• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point

    2023-02-20 13:15:04QianyuQi齊倩玉YaoweiLi李耀威TingLiu劉婷PeiqingZhang張培晴ShixunDai戴世勛andTiefengXu徐鐵峰
    Chinese Physics B 2023年1期
    關(guān)鍵詞:劉婷

    Qianyu Qi(齊倩玉), Yaowei Li(李耀威), Ting Liu(劉婷), Peiqing Zhang(張培晴),3,?,Shixun Dai(戴世勛),3, and Tiefeng Xu(徐鐵峰)

    1Laboratory of Infrared Material and Devices,Advanced Technology Research Institute,Ningbo University,Ningbo 315211,China

    2Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo 315211,China

    3Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province,Ningbo University,Ningbo 315211,China

    4Ningbo Institute of Oceanography,Ningbo 315832,China

    Keywords: chalcogenide longperiod fiber grating,dual-peak resonance,phase matching turning point,refractive index sensor

    1. Introduction

    Long-period fiber gratings(LPFGs)promote optical coupling between the core mode and the cladding mode, and the peak value is easily affected by small changes in the surrounding refractive index (SRI). Thus, the refractive index sensing characteristics of a LPFG have attracted extensive attention and LPFGs have been widely used for biological and chemical sensing.[1–5]The phase matching curve (PMC) of each cladding mode of a LPFG contains a phase matching turning point (PMTP), and a LPFG working at the PMTP has the highest sensitivity to environmental disturbance.[6,7]When the actual grating period is less than the corresponding period of the PMTP,the LPFG has two resonance peaks that exhibit a dual-peak resonance effect.[8–10]At the same time, if the temperature,[11]ambient refractive index[12]and strain[13]change slightly,the bimodal resonant wavelength will change accordingly. Chen and Gu observed that a LPFG sensor based on bimodal resonance worked near the PMTP and had a high sensitivity to the SRI.[14]Shuet al.first studied the dual-peak resonance phenomenon of a LPFG and experimentally studied the response of the bimodal resonance to the SRI.[15]When the SRI increases,the two resonance summits move in the opposite direction.

    Generally, the resonant wavelength of a LPFG has high sensitivity only when the SRI is slightly lower than the cladding refractive index.[16]However, the refractive index of traditional silica fiber is relatively small, and hence such fiber sensors will not work when special high-refractive-index liquids are encountered.[17]Furthermore, due to their limited transmission range, silica fiber sensors are powerless in the mid-infrared (MIR) range, which contains many important molecular spectral fingerprints.[18]Chalcogenide glasses(ChGs) are novel infrared (IR) optical materials with excellent infrared optical properties,such as a wide IR transmission range,[19]high linear and nonlinear refractive indices[20–22]and low phonon energy,[23]and ChG fibers are thus widely used in fiber lasers and biological and chemical sensors in the MIR range.[24–27]

    However,due to the high refractive index of chalcogenide glass fiber(usually exceeding 2.0),its sensitivity is limited for conventional liquid detection. This problem can be solved by coating the fiber cladding with another thin film. Studies have found that coating a LPFG with a film having a refractive index higher than that of the cladding can expand the refractive index sensing range of the LPFG and improve its sensitivity.[28–32]Wanget al.proved that depositing a thin film at the PMTP of a LPFG can improve the sensitivity; they obtained a sensitivity of 9100 nm/RIU.[33]Nevertheless,when a high-refractive-index film is deposited on the optical fiber,the PMC will be changed,thereby leading to drifting of the PMTP.By reducing the fiber cladding radius, the PMC can also be changed.[34]Del Villaret al.proposed that reducing the fiber cladding radius and coating had opposite effects on the bimodal displacement.[35]Therefore,a LPFG can be controlled by reducing the cladding radius and coating until it works near the PMTP.Chen and Gu[36]studied the sensing characteristics of a thinly clad coated LPFG. Their results show that reduction of the cladding radius will increase the dynamic range of the high-sensitivity response of the LPFG thin film sensor.

    In this paper, we design a chalcogenide LPFG with thin film coating,and study the refractive index sensing characteristics of a chalcogenide LPFG with a high-order mode PMTP.To optimize the performance,the influence of film parameters and cladding radius on the dual-peak resonance wavelength spacing is analyzed. By combining the two methods of plating high-refractive-index film outside the fiber and reducing the fiber radius, sensitivity of the chalcogenide LPFG for refractive index sensing is improved,thereby providing practical support and reference data for the design of a high-sensitivity chalcogenide LPFG refractive index sensor structure. It is expected that such a sensor could applied to the detection of various gases and liquids in the field of biological and chemical sensing.

