Au plasma states. The hydrodynamics code Multi-1D[21]is used to simulate the interaction between the laser and the gold plane target. The hydrodynamic simulated results are compared with the experimental results which were obtained by the x-ray spectroscopy method.

    2. Experiment

    The experiment was performed at a large laser facility[19]in Mianyang,China. The laser has 48 ultraviolet laser beams with a caliber of 400×400 mm,pulse width of 1–10 ns. The total 3ωlaser energy can approach 180 kJ with the peak power of 60 TW.For the Ti-layer-buried Au plasma experiment,two laser beams were superimposed to achieve the desired intensity. The laser beams were smoothed by a continuous phase plate,and the diameter of the focusing spot was about 500 μm.The 3ωflat-top pulse with a duration of 3 ns full width at half maximum and an intensity around 8.8×1014W/cm2was used in the experiment.Ti is chosen for the current investigation because the optimizedK-shell spectra of Ti ions can be obtained under the present laser-induced plasma states.

    The schematic of the experimental setup is shown in Fig. 1. The laser incidence direction was 60°relative to the target surface, and the streaked crystal spectrometer was facing to the target at a normal direction. The field of view of the spectrometer was larger than the laser focus spot. The target used in the experiment was a 0.3 μm thick Ti foil tamped with 0.08 μm of Au on the laser interaction side and 30 μm of Au on the rear side.

    Fig.1. Schematic of the experimental setup.

    The spectra shown in Fig. 2 was measured by using a streaked crystal spectrometer, which consists of a tris(hydroxymethyl)aminomethane (TAM) crystal (2d=8.78 ?A) and an x-ray streaked camera as a recorder. For the Ti-buried Au plane targets,the TAM crystal was set to resolve the spectra between 4500 eV and 5100 eV, corresponding to the wavelength range from 0.243 nm to 0.276 nm. The resonance lines of H- and He-like ions (i.e., the Ly-αand He-αlines) including the intercombination (IC) and Li-like satellites were clearly identified as shown in Fig.2.The photon energies and the corresponding wavelengths of these identified lines were obtained from the NIST database[22]as listed in Table 1. The well-resolved Ly-αand He-αlines with the accurately known photon energies were used as reference lines for the wavelength calibration.[23]The signal was filtered with a 600 μm thick beryllium at the front of the spectrometer,which was set to shield the stray laser light to obtain a good signal-tonoise ratio. Six bright spots in the upper left of Fig.2 are the time fiducials,with which we can verify the time resolution is about 3.23 ps/pixel,since the time interval between two adjacent fiducials is 500 ps. In Fig.2, the white dashed line over plotted on the data is the temporal profile of the laser intensity,and they-axis shows the time when the laser pulse turned on.

    Fig.2. The emission spectra of Ti measured by using a streaked crystal spectrometer.

    Table 1. Photon energies and wavelengths λ of the Ly-α,He-α,IC,and Li-like satellite lines of Ti from the NIST database.[22] The transition probabilities A are also included. The numbers in square brackets stand for the power of 10.

    The measured data shown in Fig.2 is a 2048-dimensional pixel matrix, and the corresponding pixel oft= 0 counted from the bottom of the matrix is 469. Fromt=0, the data is divided into 27 pixel intervals and each interval is summed in they-axis direction to obtain a good signal-to-noise ratio.The corresponding time of the medium pixel of each interval is a time point,and 27 time points are extracted from the streak x-ray spectra. Each time can be determined according to the time resolution and the pixel numbers between 469(t=0)and each medium pixel.

    The temporal profiles of the intensities of the Ly-α, Heα,IC,and Li-like satellite lines are shown in Fig.3(a),and the time dependences of the intensity ratios of the IC and Ly-αlines to the He-αline are shown in Fig.3(b). The blue and red dashed lines in Fig.3(b)are the corresponding fits. As shown in Fig.3(a),the He-αline emits earlier than the Ly-αline,and it has longer emission duration than the Ly-α. It is reasonable because the production of He-like ions needs a lower electron temperature than that of H-like ions. On one hand,the charge state distribution of plasma (i.e., the abundance of ions with different charge states)and the population of the excited states are sensitive to the temperature,the ratio of the resonance lines of H-like/He-like ions,i.e.,the Ly-α/He-αline intensity ratio,is widely used for the electron temperature diagnostic.[24,25]On the other hand,the ratio of the IC and He-αlines is dependent on the electron collision process and has strong correlation with the electron density,thus the IC/He-αline intensity ratio can be used for the electron density diagnostics.[26,27]

    Fig.3. (a)The temporal intensities of the Ly-α,He-α,IC,and Li-like satellite lines. (b) The temporal intensity ratios of the IC and Ly-α lines to the He-α line. The blue and red dashed lines are the corresponding fits.

