• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of honeycomb AuTe monolayer with Dirac nodal line fermions

    2023-02-20 13:15:32QinWang汪琴JieZhang張杰JieruiHuang黃杰瑞JinanShi時(shí)金安ShuaiZhang張帥HuiGuo郭輝LiHuang黃立HongDing丁洪WuZhou周武YanFangZhang張艷芳XiaoLin林曉ShixuanDu杜世萱andHongJunGao高鴻鈞
    Chinese Physics B 2023年1期
    關(guān)鍵詞:郭輝金安杰瑞

    Qin Wang(汪琴), Jie Zhang(張杰),Jierui Huang(黃杰瑞),Jinan Shi(時(shí)金安), Shuai Zhang(張帥),Hui Guo(郭輝), Li Huang(黃立), Hong Ding(丁洪),3,4, Wu Zhou(周武),3, Yan-Fang Zhang(張艷芳),?,Xiao Lin(林曉),3,?, Shixuan Du(杜世萱),,3,4,§, and Hong-Jun Gao(高鴻鈞),,3,4,?

    1School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    2Beijing National Center for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3CAS Center for Excellent in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100190,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords: honeycomb lattices,transition-metal monochalcogenides,AuTe monolayer,two-dimensional(2D)

    1. Introduction

    Two-dimensional (2D) transition-metal chalcogenides(TMCs) have received remarkable attention in fundamental research[1–4]and practical applications,[5–9]primarily because of their simple forms,open-air stability and exceptional physicochemical properties. Up to now,2D TMCs have been revealed with various stoichiometric ratios,i.e.MX2,MX,andM2X(M:transition metal atoms,X:S,Se,and Te).Transitionmetal dichalcogenides (TMDs,MX2) have been thoroughly explored due to their unique properties[10–14]and the first transistor based on a monolayer MoS2.[15,16]Representative monolayer transition-metal monochalcogenides(TMMs,MX)are topological materials.[17–21]For example, an FeSe monolayer is a high-Tcsuperconductor,which can be used as an intrinsic Majorana platform.[21]2D transition-metal-rich TMCs(M2X)are predicted to be promising photocatalysts[22,23]and topological insulators.[24,25]Among the above TMCs, 2D TMDs can be easily derived from their parent layer-stacked bulk phases with weak van der Waal interaction, while 2D TMMs(MXandM2X)are difficult to exfoliate from 3D closepacked structures. As topological materials, 2D TMMs hold potential applications in high-speed low-dissipation nanodevices since monolayer CuSe[17]and its derivatives host topological nodal line fermions, thus attracting broad scientific interest despite the difficult synthesis.

    Inspired by the fundamental research interest,[26–28]successful preliminary attempts for potential applications,[29,30]and limited experiment-realized Dirac nodal line fermion(DNLF)systems,[31–34]people show increasing enthusiasm at search and design of DNLF systems. To date, only a few 2D cases have been reported, such as 2D covalent organic frameworks (COFs),[35]Lieb lattices[36,37]and 2D pentagonal group-IVA chalcogenide materials.[38]In addition, theoretical calculation results suggest that monolayer CuSe,[17]AgTe[19]and AgSe[20]with honeycomb lattices show DNLF features which are protected by mirror reflection symmetry. These three candidates have been successfully fabricated with honeycomb structures on metal substrates,characterized by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), angle resolved photoemission spectroscopy(ARPES)techniques and first-principles calculations.However,ARPES results of monolayer CuSe,[17]AgTe[19]and AgSe[20]show that even the gapped nodal line feature induced by the symmetry broken is not observed due to the strong coupling between the monolayers and the substrates, which prevents their investigations in view of possible applications.Even in other 2D systems, experimental realizations of 2D DNLFs are limited to monolayer Cu2Si with a honeycomb Cu lattice and a triangular Si lattice[39]and tri-atomic layer Bi(110) in a brick phase.[40]Thus, it is desirable to search and fabricate new 2D Dirac nodal line materials which have a weaker interaction with substrates.

