• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schr¨odinger equation

    2023-02-20 13:14:38XuefengZhang張雪峰TaoXu許韜MinLi李敏andYueMeng孟悅
    Chinese Physics B 2023年1期
    關(guān)鍵詞:李敏雪峰

    Xuefeng Zhang(張雪峰), Tao Xu(許韜),,?, Min Li(李敏), and Yue Meng(孟悅)

    1State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China

    2College of Petroleum Engineering,China University of Petroleum,Beijing 102249,China

    3College of Science,China University of Petroleum,Beijing 102249,China

    4North China Electric Power University,Beijing 102206,China

    Keywords: nonlinear Schr¨odinger equation,soliton solutions,asymptotic analysis,soliton interactions

    1. Introduction

    As one of the most important and universal physical model, the nonlinear Schr¨odinger equation (NLSE) arises in many fields such as nonlinear optics,[1,2]plasma physics,[3]molecular biology,[4]Bose–Einstein condensates,[5]deep water,[6]and even finance.[7]Usually,the NLSE in the dimensionless form can be written as

    whereuis a complex-valued function,xandtrespectively represent the scaled space and time coordinates in most physical settings, buttis the normalized distance andxis the retarded time in the context of optical fibers,σ=1 andσ=-1 denote the focusing and defocusing nonlinearity types. It is known that the focusing NLSE admits the bright soliton solutions on the zero background,[8]whereas the defocusing NLSE possesses the dark soliton solutions over the plane-wave background.[9]Usually,the NLSE governs the propagation of optical solitons in the picosecond regime with the balance between group velocity dispersion(GVD)and self-phase modulation(SPM).[10,11]In 1973,Hasegawa and Tappert first theoretically predicted the soliton propagation in optical fibers with remarkable stability.[1,2]In 1980,Mollenaueret al.confirmed the experimental observation of optical solitons, which paves the way of using the optical soliton as the carrier of information bits.[12]Since then,the optical soliton has been one of the fascinating topics in applied mathematics,optics and material sciences.

    It is a remarkable property for Eq.(1)to admit the the exact multi-soliton solutions(MSSs),which describe the elastic soliton interactions in the ideal optical Kerr medium.[8,13]The‘elasticity’means that all the solitons can recover their shapes and velocities upon mutual collisions except for some shifts of the positions and phases. An multi-soliton solution is regularly associated to multiple different eigenvalues of the linear spectral problem,thus it can be regarded as the superposition of several individual solitons asymptotically ast →±∞,[8,13]and the asymptotic solitons separate from each other linearly withtand exhibit no interaction force.[8]When the eigenvalues have the same real parts but different imaginary parts,the interacting solitons enjoy the same velocities and thus form the bound state, which confines soliton motions in the stationary regions.[10,14]In such a particular case, the bounded solitons keep finite relative distance varying periodically in time, so they can display the interactions with periodic alternating attraction and repulsion. The bound state solitons were frequently referred to as soliton molecules as they exhibit molecule-like dynamics,[15]and the authors in Ref.[16]presented the velocity resonance method to generate soliton molecules.

    Moreover, if some or all the eigenvalues merge, one can obtain the multi-pole solutions (MPSs) in the terminology of inverse scattering transform.[8,17]In optical fibers, the MPSs can describe the interactions of multiple chirped pulses with the same amplitudes and group velocities when they are input with no phase difference.[18]The authors in Ref. [8] first reported the double-pole solution when at the occurrence of two eigenvalues coalescing, and the authors in Ref. [19] derived the formula for an arbitrary-order MPSs and studied the asymptotic behavior of the second- and third-order cases. It turns out that all the asymptotic solitons have the equal amplitudes and they diverge from each other logarithmically as|t|→∞. Also,the multi-pole solutions have been found to occur in the multi-component NLSE systems and exhibit some intriguing dynamical properties.[20,21]