    3. Data and analysis

    The simulated x-ray spectra of Ti plasmas are obtained using the zero-dimensional collisional-radiative atomic code FLYCHK,[20]which generates a synthetic spectrum that is compared to the measured time-resolved one.The calculations with FLYCHK assume that the plasma is in non-local thermodynamic equilibrium and steady state. The emission spectra are simulated in the energy range of 4500–5100 eV.

    To find the best fits of the experimental spectra at 27 time points extracted from the streaked spectra as shown in Fig.2,the emission spectra of Ti ions are simulated with FLYCHK for a range of temperatures from 100 eV to 3000 eV and densities from 1019cm-3to 1024cm-3. The criterion of determining the plasma states at each extracted time is to find the best matching between the FLYCHK spectrum and the experimental spectrum, including the spectral shape and the relative intensities of the characteristic lines. Figure 4 shows the comparison of spectra at six typical time points. The black curve in each panel is the experimental spectra at the extracted time,and the colored curves are the FLYCHK simulated spectra convolved with a Gaussian function to include the instrumental broadening. The red curve is the best matching spectrum compared with the measured one,and the corresponding temperature and density inputs of the FLYCHK simulations are the plasma states at the extracted time. Besides the best fit (the red curve), the experimental error bars of the plasma states are given by the green and blue curves,which are not in good agreement with but relatively close to the experimental spectrum.

    As shown in Fig.2 and listed in Table 1,the Ly-αline is in the photon energy range of 4950–5000 eV,while the He-α,IC,and Li-like satellites are in 4650–4800 eV.Moreover,the emission duration of the Ly-αline is only~1 ns [see Fig. 3(a)],and the measured Ly-αpeak in this period(0.2–1.2 ns)is used to be compared with the FLYCHK results to assist the determination of the plasma states as shown in Figs.4(c)and 4(d).Beyond this period as shown in Figs.4(a),4(b),4(e),and 4(f),the Ly-αline has no sufficient counts and is neglected in the comparison procedure. In the data processing of all 27 time points, the intensities of the He-αand IC lines are taken into account because of their sufficient counts. Figures 4(a) and 4(b) are, respectively, the processing results at 0.06 ns and 0.16 ns when the laser pulse turned on. The low temperatures and high densities cause the strong interactions in the plasma during this period, and it results in a red shift of the experimental spectra (black lines), which can be clearly seen from the in-set figures. Figures 4(c) and 4(d) are, respectively, the results at 0.81 ns and 1.05 ns when the laser pulse has turned on for around 1 ns. Figures 4(e)and 4(f)are,respectively,the results at 3.33 ns and 4.23 ns when the laser pulse turned off.Because of the weak emissions of the Ly-αline during this period,the He-αline and its satellites are focused on.

    Fig.4. Experimental sprctra at 0.06 ns,0.16 ns,0.81 ns,1.05 ns,3.33 ns,and 4.23 ns,and the FLYCHK simulated spectra are matched with the measured ones.

    4. Hydrodynamic simulations

    Radiative hydrodynamic simulations were performed using the Multi-1D code.[21]The Multi-1D code uses a steadystate approximation model and takes the main physical mechanism of laser–matter interaction into account.The laser energy is absorbed by inverse bremsstrahlung,and energy transport of x-ray radiation and electron thermal conduction.

    The monolayer gold plane target is used in the simulations to evaluate the feasibility of the method which uses Ti tracer x-ray scpectroscopy to characterize the Au plasma states at the buried depth.The thickness of the gold plane target is set to 30.38 μm,which equals to the total thickness of the experimental target. The equation of state for Au(material code=9)in tabular form is taken from the SESAME database. Tabulated NLTE opacities divided into 20 energy groups are calculated using the steady state non-local thermal equilibrium opacity code.[28]Laser and other simulation parameters are set as the actual experimental conditions.