    2. Theoretical analysis

    2.1. Simulation model

    Figure 1(a) shows the transmission curve of fabricated As2S3glass. The figure shows that this ChG has an extremely wide IR transmission area, which can be transparent from 1.0 μm to 14 μm; thus, the prepared ChG can be applied in the MIR spectral region. A graph of wavelength versus refractive index was produced using an infrared-variable angle spectroscopic ellipsometer (Mark II, J. A. Woollam, USA) and is shown in Fig.1(b). This figure shows that the refractive index of As2S3glass was greater than 2.3 in the IR region.

    Figure 2 shows the structure and refractive index distribution of the coated thinly clad chalcogenide LPFG.The core and cladding are made of As2S3glass, and the difference in refractive index between the core and the cladding is realized by fine-tuning the composition. A film material with a higher refractive index, such as diamond, graphite, graphene or carbon nanotubes,should be used for the coating. The refractive indices of the core and the cladding aren1andn2, and their radii area1anda2, respectively. The refractive index of the film isn3and its thickness ish=a3-a2. The refractive index of the external environment isnsur. The optical fiber parameters used in the calculation area1=3 μm,a2=100 μm,n1=2.4211,n2=2.3952,grating lengthL=4.5 cm and the average refractive index change of the core is 1×10-2.

    Fig.1.(a)IR transmission spectra.(b)Graph of wavelength versus refractive index.

    Fig.2. Schematic of coated thinly clad chalcogenide LPFG: (a) structural model,(b)refractive index profile.

    2.2. PMTP and dual-peak resonance

    The phase matching condition of the LPFG, that is, the relationship between the grating period and resonant wavelength,is expressed as follows:

    where Δneff=-is the effective refractive index difference between the core and the cladding,λis the resonance wavelength andΛis the grating period. According to the phase matching conditions, PMCs for low- and high-order cladding modes can be obtained, as shown in Figs. 3(a) and 3(b), respectively. When the grating period is short, the resonant wavelength of the low-order cladding mode increases monotonously with the grating period, whereas the PMC for the high-order cladding mode will exhibit a conic characteristic, and two wavelength values can satisfy Eq.(1). In other words, two resonance peaks appear in the transmission spectrum; this is called the double-peak effect. The higher the cladding mode sequence number, the smaller the grating period required for resonant coupling with the core mode, and the smaller the resonant wavelength corresponding to the dual peak.

    Cladding mode LP0,19with the cladding mode numberν=19 was first selected,and the characteristics of its PMTP were carefully studied. Figure 4 shows the PMC of the cladding mode LP0,19. One PMTP is found in the PMC; the corresponding period is 110.5 μm and the slope is infinite at the PMTP.When the period is less than 110.5 μm double-peak resonance occurs(as shown in the inset in Fig.4). When the LPFG is affected by the refractive index it will cause a change in the refractive index of the cladding mode; this will then cause a change in the resonant wavelength. When the grating period approaches the PMTP,a LPFG refractive index sensor with high sensitivity will be obtained.

    Fig.3. Phase-matching curves of odd cladding modes for(a)low-order cladding and(b)high-order cladding.

    Fig.4. Phase-matching curve of LP0,19.

    3. Characteristics of LPFG refractive index sensing operating at the PMTP

    When the double peaks are located near the PMTP the slope of the PMC approaches infinity near the turning point;that is, the wavelength is most sensitive to periodic changes,thereby leading to a very high sensitivity to changes in the external environment. Figures 5(a), 6(a), and 7(a) show the tive index of the cladding mode, thus affecting the resonant wavelength of the grating.

    Fig.5. (a)Transmission spectrum of the LP0,19 mode and(b)response of LP0,3 and LP0,19 modes to the SRI for SRI=1.34–1.46.

    Fig.6.(a)Transmission spectrum of the LP0,19 mode and(b)the response of LP0,3 and LP0,19 modes to the SRI for SRI=1.64–1.76.

    Fig.7.(a)Transmission spectrum of the LP0,19 mode and(b)the response of LP0,3 and LP0,19 modes to the SRI for SRI=2.14–2.26.