    On the other hand, the real fiber is not homogeneous due to the variation in the lattice parameters and fluctuation of fiber geometry.[22]Thus, variable-coefficient NLSE (vc-NLSE) models were proposed when considering various inhomogeneous factors in the practical optical communication systems.[23–26]Over the past two decades, the following vc-NLSE model[26,27]

    has been widely used to describe the optical solitons propagation inside a fiber with variable dispersion and phase modulation, wheref(t) andg(t) are respectively the distributed GVD and SPM coefficient functions. Equation(2)has a great value in the pulse compression technique,[23]and soliton control and management.[24–26]The authors in Ref.[24]provided a systematic way to find the exact soliton solutions of Eq.(2)and presented the bright and dark one-soliton solutions. The authors in Ref. [28] derived a class of self-similar solutions and discussed their applications in the pulse amplification and compression. Meanwhile, the authors in Refs. [29,30] constructed the one- and two-soliton solutions for some special cases by the Darboux transformation and bilinear transformation methods, respectively. More generally, the authors in Ref. [31] obtained the transformations mapping Eq. (2) into Eq. (1) with some integrable conditions. As a result, a rich class of soliton-like solutions were obtained to describe the inhomogeneous fiber systems with different types of dispersion profiles.[32,33]

    Since the optical solitons are always packed as tightly as possible, the soliton interactions have been intensively studied by virtue of numerical simulations,[34,35]perturbation theory,[35,36]and exact analytical solutions.[18,37]The main results showed that two adjacent solitons with(nearly)equal amplitudes have a force that decreases exponentially with their relative distance, and the force is attractive for two solitons in phase and repulsive for two solitons out of phase.[18,35,37]Meanwhile,those properties were confirmed by some observations in optical experiment.[38]We notice that the asymptotic expressions of MSSs provide an important basis for understanding the soliton interactions in that the physical quantities of interacting solitons can be obtained exactly.[8,9,19]Specially,the soliton center trajectories allow us to derive the soliton accelerations,which can be used to characterize the two-soliton interaction force via Newton’s second law of motion.[37]By virtue of this idea,this paper will quantitatively study various soliton interaction scenarios in Eqs.(1)and(2)based on their exact two-soliton and double-pole solutions.

    The arrangement of the paper is as follows: In Section 2,we study the soliton interactions in the NLSE 1 based on its exact solutions. First, we obtain the asymptotic expressions of regular two-soliton and double-pole solutions ast →±∞,and then analyze the soliton interaction properties by deriving the physical quantities such as amplitudes,phase and position shifts, soliton accelerations, and interaction forces. Second,for the bounded two-soliton solution,we numerically calculate the center positions and accelerations of two solitons and discuss their interaction scenarios in three typical bounded cases.In Section 3,via some variable transformations we derive the exact two-soliton and double-pole solutions of the vcNLSE(2)with an integrable condition. Then, based on the asymptotic expressions, we quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles. In Section 4,we address the conclusions and discussions of this paper.

    2. Soliton interactions in the NLSE

    In this section, by the asymptotic analysis technique, we first give the analytical description of soliton interactions in the regular two-soliton and double-pole solutions, and then numerically characterize the soliton interactions in the twosoliton bounded states.

    2.1. Regular two-soliton solution

    As we know, the exact multi-soliton solutions of Eq. (1)were derived by many methods,such as the inverse scattering method,[8]and Darboux transformation.[39]Here, we present the regular two-soliton solution as follows:

    In the cases whenμ1/=μ2, the mutual interaction of two solitons having different velocities is shown in Fig. 1.Via the asymptotic analysis,[8,13]one can derive the expressions of two interacting solitons as|t|→∞by assuming Re(θ1)=O(1) and Re(θ2)=O(1), respectively. Note that when Re(θk)=O(1) there must be|Re(θ3-k)|=∞as|t|→∞fork= 1,2. For convenience, we assume thatν1>0,ν2<0, andμ1>μ2, and use the subscripts “R” and “I” to denote the real and imaginary parts ofθk. From the differenceν2θ1R-ν1θ2R=4ν1ν2(μ1-μ2)t+O(1), one can see that ifθ1R=O(1), thenθ2R→±∞ast →±∞, and that ifθ2R=O(1), thenθ1R→±∞ast →±∞. Thus, two pairs of asymptotic expressions are derived as follows:

    Fig.1. Density plot of solution (3) with λ1 =1+ i, λ2 =-1- i,ξ1=ξ2= ln2+i.