    The simulated profiles of the electron temperatureTeand the electron densityneare shown in Fig.5. The black dashed lines in Fig.5 represent all girds distributed in the depth range of gold layer from 0.08 μm to 0.38 μm in the simulations,corresponding to the buried Ti tracer layer of the experimental target. Two colored solid lines in Fig.5 are the average results of the black dashed lines. In Fig. 5, the electron temperature keeps increasing until the laser pulse turned off at around 3 ns and the peak electron temperature in the simulations is about 2.5 keV. The electron density keeps decreasing in the simulations, because the gold plane target expands continuously under the laser ablation.

    Fig.5. The simulated temporal profiles of the Au plasma states.

    Comparisons between the experimental and theoretical results are shown in Fig. 6. On one hand, the experimental and theoretical results of the evolution processes of plasma states are in agreement, which shows the feasibility of the experimental method to characterize the Au plasma states at the buried depth. On the other hand, there are some quantitative deviations between the measured and simulated results.First, radial temperature and density gradients must be taken into consideration in the theoretical models to match the measurements of the time dependent emission spectra.[29,30]However,the hydrodynamic simulation code Multi-1D used in the present simulations does not take the radial gradients into account,and the plasma is described by a uniform temperatureand-density state. Second, the measured streaked spectra are the integration of emissions in the direction of the target thickness, i.e., along the axial direction. Nevertheless, the FLYCHK spectrum used for deducing the plasma states is simulated by using single temperature and single density. It may contribute to the discrepancy between the experimentally deduced and the Multi-1D simulated plasma states.Third,the intensities of spectral emission temporally change greatly,which makes the intensities of emission spectra weak at several time points,and brings about large statistical uncertainty for deducing the plasma states.

    Fig.6. Comparisons of the experimental and theoretical results of the temporal profile of the plasma states.

    5. Conclusions

    In summary, we present an experimental study on the characterization of laser-produced gold plasmas. The titanium-buried gold planar target is irradiated by nanosecond laser pulses, and the time-resolved x-ray emission spectra of the titanium tracer are measured by a streaked crystal spectrometer. By comparing the synthetic spectra produced by using the FLYCHK code with the measured spectra, the plasma states are determined. Furthermore, the experimental results are compared with the Multi-1D hydrodynamic simulations. An agreement between the spectroscopically deduced and simulated electron temperatures is found.However,the experiment–theory discrepancy of the electron density remains,which mainly might be attributed to that the Multi-1D simulations can not take the radial gradients of the plasma states into account.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at http://doi.org/10.57760/sciencedb.j00113.00032.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0403300),the National Natural Science Foundation of China (Grant Nos. 12074352 and 11675158), and the Fundamental Research Funds for the Central Universities in China (Grant No.YJ202144).