    The refractive index of the film in the calculation is selected asn3=2.45.First,the external environment is assumed to be air(n4=1).When the film thickness increases from 0 nm to 1000 nm,numerical simulations obtain the relationship between the effective refractive index and the film thickness of LP0,3–LP0,23odd-numbered cladding modes (Fig. 8(a)). The effective refractive index of each cladding mode gradually increases with the thickness of the film.transmission spectra of LP0,19cladding modes at a low(1.34–1.46), medium (1.64–1.76), and high (2.14–2.26) SRI when the grating period is 110.5 μm. Figures 5(b), 6(b), and 7(b)show the responses of low-order (LP0,3modes) and highorder cladding modes(LP0,19modes)to different SRIs. When the period is 110.5 μm the low-order cladding mode is unimodal and almost unresponsive to all refractive index environments, whereas the high-order cladding modes have different responses to various SRIs. As the refractive index increases,the peak separation rises continuously. High-sensitivity detection of the SRI is realized by detecting the bimodal wavelength spacing. Thus,compared with low-order cladding modes,selecting a high-order cladding mode in the structural design can produce higher sensitivity refractive index sensing.

    4. Structure optimization

    4.1. Film parameters

    A LPFG is highly sensitive to the environment because the electromagnetic field of the cladding mode penetrates into the environment in the form of an evanescent wave at the interface between the cladding and the environment and interacts with the external environment,thereby changing the effective refractive index of the cladding mode and leading to drifting of the resonant wavelength.[37]After coating the LPFG with a film whose refractive index is much higher than that of the cladding material,the core mode is unaffected by the film,and the parameters of the film mainly affect the effective refrac-

    Fig.8. Variation of effective refractive index of (a) odd-numbered cladding modes with film thickness and (b) the LP0,19 cladding mode with film parameters.

    The external environment is set to be air and the LP0,19cladding mode is selected, as shown in Fig. 8(b). When the film thickness is fixed, changing the refractive index of the film can also alter the effective refractive index of the cladding mode. In addition, the effective refractive index of the cladding mode will show abrupt changes within a specific film thickness range, and the range of abrupt changes of films with different refractive indices will vary. For example, when the film refractive index is 2.45, the effective refractive index in the corresponding cladding mode changes from 300 nm to 700 nm,and when the film refractive index is 2.55, the corresponding change in the effective refractive index of the cladding mode is from 200 nm to 600 nm. When the film increases to a certain thickness,the low-order cladding mode will enter the film layer for transmission,and the original high-order mode will replace the low-order mode step by step. At this time, the energy of the electromagnetic field is redistributed among the cladding modes, the lowest cladding mode is transferred to the thin film layer for transmission and the higher-order mode covers the energy state of its previous mode, thus affecting the effective refractive index. Villaret al.explained this from the viewpoint of mode conversion.[38]When mode conversion of a cladding mode occurs,the effective refractive index of each cladding mode changes sharply.A sudden change in the effective refractive index of the cladding mode will inevitably lead to a shift in the resonance wavelength, indicating that a suitable refractive index and thickness of the film layer must be determined so that the coated LPFG works in the region of the effective refractive index of the cladding mode. A small change will cause a large change in the cladding mode,which will cause a significant change in the resonance wavelength and improve the sensitivity of LPFG refractive index sensing.

    4.2. Cladding radius

    The design in this work adopts a film refractive indexn3=2.55 and film thicknessh=300 nm because the choice of a high-refractive-index material can help shorten the coating time and save costs. The refractive index of carbon-based materials (carbon, diamond, graphite, graphene, carbon nanotubes) isn= 2.4 ton= 2.9, which is much higher than that of the cladding material. Amorphous carbon film materials such as graphene/carbon nanotube composite material has excellent properties (high hardness, wear resistance, low friction coefficient, optical transmittance, chemical inertness)and are suitable as coating materials. Many papers have reported the use of carbon-based materials such as graphene in the field of optical fiber sensing, and a variety of coating methods have been proposed.[39–41]Among these, a method suitable for application with chalcogenide optical fibers is the combined dispersion rotary coating method. The process of preparing graphene/carbon nanotube composites by the mixed dispersion rotary coating method is as follows. First,a graphene/carbon nanotube composite dispersion with uniform dispersion is prepared. The mixed dispersion is then sonicated and deposited on different substrates by a rotary coating method.The thickness of the composite film can be controlled according to the speed and time of spin coating.

    Coating the optical fiber with a high-refractive-index film will change the PMC.Figure 9(a)shows the PMC of the LP0,19cladding mode when it is uncoated, and the film thickness is 300 nm. Obviously,deposition of the film causes the curve to move to a longer period. In other words, if the period is designed to be 110.5 μm, for which the uncoated LPFG works at the turning point,when a 300 nm thick film is deposited on the optical fiber, dual-peak resonance will occur. In addition,the thicker the film,the greater the separation between the two peaks will be. To solve this problem,we propose reducing the bimodal spacing of the coated grating by reducing the fiber radius. Figure 9(b) shows that the peak separation decreases with a decrease in the cladding radius. When the cladding radius is 99.53 μm,the peak separation is 0. By optimizing the fiber radius, the bimodal grating works near the PMTP and optimal sensitivity can be achieved.