    The asymptotic expressions(4)and(5)suggest that solution(3)can describe the elastic two-soliton interaction,that is,the two interacting solitons retain their shapes, velocities and amplitudes upon interaction. But each soliton will experience the phase and position shifts which are respectively as follows:

    Besides, the soliton center trajectories are along the straight lines 2θkR±ln()=0(k=1,2),so the two interacting solitons diverge from each other linearly as|t|→∞and there is no interaction force.

    2.2. Double-pole solution

    We should mention that solution (3) cannot describe the interaction of two solitons having the same amplitudes and velocities, which corresponds to that the spectral parametersλ1andλ2merge into the same valueχ. By assumingλ1=χ+ε,λ2=χ-ε, the limit of solution (3) atε →0 can yield the double-pole solution:[40]

    whereμ=Re(χ),ν=Im(χ),ξands1are arbitrary constants in C. In such special case, the center trajectories of two solitons are apparently bent but they tend to be parallel as|t|→∞,as shown in Fig. 2. Next, we also use the asymptotic analysis to reveal the dynamical properties of soliton interactions in solution(7),and without loss of generality assumeν >0.

    Fig.2. Density plot of solution(7)with χ =i,ξ = ln2+i,s1= i.

    Let us use?to stand for the line directionx-ct=O(1)in thextplane. By making the differenceθR-ν(x-ct)=ν(c+4μ)t+ξR, we know that|θR|→∞withc/=-4μandθR=O(1) withc=-4μalong?as|t|→∞. However, the asymptotic limits of solution (7) along?as|t|→∞always produce 0, which means that solution (7) has no asymptotic soliton lying in any straight line. Thus, we have to discuss the possibility of asymptotic solitons located in certain curves whentand eθR meet some asymptotic balance.

    Specifically, we obtain that there are two pairs of asymptotic solitons in solution(7)as follows:

    whereu±krepresent the bright asymptotic solitons with their center trajectories located in the logarithmic curves:2θR±(-1)k-1ln(±16ν2t)=0(k=1,2).Since solution(7)is associated to the spectral parameterχ,both two pairs of asymptotic solitons enjoy the same amplitudes=2ν. For each pair of asymptotic solitons (,), the phase and position shifts can be,respectively,characterized by

    where the position shift shows the logarithmical growth with|t|. The velocities of asymptotic solitons(k= 1,2) are given by

    It can be seen thattend to the common limit-4μat the rateO(t-1) (see Fig. 3(a)), and the values ofv+katt >0 are equal tov-katt <0(k=1,2). Hence,the soliton interactions in the double-pole solution(7)are still elastic.

    By taking the derivatives ofaboutt, we obtain the soliton accelerations=±(1/2νt2) and=?(1/2νt2).According to Newton’s second law of motion,the two-soliton interaction force can be measured by

    wheremk=dx=4ν(k=1,2)are the soliton masses,andd= ln(16ν2|t|)/νis the relative distance between two solitons. Here,F <0 says that the interaction force is attractive and its strength decays exponentially to 0 as the relative distance increases(see Fig.3(b)),which was first obtained in Ref.[37].

    Fig.3. (a)Soliton accelerations versus t;(b)soliton interaction force versus t. The parametric choice follows that in Fig.2.