    Here,we successfully fabricated monolayer gold telluride(AuTe) on Au(111) substrate by using molecular beam epitaxy (MBE) method. The monolayer AuTe was obtained by direct tellurization of an Au(111) substrate. The x-ray photoelectron spectroscopy(XPS)measurement displays that the Au–Te chemical bond forms in the top layer. The LEED characterization indicates that it is(2×2)AuTe on(3×3)Au(111)substrate. The atomic structure of the monolayer AuTe is determined by a combination of STM experiments, density functional theory (DFT) calculations and scanning tunneling electron microscopy (STEM) characterizations. DFT calculations suggest that a free-standing AuTe monolayer has two DNLFs protected by mirror reflection symmetry without spin–orbit coupling (SOC), different from the monolayer AuTe in the GaS crystal structure which is a topological insulator[41]and bulk AuTe2[42]in aPma2 space group which has been classified as a high symmetry line semi-metal. When considering SOC or buckling induced by the substrate, gaps are opened at the Dirac nodal lines due to the breaking of the mirror symmetry. It is noteworthy that the gapped nodal loops induced by the symmetry breaking have been observed by using ARPES.Compared with the reported gapped DNLFs realized in 2D metal monochalcogenides,AuTe monolayer makes it more promising for real applications in future nano-devices.

    2. Results and discussion

    The AuTe monolayer was fabricated by direct tellurizing an Au(111) substrate in an ultrahigh vacuum (UHV) roomtemperature(RT)STM–MBE equipment. Figure 1(a)demonstrates the schematic of the synthesis procedure of a monolayer AuTe on Au(111)surface. The Te atoms were firstly deposited on a clean Au(111)substrate at room temperature and then the sample was annealed to 530 K.When the growth process finished,the sample was transferred from the MBE chamber to the STM chamber for preliminary characterization.Figure 1(c) is a 100 nm×100 nm large-scale STM topographic image. The sample grows continuously across the two steps on the Au(111) surface, indicating a high quality. The possible Te adatoms on the sample make it form dense parallel strips. The two directions of the parallel strips are equivalent due to the symmetry of the sample and that of the Au(111)surface. Afterwards, the XPS measurements were performed to examine the formation of gold telluride. Figure 1(b)is the XPS spectrum of the Te 3d core level for the freshly deposited Te atoms on the Au(111) surface, which shows two peaks at 573.0 eV and 583.4 eV, corresponding to the two spin–orbit splitting components Te 3d5/2and Te 3d3/2,respectively. After annealing treatment,the two peaks of Te 3d5/2and Te 3d3/2shift to 572.7 eV and 583.1 eV,respectively. Compared to the elemental Te(before annealing),the negative 0.3 eV shift suggests that the Te atoms are in oxidation states,[43–46]indicating the formation of a gold telluride alloy.

    Fig.1. Growth process and XPS differences between AuTe and tellurium.(a)Schematic of the fabrication of AuTe thin films by direct tellurization of the Au(111)substrate. Au atoms in the Au(111)substrate and tellurized Au atoms are shown in light and golden yellow,respectively. (b)XPS measurements on binding energies of AuTe synthesized on the Au(111) substrate and Te deposited on Au(111) shown as normalized green and blue intensity curves,respectively. (c)Large-scale STM topography(U=-1.7 V and I=0.1 nA)at room temperature.

    To further gain insight into the structure of the asfabricated material,we performed LEED and low temperature(4 K)STM characterization.The LEED pattern in Fig.2(a)reveals that the hexagonal diffraction spots of AuTe(red circles)have the same orientation as those of the Au(111) substrate(yellow circles), suggesting a rotational-domain-free growth.The(2×2)diffraction pattern of the monolayer AuTe,marked by white circles, corresponds to a well-defined Moir′e superstructure arising from the lattice mismatch between the AuTe monolayer and Au(111)substrate. Moreover, the same LEED patterns were observed on the entire sample surface(φ=10 mm in size),indicating a large-area and homogeneous monolayer AuTe.

    Figure 2(b) displays an STM image representing the superstructure composed of the (2×2) AuTe monolayer on(3×3) Au(111) surface, with parallel strips formed which is possibly due to the lattice mismatch,the stress release process and adatoms. The zoomed-in STM image with atomic resolution in Fig.2(d)exhibits an obvious honeycomb lattice,and the average lattice constant isa1=4.3 ?A(labelled by the red rhombus). Besides, a distinct (2×2) superstructure with respect to the AuTe lattice is also presented, with a periodicity of 8.6 ?A, about twice ofa1(labelled by the white rhombus).Combined with the LEED pattern in Fig.2(a)and the inserted FFT image in Fig.2(d), the distinct(2×2)superstructure can be explained as the Moir′e pattern of (2×2) AuTe on (3×3)Au(111)surface. Besides,DFT calculations were also carried out to clarify the atomic structure of the sample.