    Fig.9. (a)Effect of film thickness on phase matching curve. (b)Variation of peak separation with cladding radius.

    5. LPFG refractive index sensing characteristics of coated thinly clad fiber operating at the PMTP

    The refractive index sensing performance of the chalcogenide LPFG is optimized by a combination of high-order mode coupling characteristics of the LPFG and a reduction of the cladding radius and surface modification of the sensitive film. Figures 10(a), 11(a), and 12(a) show the transmission spectra of LP0,19cladding modes at low(1.34–1.46),medium(1.64–1.76),and high(2.14–2.26)SRIs when the film thicknessh=300 nm,the film refractive indexn3=2.55,the cladding radiusa2=99.53 μm and the periodΛ=110.5 μm.The bimodal spacing increases with the SRI.

    Figures 10(b),11(b),and 12(b)show the linear fitting relationship between peak separation and different SRIs before and after optimization. The sensitivity of peak separation to changes in the SRI can be defined as

    Fig.10. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=1.34–1.46.

    Fig.11. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=1.64–1.76.

    That is, the shift of the dual-peak resonance wavelength produced by unit change in the SRI is used to characterize the speed of the change in the double-peak spacing with the SRI. When the SRI is between 1.34 and 1.46, the unoptimized bimodal LPFG refractive index sensing sensitivity is 326 nm/RIU, whereas the optimized bimodal LPFG refractive index sensitivity is 486 nm/RIU,the sensitivity being increased by 160 nm/RIU.When the SRI changes from 1.64 to 1.76, the sensitivity of the refractive index sensor before and after optimization is 294 nm/RIU and 527 nm/RIU, respectively, the sensitivity being increased by 233 nm/RIU. When the SRI increases from 2.14 to 2.26,the wavelength spacing of the bimodal LPFG rises from 711 nm to 1003 nm. The refractive index sensitivity of the optimized bimodal LPFG reaches 2400 nm/RIU,whereas the refractive index sensing sensitivity of the unoptimized bimodal LPFG is only 701 nm/RIU; the sensitivity is increased by 1699 nm/RIU. These results show that by selecting appropriate grating parameters,film parameters and cladding radius,the refractive index sensitivity of the sensor is greatly improved compared with that of a generalized LPFG refractive index sensor. The new LPFG refractive index sensor has high sensitivity and good linearity and is expected to be applied in the fields of gas,liquid,chemistry and biological sensing.

    In order to compare the sensitivity of the sensor presented in this paper to the SRI with that of some other sensors, the average sensitivity to the SRI and detection range of several typical LPFG SRI sensors are listed in Table 1. The results show that although the sensitivity of most quartz fiber grating sensors is high,the range of refractive index in which they can work is relatively limited. Moreover, when the sensitivity of a quartz fiber grating sensor is too high, its stability will become poor. Considering the relationship between equilibrium stability and sensitivity,we chose the above structural parameters. Therefore,the structural design proposed by us not only widens the detection range but also has a certain stability.

    Fig.12. (a)Transmission spectrum of the LP0,19 mode and(b)sensitivities before and after optimization for SRI=2.14–2.26.

    Table 1. Sensitivity of different LPFG sensors.

    6. Conclusion

    In this paper, a coated thinly clad chalcogenide LPFG refractive index sensor based on the PMTP dual-peak resonance effect is studied theoretically. The sensor is optimized by selecting appropriate film parameters and cladding radius,and the sensitivity of the chalcogenide LPFG refractive index sensor is greatly improved. The simulation results show that the sensitivity of the coated thinly clad chalcogenide LPFG at the PMTP to the SRI is 2400 nm/RIU, which is significantly higher than that of a non-optimized grating.The structure proposed in this work not only has a wider sensing range but also offers a more flexible sensing scheme. Suitable sensitive materials can be selected according to the environmental object to be detected. High sensitivity can be obtained by adjusting the parameters of the film or the grating structure and is expected to be obtained in widely used photochemical biosensors.

    Acknowledgments

    Project supported by the Natural Science Foundation of China (Grant Nos. 62075107, 61935006, 62090064, and 62090065) and K. C. Wong Magna Fund in Ningbo University.