    2.3. Bounded two-soliton solution

    Ifμ1=μ2butν1/=ν2, the two solitons can form the bound state because their velocities are associated to the same parameterμ1,2.[10,14]For simplicity, we assume the two solitons have zero velocities by settingμ1,2=0.Then,solution(3)can be reduced to the bounded two-soliton solution:

    Depending on the parametersξ1andξ2,solution(15)can display different two-soliton interaction scenarios(see Figs.4(a)–4(c)).In this case,the relationshipν2θ1R-ν1θ2R=O(1)holds in solution(15),which implies thatθ1Randθ2Rhave always the same asymptotic order ast →±∞. As a result,one cannot extract the expressions of interacting solitons in the bound state. Instead,we numerically determine the center positions of the left soliton(u1)and right soliton(u2),and calculate the soliton accelerationsa1anda2. Also,the masses of two solitons can be numerically obtained bymk=dx(k=1,2),where the intervals[ak,bk]are chosen large enough to cover the whole wave packets and require[a1,b1]∩[a2,b2]=?. Next,we discuss the following three typical cases in solution(15).

    Fig.4. Density plots for three different bounded two-soliton interaction scenarios in solution(15),where the parameters are selected as follows: (a)ξ1=6.9+0.001i,ξ2=ln2+i,ν1= ,ν2= ;(b)ξ1=1+ i,ξ2= ln2+i,ν1=1.9,ν2=2;(c)ξ1=ξ2= ln2+i,ν1= ,ν2=.

    (i) If|ξ1|?|ξ2|, the two solitons are always separated and their relative distance changes very little as the time evolves (see Fig. 4(a)), so that the interaction force is quite weak. For example,whenξ1=6.9+0.001i andξ2=ln2+i, the soliton accelerationsa1,2are within the order 10-2(see Fig. 5(a)) and thus the interaction force is almost 0 (see Fig.5(b)).

    Fig.5. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(a).

    (ii) If|ξ1|≈|ξ2|, the relative distance between two solitons changes periodically but it will not decrease to 0, which means that they never collide at one point(see Fig.4(b)). For instance, by takingξ1=1+i andξ2=ln2+i, the accelerations of two solitons show the periodical behavior (see Fig. 6(a)). As a result, one can observe the periodic alternating attraction and repulsion between two solitons,which correspond toF <0 andF >0,respectively(see Fig.6(b)).

    Fig.6. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(b).

    (iii)If|ξ1|=|ξ2|,the two solitons collide periodically and form a series of transient waves with large amplitudes at interaction points,as shown in Fig.4(c). In this case,the strength of soliton interaction becomes stronger since they collide repeatedly at some moments. Except near the interaction points,we also use the second-order numerical derivatives of relative distance to calculate the soliton accelerations. By takingξ1=ξ2=ln2+i,one can see that the soliton accelerations also exhibit the periodical variation witht(see Fig.7(a)),but the interaction force is of the attractive type in the most of interaction course(see Fig.7(b)).

    Fig.7. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.4(c).

    3. Soliton interactions in the vcNLSE

    As we know, equation (2) is integrable under the condition

    withcas a real constant, and it can be converted into the standard NLSE iUT+UXX+2|U|2U= 0 via the variable transformations[31]

    In this section, we present the exact two-soliton and doublepole solutions of Eq. (2) with condition (16), and quantitatively study the two-soliton interactions with some inhomogeneous dispersion profiles.

    3.1. Inhomogeneous regular two-soliton solution

    Based on solution (3) and transformation (17), we can obtain the inhomogeneous regular two-soliton solution of Eq.(2):

    where(k=1,2) is defined in Eq. (5), and the signs “±”correspond toT →±∞. However,considering that some specificf(t)restricts the sign ofT,one may just obtain one pair of asymptotic solitons asT →∞orT →-∞(see cases(i)and(ii)below).

    Interestingly, the soliton velocities and accelerations are dependent onf(t)in the form

    and the two-soliton interaction force can be measured by

    Fig.8.Density plots of inhomogeneous regular two-soliton solution(18)with(a) f(t)=1-t/8,(b) f(t)= e-t/20,(c) f(t)=0.28-0.48sin(0.25t).Other parameters follows those in Fig.1.