    Fig.2. LEED patten and atomic configuration of AuTe monolayer on Au(111)substrate. (a)LEED patten. The yellow,red and white dashed circles indicate the diffraction spots from the Au(111)lattice,AuTe monolayer and(2×2)superstructure with respect to AuTe,respectively.(b)STM image(U =-1.5 V and I=0.15 nA)at 4 K shows the Moir′e pattern and domains of the AuTe monolayer on Au(111). The blue square marks the size of the close-up image in (d). (c) Atomic resolution STM image, simulated STM image, and the structure model of (2×2) superlattice (indicated by white rhombi) match each other. (d) High-resolution STM image (U = -1 V,I=0.1 nA)of AuTe monolayer, shows the honeycomb lattice of Te atoms in the topmost sublayer of the AuTe structure. The red and white rhombi denote the unit cell of the AuTe lattice and(2×2)superlattice,respectively.The inset displays the FFT pattern corresponding to AuTe and the superstructure in(a). The inset line profile along the blue dashed arrow shows a lattice periodicity of 4.3 ?A.

    Six possible atomic structures of AuxTeymonolayer have been considered,with their lattice information summarized in Fig.S1 and Table S1. Among all the possible structures,only AuTe structure is consistent with the STM results and the following STEM result. Since the simulated STM image corresponds to an ideal model(the bottom panel in Fig.2(c)),there is a tiny difference between the simulated STM image with the experimental ones. The well-reproduced Moir′e pattern,together with the lattice information in Fig.S1 and Table S1,demonstrate that the overlayer on the Au(111)surface is AuTe monolayer.

    In order to further verify the structure of the monolayer AuTe on Au(111),cross-section high-angle-annular-dark-field(HAADF) STEM measurements were performed. The left panel of Fig. 3(a) is aZ-contrast atomically resolved STEM image of the AuTe/Au(111) interface, which manifests a monoatomic layer of the AuTe structure. The distances between neighboring atoms in the first layer and the second layer are 2.16 ?A and 1.44 ?A,respectively,in accordance with(2×2)monolayer AuTe on (3×3) Au(111) substrate. The relaxed model in the right panel of Fig.3(a)also matches well with the STEM image. The electron energy loss spectroscopy(EELS)mappings for the sample were also carried out(Figs.3(c)and 3(d)). It is obvious that Au and Te signals exist at the same layer, corresponding to the AuTe layer in the HAADF image in Fig. 3(b). By analyzing the EELS spectral intensity from Au element in Fig. S3, we exclude the delocalization effects of Au(111)substrates,which proves that monolayer AuTe has been fabricated on Au(111)surface.

    Since monolayer CuSe, AgTe, and AgSe show DNLFs features, monolayer AuTe (Fig. S6a) is expected to also host mirror-symmetry-protected DNLFs(Fig.S6b). To further validate the mirror-symmetry-protected nodal loops, we investigate the AuTe monolayer with a buckled structure(Fig.4(a))which is relaxed on an Au(111)substrate.The side view shows that the substrate-induced buckling height is 0.39 ?A.It should be noted that the Au(111)substrate is not taken into consideration for the band structure calculation. The green and red lines in Fig.4(b)describe the contribution from in-plane(Te px/pyand Au dxy/dx2-y2)and out-of-plane(Te pzand Au dxz/dyz)orbitals, respectively. These results clarify that the nodal loops are protected by mirror symmetry.

    Fig.4. Calculated band structures and ARPES results. (a)Geometric structure of the(2×2)AuTe monolayer which is obtained after relaxation on an Au(111) surface. The side view shows the buckling height is 0.39 ?A. (b) The calculated band structure of (a) with green and red curves illustrating contributions from in-plane and out-of-plane orbitals. (c) ARPES data obtained from the monolayer AuTe on Au(111) surface, superimposed with calculated band structure in(b). (d)The ARPES constant-energy contour at E=EF of a selected BZ(red hexagon). (e)and(f)ARPES intensity plots of cut 4(along K–Γ–K)and cut 7,which are indicated in(d)as dashed lines,respectively. For comparison,we overlay the calculated bands along K–Γ–K as blue lines on top of (e). The GDP indicates a gapped Dirac cone. (g) Energy distribution curves (EDCs) corresponding to the region indicated by black dashed rectangle in(e),with triangle marks highlighting the lower half of the Dirac cone.