    猜你喜歡
    劉婷
    清水變小球
    溝通的力量
    逼宮原配撞上真金主:傷害性不大,侮辱性極強(qiáng)
    初中生同伴關(guān)系與攻擊性行為關(guān)系的研究
    叢林,叢林
    解答直線與圓錐曲線問題的兩種思路
    一條三八線
    劉婷作品
    溫柔一刀
    午夜a级毛片| 成人特级黄色片久久久久久久| 日韩精品中文字幕看吧| 亚洲色图av天堂| 国产av又大| av福利片在线| 日本三级黄在线观看| 国产高清videossex| 夜夜躁狠狠躁天天躁| 亚洲午夜理论影院| 黑人巨大精品欧美一区二区mp4| 国产99白浆流出| 久久香蕉精品热| 欧美+亚洲+日韩+国产| 久久国产精品男人的天堂亚洲| 欧美午夜高清在线| 国产精品九九99| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| 欧美日韩乱码在线| 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 天堂影院成人在线观看| 成人永久免费在线观看视频| 麻豆久久精品国产亚洲av | www.www免费av| 欧美精品一区二区免费开放| 久久久久久亚洲精品国产蜜桃av| 人人妻人人添人人爽欧美一区卜| 9191精品国产免费久久| 精品久久久精品久久久| 午夜激情av网站| 午夜视频精品福利| 亚洲片人在线观看| 91成年电影在线观看| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女 | 久久人妻av系列| 亚洲情色 制服丝袜| 一本综合久久免费| 九色亚洲精品在线播放| 欧美日韩黄片免| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 国产黄a三级三级三级人| 国产av精品麻豆| 嫩草影院精品99| 久久精品成人免费网站| 久久久久国产一级毛片高清牌| 久久人人爽av亚洲精品天堂| 精品福利观看| 婷婷精品国产亚洲av在线| 亚洲美女黄片视频| 99国产精品免费福利视频| 国产黄a三级三级三级人| 亚洲精品中文字幕一二三四区| 中亚洲国语对白在线视频| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 老司机在亚洲福利影院| 久久久国产欧美日韩av| 国产精品免费一区二区三区在线| 国产伦人伦偷精品视频| 热99re8久久精品国产| 夫妻午夜视频| 老司机深夜福利视频在线观看| 看片在线看免费视频| 国产精品久久久久成人av| 亚洲熟女毛片儿| 最好的美女福利视频网| 婷婷精品国产亚洲av在线| 国产91精品成人一区二区三区| 欧美激情高清一区二区三区| 免费在线观看黄色视频的| 免费久久久久久久精品成人欧美视频| 在线观看舔阴道视频| 9热在线视频观看99| 亚洲熟女毛片儿| 国产精品久久久av美女十八| 久久久精品欧美日韩精品| 十八禁人妻一区二区| 亚洲成a人片在线一区二区| 国产日韩一区二区三区精品不卡| 午夜激情av网站| 亚洲美女黄片视频| 免费高清在线观看日韩| 十八禁人妻一区二区| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美| 国产精品98久久久久久宅男小说| 嫩草影视91久久| 一进一出好大好爽视频| 精品福利永久在线观看| 久久草成人影院| 一级毛片高清免费大全| 热re99久久精品国产66热6| 美女午夜性视频免费| 五月开心婷婷网| 高清黄色对白视频在线免费看| 午夜老司机福利片| 亚洲精品av麻豆狂野| 久热爱精品视频在线9| 最好的美女福利视频网| 嫩草影院精品99| 99在线视频只有这里精品首页| 欧美中文综合在线视频| 757午夜福利合集在线观看| 日本免费一区二区三区高清不卡 | 国产日韩一区二区三区精品不卡| 老司机在亚洲福利影院| 身体一侧抽搐| 午夜福利欧美成人| 狠狠狠狠99中文字幕| 国产成人av教育| 久久国产精品人妻蜜桃| 一级毛片高清免费大全| 国产深夜福利视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产成人精品久久二区二区91| 日本撒尿小便嘘嘘汇集6| 淫妇啪啪啪对白视频| 亚洲情色 制服丝袜| 欧美精品啪啪一区二区三区| 欧美日本亚洲视频在线播放| 欧美黑人精品巨大| 18禁美女被吸乳视频| 一进一出抽搐动态| 久久热在线av| 国产亚洲av高清不卡| 亚洲第一av免费看| 国产一区二区在线av高清观看| 超色免费av| 高清av免费在线| 高清在线国产一区| 国产亚洲欧美精品永久| 18禁黄网站禁片午夜丰满| 三级毛片av免费| 成人国语在线视频| 丰满人妻熟妇乱又伦精品不卡| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷丁香在线五月| bbb黄色大片| 自线自在国产av| 777久久人妻少妇嫩草av网站| 午夜视频精品福利| 午夜免费观看网址| 99国产精品一区二区蜜桃av| 三级毛片av免费| 人人妻人人添人人爽欧美一区卜| 又紧又爽又黄一区二区| 乱人伦中国视频| 久久精品国产清高在天天线| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 熟女少妇亚洲综合色aaa.