    猜你喜歡
    楊家
    《上下陽(yáng)古村落》《楊家堂村口》
    Thermodynamic properties of two-dimensional charged spin-1/2 Fermi gases
    楊家銘
    楊家河
    一道例題“引發(fā)”的探究
    楊家圈遺址水田遺跡探查
    東方考古(2018年0期)2018-08-28 10:05:28
    楊家神草雞 中華好味道
    楊家有只羊
    楊家軍:堅(jiān)信e代駕今后一路向前
    金色年華(2016年14期)2016-02-28 01:44:13
    我的上學(xué)記
    欧美激情在线99| 真人做人爱边吃奶动态| 男人的好看免费观看在线视频| 97人妻精品一区二区三区麻豆| 国产又黄又爽又无遮挡在线| 亚洲五月天丁香| 中文字幕av成人在线电影| 亚洲久久久久久中文字幕| 亚洲精品色激情综合| e午夜精品久久久久久久| eeuss影院久久| 国产在视频线在精品| 中文字幕熟女人妻在线| 欧美一级a爱片免费观看看| 制服丝袜大香蕉在线| 成人特级黄色片久久久久久久| 色综合站精品国产| 怎么达到女性高潮| 国产欧美日韩一区二区三| 法律面前人人平等表现在哪些方面| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 久久久久国产精品人妻aⅴ院| xxxwww97欧美| 观看美女的网站| 在线观看一区二区三区| 嫩草影视91久久| 特级一级黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 久久久久九九精品影院| 五月玫瑰六月丁香| 亚洲电影在线观看av| 99久久精品一区二区三区| 久9热在线精品视频| 噜噜噜噜噜久久久久久91| 亚洲av成人不卡在线观看播放网| 久久精品国产综合久久久| 免费在线观看成人毛片| 亚洲精品粉嫩美女一区| 97碰自拍视频| 亚洲最大成人中文| 国产av一区在线观看免费| 欧美成狂野欧美在线观看| 国产一区二区激情短视频| 最好的美女福利视频网| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全电影3| 男人和女人高潮做爰伦理| 欧美日韩中文字幕国产精品一区二区三区| 97碰自拍视频| 我的老师免费观看完整版| 国产探花在线观看一区二区| 亚洲第一电影网av| 最新美女视频免费是黄的| 国产伦精品一区二区三区四那| 亚洲不卡免费看| 小蜜桃在线观看免费完整版高清| 国产亚洲精品一区二区www| 中文亚洲av片在线观看爽| 欧美+亚洲+日韩+国产| 国内揄拍国产精品人妻在线| 免费高清视频大片| 性色av乱码一区二区三区2| 黄片大片在线免费观看| 国产精品久久久久久人妻精品电影| 99热只有精品国产| or卡值多少钱| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久com| 成人性生交大片免费视频hd| 亚洲黑人精品在线| 久久这里只有精品中国| 两人在一起打扑克的视频| 尤物成人国产欧美一区二区三区| 天美传媒精品一区二区| 美女大奶头视频| 亚洲午夜理论影院| 欧美3d第一页| 国产高清有码在线观看视频| 18禁黄网站禁片免费观看直播| 亚洲在线自拍视频| 色视频www国产| 午夜精品久久久久久毛片777| 色播亚洲综合网| 久久久久久久午夜电影| 国产成年人精品一区二区| www.色视频.com| 午夜a级毛片| 久久精品国产自在天天线| 日本五十路高清| 亚洲一区二区三区色噜噜| 亚洲欧美日韩东京热| 99久久精品一区二区三区| 国内精品久久久久精免费| 内地一区二区视频在线| 成年免费大片在线观看| 亚洲国产色片| 丝袜美腿在线中文| 在线观看午夜福利视频| 国产成人av教育| 俺也久久电影网| 18禁裸乳无遮挡免费网站照片| 天天添夜夜摸| 午夜a级毛片| 精品电影一区二区在线| 嫩草影视91久久| 美女免费视频网站| 午夜影院日韩av| 2021天堂中文幕一二区在线观| 国产精品乱码一区二三区的特点| 啦啦啦韩国在线观看视频| 日本在线视频免费播放| 无人区码免费观看不卡| 成人亚洲精品av一区二区| 看免费av毛片| 亚洲av五月六月丁香网| 精品不卡国产一区二区三区| 精品一区二区三区视频在线观看免费| 欧美bdsm另类| 91av网一区二区| 久久久国产精品麻豆| 麻豆国产av国片精品| 嫩草影院入口| 亚洲成人久久爱视频| 国产单亲对白刺激| 国产色婷婷99| 特级一级黄色大片| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 俺也久久电影网| 精品午夜福利视频在线观看一区| 看片在线看免费视频| 黄色成人免费大全| 国产野战对白在线观看| 欧美黄色片欧美黄色片| 久久这里只有精品中国| 亚洲成人中文字幕在线播放| 91麻豆精品激情在线观看国产| 亚洲18禁久久av| 欧美一区二区国产精品久久精品| 国产亚洲精品久久久com| 观看免费一级毛片| 精品国产亚洲在线| 亚洲人成网站在线播放欧美日韩| 精品一区二区三区视频在线观看免费| 国产三级中文精品| 亚洲精品成人久久久久久| 国产精品av视频在线免费观看| 国产精品一及| 美女高潮喷水抽搐中文字幕| 国产真人三级小视频在线观看| av欧美777| 亚洲片人在线观看| 国产精品,欧美在线| 久久精品国产清高在天天线| 美女黄网站色视频| www.