    ARPES is used to directly investigate the electronic properties of monolayer AuTe. The samples were transferred from the MBE chamber to the ARPES facility by a highvacuum suitcase. Figure 4(c) expresses the ARPES data of AuTe/Au(111) measured along the high symmetry directionM–K–Γ–Min the hexagonal Brillouin zone(BZ)with a photon energy of 40.8 eV. The ARPES spectrum is a mixture of monolayer AuTe and substrate-related signals resulting from the large penetration depth. The calculated band structure(shaded area in Fig. 4(b)) is embedded in Fig. 4(c) after an upward-shift by 1.46 eV. The upward-shift of 1.46 eV originates from the hole-doping effect of the AuTe monolayer(Fig.S4). The main features show good consistence with the ARPES experiment results.

    The ARPES constant-energy contour atE=EFin Fig. 4(d) exhibits a ring-like feature with sixfold symmetry.However, the spectral intensity in the horizontal direction is suppressed due to the matrix element effect.[47,48]We selected two representative band cuts (black dash lines in Fig. 4(d))to demonstrate the distribution of Dirac nodal loop in the BZ (Figs. 4(e) and 4(f)). It shows clearly that the band dispersion is consistent with the calculated electronic structure(Fig.4(e)).Especially,the lower half of the gapped Dirac cone can be clearly seen from both the raw ARPES spectrum and energy distribution curves series plot in Fig. 4(g). The missing spectrum intensity of the upper half of Dirac cone may be due to the matrix element effect in ARPES experiment.[47,48]One can expect getting access to this part of band structure when a light source with different polarization or photon energy is used. In addition, the gapped Dirac point (GDP) is visible in all the ARPES intensity spectrums near the center of BZ(Fig.S5). The systematic ARPES results provide substantial evidence for the existence of the Dirac nodal loop in monolayer AuTe/Au(111). The gapped DNLF locates around 0.32 eV below the Fermi level,which is the first one observed by using ARPES technique in 2D metal monochalcogenides(CuSe,[17]AgTe[19]and AgSe[20]). Our realization of AuTe makes a step forward for real applications of 2D DNLFs.

    3. Conclusions

    By combining XPS, LEED, STM, STEM, ARPES techniques and DFT calculations, we confirm that AuTe monolayer with a honeycomb lattice has been successfully synthesized by directly tellurizing an Au(111) substrate. The nodal line character of monolayer AuTe has been revealed both experimentally and theoretically. Interestingly, the symmetrybroken-induced gapped nodal loops are experimentally observed which is absent for other reported 2D transition-metal monochalcogenides with DNL characters. Thus, we propose that monolayer AuTe exhibits appealing interest for future transport measurement and nano device applications.

    4. Methods

    Sample preparation and characterizations Monolayer AuTe films were grown in an ultrahigh vacuum(UHV)chamber, with a base pressure of 1×10-9mbar, equipped with standard MBE capabilities. First, the Au(111) substrate was cleaned by several cycles of Ar+ions sputtering followed by annealing until sharp diffraction spots in the LEED pattern and clean surface terraces with a herringbone reconstruction in the STM images were obtained. Then, tellurium atoms (Sigma 99.999%)were evaporated from a Knudsen cell and deposited onto the substrate at room temperature. Subsequently, the sample was annealed up to 530 K to achieved tellurization and crystallization. The growth process was monitored by LEED.After growth,the sample was transferred to an STM chamber(2×10-10mbar) for imaging and to an ARPES chamber for characterizing the electronic properties.

    ARPES measurement The ARPES measurements were performed at the Institute of Physics,Chinese Academy of Sciences, using a R4000 analyzer and a helium discharge lamp,under ultrahigh vacuum better than 3×10-11Torr. The data were recorded with He IIαphotons at 15 K. The energy and angular resolutions were set to 10 meV and 0.1°,respectively.The Fermi level of the samples was determined from a polycrystalline gold reference in electronical contact with the sample.

    STEM characterization The sample was transferred from the UHV chamber to the atmosphere, and then covered with graphite.

    Calculations In this work,all calculations are performed using the Viennaab initiosimulation package (VASP)[49,50]based on density functional theory (DFT) with the projector augmented-wave (PAW)[51]method and the local density approximation (LDA)[52,53]for the exchange–correlation functional. The energy cutoff of the plane wave basis set is 400 eV.The monolayer AuTe is fully relaxed until the forces on the ions are less than 0.001 eV/?A and the energy difference is less than 10-6eV. For the AuTe/Au(111) system, the criteria for force and energy convergence are 0.05 eV/?A and 10-4eV,respectively. The vacuum distance between two adjacent supercells inzdirection is larger than 15 ?A.Thek-points samplings are (21×21×1) for the monolayer AuTe and (11×11×1) for that on Au(111) with the Gamma scheme, respectively. The van der Waals interaction is described by the optB86b-vdw functional[54–56]for the AuTe/Au(111) system. The simulated STM image is obtained based on the Tersoff-Hamann approximation.[56]