| 亚洲av片天天在线观看| 999精品在线视频| 午夜福利一区二区在线看| 日本a在线网址| 免费在线观看亚洲国产| 午夜免费鲁丝| 亚洲成人免费电影在线观看| 免费av毛片视频| 久久久国产成人免费| av电影中文网址| 另类亚洲欧美激情| 久久精品成人免费网站| 欧美中文综合在线视频| 欧美日韩瑟瑟在线播放| 亚洲全国av大片| 欧美黄色片欧美黄色片| 久久亚洲真实| 美女扒开内裤让男人捅视频| 国产精品乱码一区二三区的特点 | 每晚都被弄得嗷嗷叫到高潮| 久久国产乱子伦精品免费另类| 男女床上黄色一级片免费看| 亚洲国产精品一区二区三区在线| 十分钟在线观看高清视频www| 亚洲情色 制服丝袜| 9热在线视频观看99| 国产在线观看jvid| 露出奶头的视频| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 亚洲中文字幕日韩| 免费少妇av软件| 亚洲av电影在线进入| 制服诱惑二区| 久久人妻av系列| 国产精品98久久久久久宅男小说| 国产在线观看jvid| 久久中文字幕一级| 性少妇av在线| 国产精品野战在线观看 | av网站免费在线观看视频| 亚洲一区高清亚洲精品| 美国免费a级毛片| 神马国产精品三级电影在线观看 | 超色免费av| www.精华液| 在线观看免费视频日本深夜| 精品一区二区三卡| 亚洲国产精品一区二区三区在线| 国产精品亚洲av一区麻豆| 美女福利国产在线| 午夜精品国产一区二区电影| 19禁男女啪啪无遮挡网站| 制服诱惑二区| 黄色丝袜av网址大全| 久久精品91蜜桃| av视频免费观看在线观看| a级毛片在线看网站| 欧美另类亚洲清纯唯美| 欧美人与性动交α欧美软件| 村上凉子中文字幕在线| 国产免费现黄频在线看| 精品国产一区二区久久| 真人做人爱边吃奶动态| 纯流量卡能插随身wifi吗| 免费高清视频大片| 两性夫妻黄色片| 丰满迷人的少妇在线观看| 亚洲精品成人av观看孕妇| 亚洲欧美日韩无卡精品| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 人人妻人人添人人爽欧美一区卜| 不卡一级毛片| 亚洲,欧美精品.| 两性夫妻黄色片| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品二区激情视频| 亚洲精华国产精华精| 日韩欧美在线二视频| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 后天国语完整版免费观看| av国产精品久久久久影院| 亚洲一区二区三区色噜噜 | 国产黄色免费在线视频| 色尼玛亚洲综合影院| 国产精品亚洲一级av第二区| 99国产精品免费福利视频| 在线观看日韩欧美| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 1024视频免费在线观看| 久久人妻av系列| 亚洲一区二区三区色噜噜 | 十分钟在线观看高清视频www| 麻豆成人av在线观看| 99精国产麻豆久久婷婷| 一级毛片高清免费大全| 日本黄色日本黄色录像| 欧美大码av| 国产精品久久久av美女十八| 免费不卡黄色视频| 老司机靠b影院| 亚洲黑人精品在线| 成人永久免费在线观看视频| 黑丝袜美女国产一区| 亚洲情色 制服丝袜| 99re在线观看精品视频| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 两性夫妻黄色片| 我的亚洲天堂| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 巨乳人妻的诱惑在线观看| 久久亚洲真实| 高清在线国产一区| 丰满饥渴人妻一区二区三| 18禁国产床啪视频网站| 久久伊人香网站| 国产av在哪里看| 麻豆国产av国片精品| 欧美日韩av久久| 免费高清在线观看日韩| 国产亚洲欧美精品永久| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 欧洲精品卡2卡3卡4卡5卡区| 91字幕亚洲| 中文字幕人妻丝袜制服| 精品日产1卡2卡| 日韩精品中文字幕看吧| 国产成人精品在线电影| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区| 久久久久精品国产欧美久久久| 成人三级黄色视频| 国产精品秋霞免费鲁丝片| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 