色视频.com| 婷婷六月久久综合丁香| 成人三级黄色视频| 波多野结衣高清无吗| 亚洲av二区三区四区| 波多野结衣高清无吗| 在线免费观看的www视频| 国产精品爽爽va在线观看网站| or卡值多少钱| 99riav亚洲国产免费| 国产精华一区二区三区| 国产精华一区二区三区| 69av精品久久久久久| 免费搜索国产男女视频| a级毛片a级免费在线| 国产真实伦视频高清在线观看 | 国产毛片a区久久久久| 日韩国内少妇激情av| 久久久久国产精品人妻aⅴ院| h日本视频在线播放| 亚洲国产精品合色在线| 香蕉久久夜色| 日韩欧美在线乱码| 午夜免费男女啪啪视频观看 | 久久精品亚洲精品国产色婷小说| 免费av不卡在线播放| 99国产极品粉嫩在线观看| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| 搡老妇女老女人老熟妇| 日韩亚洲欧美综合| 国产真实乱freesex| 非洲黑人性xxxx精品又粗又长| xxxwww97欧美| 内地一区二区视频在线| 精品久久久久久久久久久久久| 亚洲天堂国产精品一区在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人三级黄色视频| 中文字幕人成人乱码亚洲影| 国产一区二区在线观看日韩 | 九九热线精品视视频播放| 国产精品爽爽va在线观看网站| 舔av片在线| 日本a在线网址| 男女视频在线观看网站免费| 色精品久久人妻99蜜桃| 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩高清专用| 无人区码免费观看不卡| 精品日产1卡2卡| 色视频www国产| 欧美国产日韩亚洲一区| 色尼玛亚洲综合影院| 欧美极品一区二区三区四区| 好男人在线观看高清免费视频| 男人的好看免费观看在线视频| 国产亚洲av嫩草精品影院| 在线看三级毛片| 色av中文字幕| 亚洲国产欧美人成| 久久人人精品亚洲av| 色综合亚洲欧美另类图片| 久久久成人免费电影| 欧美黄色片欧美黄色片| 老汉色av国产亚洲站长工具| 久久久久久大精品| 少妇裸体淫交视频免费看高清| 两个人视频免费观看高清| 免费看十八禁软件| 男人和女人高潮做爰伦理| 在线免费观看不下载黄p国产 | 国内精品一区二区在线观看| av天堂中文字幕网| 欧美+亚洲+日韩+国产| 久久久久久久久大av| 变态另类丝袜制服| 我要搜黄色片| 久久久国产成人免费| aaaaa片日本免费| 亚洲不卡免费看| av专区在线播放| 又黄又粗又硬又大视频| 亚洲专区国产一区二区| 久久欧美精品欧美久久欧美| 国产真人三级小视频在线观看| 免费电影在线观看免费观看| 久久精品综合一区二区三区| 91在线精品国自产拍蜜月 | 亚洲午夜理论影院| 欧美激情久久久久久爽电影| 欧美三级亚洲精品| av中文乱码字幕在线| 国产伦精品一区二区三区视频9 | 国内毛片毛片毛片毛片毛片| 国产又黄又爽又无遮挡在线| 欧美一级a爱片免费观看看| 久久久久免费精品人妻一区二区| 婷婷精品国产亚洲av| 精品电影一区二区在线| 国产三级黄色录像| 十八禁人妻一区二区| 亚洲最大成人手机在线| 中出人妻视频一区二区| 中文在线观看免费www的网站| 久久久精品大字幕| 国产成人欧美在线观看| 一级黄片播放器| 一级黄片播放器| 久久久国产成人精品二区| 国产久久久一区二区三区| 天堂网av新在线| 久久久久免费精品人妻一区二区| 成人高潮视频无遮挡免费网站| 夜夜看夜夜爽夜夜摸| 欧美又色又爽又黄视频| 欧美黄色片欧美黄色片| 听说在线观看完整版免费高清| 免费看十八禁软件| 中文在线观看免费www的网站| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 一区福利在线观看| 久久久久久大精品| 亚洲av免费高清在线观看| 国产伦人伦偷精品视频| aaaaa片日本免费| 欧美+日韩+精品| av天堂在线播放| 在线免费观看的www视频| 成年人黄色毛片网站| xxx96com| 亚洲精品在线美女| 色综合亚洲欧美另类图片| 欧美黑人巨大hd| 一级毛片女人18水好多| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 最新美女视频免费是黄的| 我的老师免费观看完整版| 国产精品香港三级国产av潘金莲| 亚洲狠狠婷婷综合久久图片| 美女cb高潮喷水在线观看| 99久久综合精品五月天人人| 99热精品在线国产| 国产精品98久久久久久宅男小说| 999久久久精品免费观看国产| 