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305800), the National Natural Science Foundation of China (Grant Nos. 61925111,61888102, and 52102193), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDB28000000 and XDB30000000), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003),and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    郭輝金安杰瑞
    連云港杰瑞電子有限公司
    玩水
    Full color ghost imaging by using both time and code division multiplexing technologies
    Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
    著名詩(shī)人郭輝
    鴨綠江(2021年17期)2021-10-13 07:05:22
    深圳市金安物流有限公司
    《晨曦》
    作品賞析
    貪吃的杰瑞
    作品賞析3
    国产精品不卡视频一区二区| 国产在线免费精品| 亚洲av中文av极速乱| 日韩三级伦理在线观看| 亚洲婷婷狠狠爱综合网| 晚上一个人看的免费电影| 久久这里有精品视频免费| 亚洲欧美精品自产自拍| 亚洲av.av天堂| 91在线精品国自产拍蜜月| 少妇 在线观看| 国产日韩欧美在线精品| 九九在线视频观看精品| 亚洲国产精品专区欧美| 国产精品久久久久久av不卡| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区| 在线观看av片永久免费下载| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 国产乱人偷精品视频| 国产毛片在线视频| 精品人妻视频免费看| 亚洲美女黄色视频免费看| 我的女老师完整版在线观看| 国产视频首页在线观看| 男人和女人高潮做爰伦理| 亚洲精品一区蜜桃| 欧美日韩综合久久久久久| 亚洲成人中文字幕在线播放| 亚洲,一卡二卡三卡| 国产无遮挡羞羞视频在线观看| 99久久精品一区二区三区| 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 亚洲国产色片| av视频免费观看在线观看| 亚洲成人av在线免费| 99热国产这里只有精品6| 青青草视频在线视频观看| 免费黄色在线免费观看| 18+在线观看网站| 91久久精品电影网| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久成人av| 99久久人妻综合| 欧美激情国产日韩精品一区| 日韩伦理黄色片| 综合色丁香网| 亚洲精品一区蜜桃| 永久网站在线| 国产精品三级大全| 国产乱来视频区| 蜜桃在线观看..| 久久热精品热| 舔av片在线| 少妇人妻精品综合一区二区| 另类亚洲欧美激情| 一区二区三区精品91| 搡老乐熟女国产| 国产中年淑女户外野战色| 在线观看免费视频网站a站| 亚洲精品aⅴ在线观看| 18禁裸乳无遮挡动漫免费视频| 六月丁香七月| 99热这里只有是精品50| 亚洲精品aⅴ在线观看| 日韩中文字幕视频在线看片 | av视频免费观看在线观看| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 在线观看免费高清a一片| 久久久久性生活片| 午夜视频国产福利| 深夜a级毛片| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99| 在线观看一区二区三区| 校园人妻丝袜中文字幕| 国产欧美日韩一区二区三区在线 | 亚洲人成网站在线观看播放| 欧美日韩在线观看h| 午夜免费鲁丝| 国产精品久久久久久久久免| 久久国产精品大桥未久av | 国产在视频线精品| 夜夜爽夜夜爽视频| 2022亚洲国产成人精品| 日本爱情动作片www.在线观看| 欧美日韩亚洲高清精品| 夜夜看夜夜爽夜夜摸| 制服丝袜香蕉在线| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 欧美激情极品国产一区二区三区 | 亚洲av成人精品一区久久| 欧美三级亚洲精品| 久久久久久久久大av| 日本一二三区视频观看| 中文字幕久久专区| 国产永久视频网站| 色视频在线一区二区三区| 欧美 日韩 精品 国产| 成人免费观看视频高清| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 乱码一卡2卡4卡精品| 制服丝袜香蕉在线| a级毛片免费高清观看在线播放| 狂野欧美激情性bbbbbb| 黄色一级大片看看| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 国产高清三级在线| 