国产亚洲精品一区二区www| 黄色视频不卡| 国产精品一区二区在线不卡| 人人妻,人人澡人人爽秒播| 大香蕉久久成人网| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区久久| 天天添夜夜摸| 丝袜美足系列| 国产一区二区三区在线臀色熟女 | 午夜福利在线免费观看网站| 一级毛片高清免费大全| videosex国产| 啦啦啦在线免费观看视频4| 久久天堂一区二区三区四区| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 欧美日韩一级在线毛片| 少妇粗大呻吟视频| 一区在线观看完整版| 变态另类成人亚洲欧美熟女 | 精品午夜福利视频在线观看一区| 日本欧美视频一区| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 精品无人区乱码1区二区| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 亚洲av片天天在线观看| 久热这里只有精品99| 精品久久久久久电影网| 色老头精品视频在线观看| 亚洲久久久国产精品| 免费av中文字幕在线| 在线观看一区二区三区激情| 性欧美人与动物交配| 韩国精品一区二区三区| 三级毛片av免费| 少妇粗大呻吟视频| 女警被强在线播放| 久久欧美精品欧美久久欧美| 免费不卡黄色视频| 日韩欧美国产一区二区入口| 日本撒尿小便嘘嘘汇集6| 嫩草影视91久久| 欧美日韩福利视频一区二区| 欧美一区二区精品小视频在线| 男人操女人黄网站| 日韩中文字幕欧美一区二区| 久久久久九九精品影院| 不卡一级毛片| 91国产中文字幕| 亚洲三区欧美一区| 制服诱惑二区| 国产成人欧美| 69精品国产乱码久久久| 国产高清视频在线播放一区| 一级作爱视频免费观看| 嫩草影视91久久| 三级毛片av免费| 好男人电影高清在线观看| 桃红色精品国产亚洲av| 国产亚洲精品久久久久久毛片| 国产成人精品久久二区二区91| 色婷婷久久久亚洲欧美| 精品免费久久久久久久清纯| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 久久人人97超碰香蕉20202| 国产欧美日韩一区二区精品| 精品国产亚洲在线| 69精品国产乱码久久久| 少妇粗大呻吟视频| 国产麻豆69| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 自线自在国产av| 人人妻人人澡人人看| ponron亚洲| 一级作爱视频免费观看| 99久久人妻综合| 美女午夜性视频免费| 女人被狂操c到高潮| 新久久久久国产一级毛片| 人人妻人人澡人人看| 黑人巨大精品欧美一区二区蜜桃| 最新在线观看一区二区三区| 无遮挡黄片免费观看| 少妇的丰满在线观看| 亚洲第一av免费看| av网站在线播放免费| 国产主播在线观看一区二区| 正在播放国产对白刺激| www.999成人在线观看| 看免费av毛片| 亚洲av电影在线进入| 欧美乱码精品一区二区三区| 满18在线观看网站| 水蜜桃什么品种好| 日韩高清综合在线| 亚洲一区二区三区色噜噜 | 国产精品久久久久成人av| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 日韩成人在线观看一区二区三区| 欧美成人免费av一区二区三区| 午夜精品国产一区二区电影| 免费看十八禁软件| 亚洲专区字幕在线| 亚洲第一青青草原| 成人国语在线视频| 身体一侧抽搐| а√天堂www在线а√下载| 欧美性长视频在线观看| 麻豆av在线久日| 亚洲色图av天堂| 51午夜福利影视在线观看| 精品国产乱子伦一区二区三区| 精品一区二区三卡| 国产成人一区二区三区免费视频网站| 亚洲 国产 在线| e午夜精品久久久久久久| 亚洲国产毛片av蜜桃av| svipshipincom国产片| 18禁国产床啪视频网站| 黄色毛片三级朝国网站| 欧美日韩乱码在线| 少妇 在线观看| 两性夫妻黄色片| 18禁观看日本| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 亚洲精品国产一区二区精华液| 丰满的人妻完整版| 啦啦啦在线免费观看视频4| 嫩草影院精品99| 超碰成人久久| 视频在线观看一区二区三区| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 日本三级黄在线观看| 精品乱码久久久久久99久播| 国产精品野战在线观看 | 国产精品1区2区在线观看.| 国产精品偷伦视频观看了| 国产成人欧美| 日韩一卡2卡3卡4卡2021年| www.