欧美黄色片欧美黄色片| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 欧美乱码精品一区二区三区| 99视频精品全部免费 在线| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 90打野战视频偷拍视频| 日韩欧美精品免费久久 | 国产精品,欧美在线| 欧美日韩乱码在线| 高清毛片免费观看视频网站| 日本撒尿小便嘘嘘汇集6| 欧美大码av| 亚洲欧美日韩东京热| 此物有八面人人有两片| 深夜精品福利| 丝袜美腿在线中文| 97超级碰碰碰精品色视频在线观看| 中文字幕人妻熟人妻熟丝袜美 | 日本 av在线| 国产一区二区三区在线臀色熟女| 免费观看的影片在线观看| 亚洲欧美精品综合久久99| 看片在线看免费视频| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 国产亚洲欧美在线一区二区| 99riav亚洲国产免费| 欧美成人免费av一区二区三区| 国产又黄又爽又无遮挡在线| 久久精品亚洲精品国产色婷小说| eeuss影院久久| 香蕉av资源在线| 久久久久久久午夜电影| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区三| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合久久99| 亚洲国产日韩欧美精品在线观看 | 久久亚洲真实| 亚洲精品456在线播放app | 国产精品免费一区二区三区在线| 色播亚洲综合网| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久人妻蜜臀av| 国内精品美女久久久久久| 丰满人妻一区二区三区视频av | 成年女人毛片免费观看观看9| 窝窝影院91人妻| 欧美又色又爽又黄视频| 亚洲精品国产精品久久久不卡| 美女cb高潮喷水在线观看| 级片在线观看| h日本视频在线播放| 国产精品香港三级国产av潘金莲| 51午夜福利影视在线观看| 国产视频内射| 日韩欧美在线乱码| 精品99又大又爽又粗少妇毛片 | 人人妻人人澡欧美一区二区| 国产精品一区二区三区四区久久| 国模一区二区三区四区视频| 久久久久免费精品人妻一区二区| 久久久成人免费电影| 99热6这里只有精品| 少妇熟女aⅴ在线视频| 亚洲 国产 在线| 色吧在线观看| 男人和女人高潮做爰伦理| 蜜桃久久精品国产亚洲av| 99国产精品一区二区三区| 婷婷六月久久综合丁香| 日韩欧美三级三区| 欧美成人性av电影在线观看| 99久国产av精品| 天天一区二区日本电影三级| 黄色女人牲交| 黄色片一级片一级黄色片| 欧美乱码精品一区二区三区| 国产主播在线观看一区二区| 欧美色欧美亚洲另类二区| 变态另类成人亚洲欧美熟女| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 国产 一区 欧美 日韩| 国产免费男女视频| 亚洲乱码一区二区免费版| 18禁国产床啪视频网站| 国模一区二区三区四区视频| 国内久久婷婷六月综合欲色啪| 在线观看舔阴道视频| 国产真实伦视频高清在线观看 | 1024手机看黄色片| 国产综合懂色| 国产精品久久久久久久电影 | 美女高潮的动态| 亚洲午夜理论影院| 日本免费一区二区三区高清不卡| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 日韩欧美在线乱码| 国产精品久久久久久亚洲av鲁大| 琪琪午夜伦伦电影理论片6080| 亚洲人成电影免费在线| 啦啦啦韩国在线观看视频| 国产99白浆流出| 久久久久久久久久黄片| 青草久久国产| 国产成人av激情在线播放| 国产免费一级a男人的天堂| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 国产激情欧美一区二区| 亚洲专区中文字幕在线| 久久久久久久午夜电影| 精品无人区乱码1区二区| 国产免费男女视频| av欧美777| 一本久久中文字幕| 欧美大码av| 身体一侧抽搐| 综合色av麻豆| 日韩欧美在线二视频| 三级国产精品欧美在线观看| 久久精品影院6| 内地一区二区视频在线| 国产野战对白在线观看| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 亚洲七黄色美女视频| 草草在线视频免费看| 亚洲七黄色美女视频| 国产探花极品一区二区| 69人妻影院| 岛国在线观看网站| 久久精品影院6| 成人欧美大片| 19禁男女啪啪无遮挡网站| 久久久久性生活片| 老熟妇乱子伦视频在线观看| 90打野战视频偷拍视频| 久久久国产成人精品二区| 亚洲av二区三区四区| 免费高清视频大片| 两人在一起打扑克的视频| 国产精品一区二区三区四区免费观看 | eeuss影院久久| 老鸭窝网址在线观看| 亚洲av成人精品一区久久| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 在线播放无遮挡| 免费高清视频大片| 精品久久久久久成人av| 