亚洲精品,欧美精品| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 国产免费一级a男人的天堂| 精品久久国产蜜桃| 亚洲精品456在线播放app| 国产欧美亚洲国产| 免费不卡的大黄色大毛片视频在线观看| 久久国内精品自在自线图片| 久久久欧美国产精品| 国产黄频视频在线观看| videossex国产| 国产色婷婷99| 亚洲av国产av综合av卡| 午夜福利视频精品| 免费人成在线观看视频色| 免费高清在线观看视频在线观看| 久久国产亚洲av麻豆专区| 老熟女久久久| 中文字幕av成人在线电影| 精品久久久久久久久av| 欧美成人精品欧美一级黄| 亚洲av二区三区四区| 国产精品秋霞免费鲁丝片| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 亚洲av.av天堂| 亚洲av男天堂| 欧美性感艳星| 亚洲av免费高清在线观看| 中文在线观看免费www的网站| 国产欧美亚洲国产| 久久久亚洲精品成人影院| 亚洲欧美日韩无卡精品| 亚州av有码| 亚洲综合精品二区| 亚洲性久久影院| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 日韩国内少妇激情av| 搡女人真爽免费视频火全软件| 2021少妇久久久久久久久久久| 国产欧美日韩精品一区二区| 日韩伦理黄色片| 国内精品宾馆在线| h视频一区二区三区| 大香蕉久久网| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 成人亚洲欧美一区二区av| av播播在线观看一区| 精品久久久久久久久亚洲| 一本色道久久久久久精品综合| 嫩草影院新地址| 亚洲精品日本国产第一区| 欧美高清性xxxxhd video| 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久| 成人毛片a级毛片在线播放| 99九九线精品视频在线观看视频| 最近最新中文字幕大全电影3| 22中文网久久字幕| 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 美女国产视频在线观看| 国产视频内射| 99视频精品全部免费 在线| 亚洲精品国产色婷婷电影| 精品99又大又爽又粗少妇毛片| 久久人妻熟女aⅴ| 国产精品爽爽va在线观看网站| 国产爽快片一区二区三区| av在线蜜桃| 一级毛片久久久久久久久女| 欧美97在线视频| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| kizo精华| 日韩大片免费观看网站| 超碰97精品在线观看| 国产有黄有色有爽视频| 人人妻人人添人人爽欧美一区卜 | 成人黄色视频免费在线看| 亚洲va在线va天堂va国产| 少妇精品久久久久久久| 免费大片黄手机在线观看| 三级国产精品欧美在线观看| 日本色播在线视频| 久久影院123| 女性被躁到高潮视频| av在线app专区| 久久久久久久久久久免费av| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片 | 色综合色国产| 亚洲精品日韩av片在线观看| 久久久久久久精品精品| 久久精品久久久久久久性| 人人妻人人看人人澡| 国产亚洲91精品色在线| 高清不卡的av网站| 热re99久久精品国产66热6| 蜜桃在线观看..| freevideosex欧美| 精品久久国产蜜桃| 中文乱码字字幕精品一区二区三区| 高清毛片免费看| 夜夜看夜夜爽夜夜摸| 丰满迷人的少妇在线观看| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 男人和女人高潮做爰伦理| 内射极品少妇av片p| 日韩中文字幕视频在线看片 | 日本wwww免费看| 国产人妻一区二区三区在| www.av在线官网国产| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久| 久久99蜜桃精品久久| 夜夜骑夜夜射夜夜干| 在线精品无人区一区二区三 | 国产精品人妻久久久久久| 亚洲综合色惰| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 一本一本综合久久| 波野结衣二区三区在线| 亚洲,一卡二卡三卡| av专区在线播放| 日韩制服骚丝袜av| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 欧美zozozo另类| 日韩欧美一区视频在线观看 | 天天躁日日操中文字幕| 国产探花极品一区二区| 搡老乐熟女国产| av在线老鸭窝| 精品久久久久久电影网| 色视频www国产| 免费观看在线日韩| 99久久综合免费| 中文资源天堂在线| 有码 亚洲区| 久久久久久久久久久丰满| 久久久午夜欧美精品| 一级毛片我不卡| 一个人看视频在线观看www免费| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | 熟女电影av网| 毛片一级片免费看久久久久| 91狼人影院| 国产亚洲91精品色在线| 久久久a久久爽久久v久久| 成人黄色视频免费在线看| 亚洲欧美一区二区三区国产| 