自偷自拍.com| 日韩有码中文字幕| 不卡一级毛片| 黄片大片在线免费观看| 欧美乱色亚洲激情| 成年人免费黄色播放视频| 制服人妻中文乱码| 天堂动漫精品| 欧美乱码精品一区二区三区| 国产精品 国内视频| 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 亚洲成人免费av在线播放| 成人亚洲精品av一区二区 | 中出人妻视频一区二区| 自线自在国产av| 国产av又大| 精品一区二区三区视频在线观看免费 | 亚洲人成77777在线视频| 亚洲色图综合在线观看| 天天添夜夜摸| 九色亚洲精品在线播放| 中文字幕人妻熟女乱码| 国产色视频综合| www.熟女人妻精品国产| 国产精品久久久av美女十八| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 成年女人毛片免费观看观看9| 午夜a级毛片| 久久伊人香网站| 另类亚洲欧美激情| av天堂久久9| 亚洲激情在线av| 久久久久精品国产欧美久久久| 久热这里只有精品99| 夫妻午夜视频| 亚洲欧美日韩无卡精品| 99热国产这里只有精品6| 亚洲中文字幕日韩| 亚洲人成电影观看| 老熟妇乱子伦视频在线观看| 天天添夜夜摸| 香蕉久久夜色| 久久久精品欧美日韩精品| 精品国内亚洲2022精品成人| 国产成年人精品一区二区 | 国产高清激情床上av| 午夜成年电影在线免费观看| 免费看a级黄色片| 性少妇av在线| 精品人妻1区二区| 欧美丝袜亚洲另类 | av在线播放免费不卡| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 中文字幕人妻熟女乱码| 老汉色∧v一级毛片| 国产欧美日韩一区二区精品| 不卡一级毛片| 成人手机av| 麻豆久久精品国产亚洲av | 男女做爰动态图高潮gif福利片 | 免费在线观看视频国产中文字幕亚洲| а√天堂www在线а√下载| 激情在线观看视频在线高清| 亚洲av熟女| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 成人手机av| 日本五十路高清| 国产高清国产精品国产三级| 国产精品九九99| 无限看片的www在线观看| 男人的好看免费观看在线视频 | 国产精品久久久久久人妻精品电影| 国产精品99久久99久久久不卡| 丝袜人妻中文字幕| 亚洲全国av大片| 久久久久国产一级毛片高清牌| 国产精品免费一区二区三区在线| 亚洲一区二区三区不卡视频| 琪琪午夜伦伦电影理论片6080| 又黄又爽又免费观看的视频| 在线观看日韩欧美| 午夜福利欧美成人| 免费一级毛片在线播放高清视频 | 大码成人一级视频| 亚洲久久久国产精品| 99国产精品一区二区三区| 真人一进一出gif抽搐免费| 亚洲成人精品中文字幕电影 | 国产高清激情床上av| 国产激情欧美一区二区| 男女高潮啪啪啪动态图| videosex国产| 精品少妇一区二区三区视频日本电影| 99久久精品国产亚洲精品| 宅男免费午夜| 亚洲av成人一区二区三| 中亚洲国语对白在线视频| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 俄罗斯特黄特色一大片| 国产99白浆流出| 国产成人欧美在线观看| 天堂√8在线中文| 国产精品乱码一区二三区的特点 | 中文字幕av电影在线播放| 亚洲一码二码三码区别大吗| 女人被躁到高潮嗷嗷叫费观| 日韩欧美在线二视频| 精品久久久久久久毛片微露脸| 国产乱人伦免费视频| 很黄的视频免费| 久久天堂一区二区三区四区| 成人永久免费在线观看视频| 一区在线观看完整版| 国产真人三级小视频在线观看| 一级毛片精品| 啪啪无遮挡十八禁网站| 成人国产一区最新在线观看| 成人18禁在线播放| 亚洲狠狠婷婷综合久久图片| 久久精品91蜜桃| 色综合欧美亚洲国产小说| 日韩三级视频一区二区三区| 亚洲欧美精品综合一区二区三区| 日本wwww免费看| 黄片小视频在线播放| 国产精品乱码一区二三区的特点 | 亚洲精品av麻豆狂野| 一个人观看的视频www高清免费观看 | 亚洲欧美精品综合一区二区三区| 国产成人av教育| 国产精品免费一区二区三区在线| 无限看片的www在线观看| 欧美人与性动交α欧美精品济南到| 国产又色又爽无遮挡免费看| 国产成人免费无遮挡视频| 这个男人来自地球电影免费观看| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址 | www.熟女人妻精品国产| 大陆偷拍与自拍| 久久久久久免费高清国产稀缺| 欧美另类亚洲清纯唯美| 久久精品人人爽人人爽视色| 天堂俺去俺来也www色官网| 老司机福利观看| 国产一区二区三区综合在线观看| 国产精品免费视频内射| e午夜精品久久久久久久| 国产欧美日韩精品亚洲av| 国产精品1区2区在线观看.| 日本撒尿小便嘘嘘汇集6| 免费高清视频大片| 亚洲专区国产一区二区| 最新在线观看一区二区三区| 啦啦啦 在线观看视频| 亚洲五月色婷婷综合| 夜夜夜夜夜久久久久| 亚洲精品粉嫩美女一区| 久热爱精品视频在线9|