婷婷精品国产亚洲av在线| 一级作爱视频免费观看| 免费av不卡在线播放| 日本a在线网址| 欧美日本视频| or卡值多少钱| 久久久久精品国产欧美久久久| 好男人电影高清在线观看| 91久久精品国产一区二区成人 | 99久久综合精品五月天人人| 日本成人三级电影网站| 99久久精品热视频| 一进一出抽搐动态| 又紧又爽又黄一区二区| 成人特级av手机在线观看| 国产精品久久电影中文字幕| 国产av在哪里看| www.www免费av| 国产精品野战在线观看| 少妇丰满av| 久9热在线精品视频| 久久精品国产亚洲av涩爱 | 在线播放国产精品三级| 精品电影一区二区在线| av视频在线观看入口| 免费在线观看日本一区| 亚洲成人中文字幕在线播放| 亚洲av免费高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播| 精品人妻偷拍中文字幕| 免费人成视频x8x8入口观看| 国产探花在线观看一区二区| 美女免费视频网站| 亚洲欧美日韩高清专用| 熟妇人妻久久中文字幕3abv| 岛国视频午夜一区免费看| 校园春色视频在线观看| 午夜免费成人在线视频| 男人和女人高潮做爰伦理| 波野结衣二区三区在线 | 桃红色精品国产亚洲av| 搞女人的毛片| 亚洲熟妇熟女久久| 校园春色视频在线观看| 午夜福利高清视频| 国产精品久久视频播放| 欧美乱码精品一区二区三区| 免费电影在线观看免费观看| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 日本 欧美在线| 亚洲av五月六月丁香网| 欧美zozozo另类| 一个人看视频在线观看www免费 | 亚洲成av人片在线播放无| 舔av片在线| 午夜免费男女啪啪视频观看 | 一本一本综合久久| 九九在线视频观看精品| 性色avwww在线观看| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 国产一区二区亚洲精品在线观看| 国产激情偷乱视频一区二区| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 九九久久精品国产亚洲av麻豆| 亚洲成a人片在线一区二区| 99久久久亚洲精品蜜臀av| 男女之事视频高清在线观看| 午夜视频国产福利| www.999成人在线观看| 日韩欧美在线二视频| 美女大奶头视频| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 国模一区二区三区四区视频| 国产老妇女一区| 亚洲五月天丁香| 免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 中文字幕久久专区| 免费电影在线观看免费观看| 久久伊人香网站| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 日韩免费av在线播放| www.www免费av| 欧美精品啪啪一区二区三区| 久久香蕉国产精品| 欧美大码av| 欧美bdsm另类| 99精品久久久久人妻精品| 少妇熟女aⅴ在线视频| 18禁黄网站禁片免费观看直播| 国产欧美日韩一区二区精品| 麻豆成人av在线观看| 亚洲精品美女久久久久99蜜臀| 国产高清videossex| 最新中文字幕久久久久| e午夜精品久久久久久久| 1000部很黄的大片| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 欧美性感艳星| netflix在线观看网站| 国产三级黄色录像| 夜夜躁狠狠躁天天躁| 久久中文看片网| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 国产在视频线在精品| 亚洲精品色激情综合| 欧洲精品卡2卡3卡4卡5卡区| 国产伦精品一区二区三区视频9 | 无限看片的www在线观看| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 午夜免费激情av| 一区二区三区高清视频在线| 桃色一区二区三区在线观看| av国产免费在线观看| 精品久久久久久久久久久久久| 免费电影在线观看免费观看| 国产av麻豆久久久久久久| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 俺也久久电影网| 国产三级中文精品| 老司机福利观看| 黄片小视频在线播放| 成人欧美大片| 免费大片18禁| 网址你懂的国产日韩在线| 美女cb高潮喷水在线观看| 日韩免费av在线播放| 免费在线观看成人毛片| 成人三级黄色视频| 国产在视频线在精品| 中文字幕人妻丝袜一区二区| 一级毛片女人18水好多| 欧美性猛交黑人性爽| 韩国av一区二区三区四区| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看| 欧美成人a在线观看| 在线a可以看的网站| 日本一二三区视频观看| 欧美日韩黄片免| bbb黄色大片| 国产乱人视频|