日本黄大片高清| 91久久精品国产一区二区成人| 99久久精品一区二区三区| 成人国产av品久久久| 边亲边吃奶的免费视频| 最黄视频免费看| 欧美日韩视频高清一区二区三区二| 直男gayav资源| 成人毛片60女人毛片免费| 久久人人爽av亚洲精品天堂 | 日本黄大片高清| 久久久久视频综合| 2021少妇久久久久久久久久久| 一级爰片在线观看| 国内少妇人妻偷人精品xxx网站| 成人影院久久| 欧美丝袜亚洲另类| 女人久久www免费人成看片| 精品久久久久久电影网| 99久久精品国产国产毛片| 成年女人在线观看亚洲视频| 日韩av不卡免费在线播放| 一级毛片久久久久久久久女| 日本一二三区视频观看| 乱码一卡2卡4卡精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美精品专区久久| 欧美成人a在线观看| 精品亚洲成国产av| 国产高潮美女av| 美女内射精品一级片tv| 99re6热这里在线精品视频| 夫妻午夜视频| 免费人成在线观看视频色| 色吧在线观看| 国产日韩欧美亚洲二区| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 婷婷色综合大香蕉| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 尾随美女入室| 国产精品爽爽va在线观看网站| 成人一区二区视频在线观看| 丰满人妻一区二区三区视频av| 中文字幕亚洲精品专区| 国产亚洲5aaaaa淫片| 简卡轻食公司| 国产精品一区二区性色av| 最后的刺客免费高清国语| 少妇高潮的动态图| 久久97久久精品| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 成人一区二区视频在线观看| 少妇的逼好多水| 少妇精品久久久久久久| 久久久久视频综合| 国产精品麻豆人妻色哟哟久久| 久久99热这里只有精品18| 精品99又大又爽又粗少妇毛片| 精品人妻视频免费看| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 少妇人妻精品综合一区二区| 日产精品乱码卡一卡2卡三| 熟女人妻精品中文字幕| 国产高潮美女av| 在现免费观看毛片| 亚洲第一区二区三区不卡| 国产综合精华液| 久久久久久久国产电影| 女性被躁到高潮视频| 伊人久久国产一区二区| 久久国产精品大桥未久av | 交换朋友夫妻互换小说| 777米奇影视久久| 一级黄片播放器| 岛国毛片在线播放| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 亚洲av成人精品一区久久| 午夜福利在线在线| 亚洲婷婷狠狠爱综合网| 男人添女人高潮全过程视频| 久久国产乱子免费精品| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 亚洲精品日韩在线中文字幕| 国产黄片视频在线免费观看| 久久国产精品男人的天堂亚洲 | 日本猛色少妇xxxxx猛交久久| 在线观看一区二区三区激情| 啦啦啦在线观看免费高清www| 国产大屁股一区二区在线视频| 精品久久久久久电影网| 久久精品国产a三级三级三级| 看非洲黑人一级黄片| 婷婷色av中文字幕| 亚洲天堂av无毛| 亚洲成人一二三区av| 一区在线观看完整版| 一级av片app| 日本av免费视频播放| 一级av片app| 亚洲熟女精品中文字幕| 国产精品久久久久久久久免| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 一本色道久久久久久精品综合| 老女人水多毛片| 中国三级夫妇交换| 日韩视频在线欧美| 亚洲国产欧美人成| 欧美老熟妇乱子伦牲交| 嫩草影院新地址| 亚洲最大成人中文| 久久韩国三级中文字幕| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| av.在线天堂| 国产在视频线精品| 中文天堂在线官网| 久久人人爽人人片av| 久久99精品国语久久久| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区视频9| 久久久久久人妻| 国产伦精品一区二区三区视频9| 中文在线观看免费www的网站| 日韩大片免费观看网站| 大又大粗又爽又黄少妇毛片口| 2018国产大陆天天弄谢| 少妇的逼水好多| 精品一区在线观看国产| 高清视频免费观看一区二区| 午夜福利视频精品| 高清午夜精品一区二区三区| 男人爽女人下面视频在线观看| 久久热精品热| 成人二区视频| 亚洲美女视频黄频| 久久久a久久爽久久v久久| 国产成人精品婷婷| 人人妻人人看人人澡| 18禁在线播放成人免费| 欧美激情极品国产一区二区三区 | 亚洲av欧美aⅴ国产| 日韩 亚洲 欧美在线| 日日啪夜夜撸| 欧美 日韩 精品 国产| 久久99热这里只有精品18| 中文字幕人妻熟人妻熟丝袜美| 日韩大片免费观看网站| 久久婷婷青草| 99九九线精品视频在线观看视频| 国产欧美亚洲国产| 丰满少妇做爰视频| 尾随美女入室| 丰满乱子伦码专区| 丰满人妻一区二区三区视频av| 一级黄片播放器| 全区人妻精品视频| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 午夜免费男女啪啪视频观看| 国产精品无大码| 综合色丁香网| 在线观看人妻少妇| 欧美bdsm另类| 妹子高潮喷水视频| 久久精品人妻少妇| 插阴视频在线观看视频| 不卡视频在线观看欧美| 国产亚洲午夜精品一区二区久久| 人妻制服诱惑在线中文字幕| 久久青草综合色| 五月开心婷婷网| 欧美日韩国产mv在线观看视频 | 一区二区三区四区激情视频| 亚洲成色77777| 国产亚洲精品久久久com| 男的添女的下面高潮视频| 免费在线观看成人毛片| 26uuu在线亚洲综合色| 亚洲国产精品国产精品| 国产男人的电影天堂91| 国产又色又爽无遮挡免| 国产黄片视频在线免费观看| 亚洲电影在线观看av| 水蜜桃什么品种好| 哪个播放器可以免费观看大片| 99久久人妻综合| 少妇的逼好多水| 久久av网站| 美女福利国产在线 | 久久97久久精品| 九九在线视频观看精品| 99热全是精品| 亚洲欧美成人综合另类久久久| 老女人水多毛片| 国国产精品蜜臀av免费| 五月开心婷婷网| 大香蕉97超碰在线| av在线观看视频网站免费| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| kizo精华| 天天躁日日操中文字幕| 天天躁夜夜躁狠狠久久av| 一级av片app| 日本vs欧美在线观看视频 | 国产爱豆传媒在线观看| 男人狂女人下面高潮的视频| 国产精品一及| 久久久欧美国产精品| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 国产精品一区www在线观看| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 又粗又硬又长又爽又黄的视频| 熟女av电影| 欧美成人a在线观看| 久久久久久九九精品二区国产| 美女高潮的动态| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩卡通动漫| 大话2 男鬼变身卡| 99热这里只有是精品在线观看| 成人国产麻豆网| h视频一区二区三区| 日本爱情动作片www.在线观看| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 精品国产乱码久久久久久小说| 观看免费一级毛片| 我要看日韩黄色一级片| 老司机影院毛片| 最近的中文字幕免费完整| 国产 一区精品| 久久久a久久爽久久v久久| 最近最新中文字幕免费大全7| 尤物成人国产欧美一区二区三区| 亚洲真实伦在线观看| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 亚洲精品视频女| 下体分泌物呈黄色| 大话2 男鬼变身卡| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 18禁在线无遮挡免费观看视频| 五月开心婷婷网| 亚洲精品自拍成人| 国产精品久久久久成人av| 插逼视频在线观看| 欧美成人a在线观看| 国产成人一区二区在线| 国产视频首页在线观看| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 老司机影院毛片| 天天躁日日操中文字幕| 国产精品一区二区在线观看99| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 色视频在线一区二区三区| 国产白丝娇喘喷水9色精品| 王馨瑶露胸无遮挡在线观看| 熟女电影av网| 免费观看的影片在线观看| 男的添女的下面高潮视频| 色视频www国产| 精品久久久久久电影网| 国产色婷婷99| 青春草亚洲视频在线观看| 国产av一区二区精品久久 | 超碰av人人做人人爽久久| 在线精品无人区一区二区三 | 亚洲,欧美,日韩| 色视频在线一区二区三区| 欧美人与善性xxx| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡 | 美女福利国产在线 | 久久99热这里只有精品18| 尤物成人国产欧美一区二区三区| 亚州av有码| 亚洲av中文字字幕乱码综合| 青春草亚洲视频在线观看| 91狼人影院| 欧美一区二区亚洲| 欧美日韩一区二区视频在线观看视频在线| 男人狂女人下面高潮的视频| 一级a做视频免费观看| 人人妻人人澡人人爽人人夜夜| 青春草国产在线视频| 亚洲国产欧美在线一区| 国产精品一区二区三区四区免费观看| 少妇人妻精品综合一区二区| 久久久久久伊人网av| 亚洲在久久综合| 亚洲国产精品成人久久小说| 亚洲国产精品专区欧美| 99国产精品免费福利视频| a 毛片基地| 亚洲美女视频黄频| 亚洲性久久影院| 下体分泌物呈黄色| 色婷婷av一区二区三区视频| 国产精品99久久久久久久久| 黄色视频在线播放观看不卡| 菩萨蛮人人尽说江南好唐韦庄| 人妻一区二区av| 国产人妻一区二区三区在| 菩萨蛮人人尽说江南好唐韦庄| 欧美+日韩+精品| 黄色视频在线播放观看不卡| 亚洲av男天堂| 国产欧美亚洲国产| 少妇人妻精品综合一区二区| 亚洲自偷自拍三级| 亚洲经典国产精华液单| 日韩一区二区三区影片| 久久久国产一区二区| av福利片在线观看| 男人狂女人下面高潮的视频|