    Fig.9. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(a).

    (ii) For the exponentially dispersion-decreasing profile,we setf(t)= e-(1/20)tand haveT=-20e-(1/20)t. In such a case,Ttends to 0 and-∞r(nóng)espectively ast →±∞, and also there appear just one pair of asymptotic solitons()ast →-∞. The two solitons move along the exponential curves but do not encounter each other becauseTis always smaller than 0 (see Fig. 8(b)). To be specific, the two solitons have the accelerations=(1/10)e-(1/20)tand=-(3/10)e-(1/20)t(see Fig.10(a)).Their interaction force is of the repulsive type and given by=(4/5)e-(1/20)t, which displays the exponential decay whentranges from 0 to-∞(see Fig.10(b)).

    Fig.10. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(b).

    (iii) For the trigonometric dispersion-decreasing profile,we setf(t) = 0.28-0.48sin(0.25t) and haveT= 0.28t+1.92cos(0.25t). In this case,Tgoes to ∞and-∞r(nóng)espectively ast →±∞,so there are two pairs of asymptotic solitons() and () which appear respectively ast →±∞.The asymptotic solitons propagate along the trigonometric periodic curves and experience just one interaction (as shown in Fig. 8(c)). Here, the soliton accelerations can be obtained by= 0.24cos(0.25t) and=-0.72cos(0.25t)(as shown in Fig. 11(a)), and the interaction force is described by expressions=-1.92cos(0.25t) fort >0 and=1.92cos(0.25t)fort <0,which show the periodical alternation between the attractive and repulsive types(as shown in Fig.11(b)).

    Fig.11. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.8(c).

    3.2. Inhomogeneous double-pole solution

    Similarly, by using solution (7) and transformation (17),we obtain the inhomogeneous double-pole solution of Eq.(2)as follows:

    where the signs “±” correspond toT →±∞(Again, one should note that some specificf(t) may cause just one pair of asymptotic solitons appear asT →∞orT →-∞).

    where the latter shows the dependence onf(t). Moreover,the soliton velocities and accelerations are respectively obtained by

    Thus,the two-soliton interaction can be measured by

    where

    are the soliton masses,andd=ln(16ν2(t)dt)/νis the relative distance between two solitons.Also,the force strength exhibits the exponential decay with the relative distance,whereas the force type is related to the sign off′(t)(t)dt-f2(t).

    Next, by fixingχ= i/2 and choosingf(t) respectively as a linear function and trigonometric function, we discuss the double-pole soliton interactions with two different types of dispersion profiles.

    (i) For the linearly dispersion-decreasing profilef(t)=1-(t/8), the two solitons interact twice at aboutt ≈0 andt ≈16(see Fig.12(a)). BecauseT=t-(t2/16)goes to-∞as botht →∞andt →-∞, the asymptotic solitons ()approach solution(23)well for the intervalst <0 andt >16.On the other hand,Tis positive in the interval 0<t <16,the asymptotic solitons()can also be used to approximate solution (23) althoughTis not very large. Thus, the soliton accelerations(see Fig.13(a))can be given by

    fort <0 ort >16,

    for 0<t <16. Meanwhile, the soliton interaction force is obtained by

    which is of the attractive type in the whole propagation process,as shown in Fig.13(b).

    Fig.12. Density plots of solution (18) with (a) f(t)=1-t/8, (b) f(t)=0.28-0.48sin(0.25t). Other parameters are χ = i/2, s1 = 1-(i/2),ξ =(1/2)ln2+(π/4)i and c=1.

    Fig.13. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.12(a).

    (ii) For the trigonometric dispersion-decreasing profilef(t)=0.28-0.48sin(0.25t),the two solitons move in the periodic trajectories and interact once at aboutt ≈0. In view thatT →±∞corresponds tot →±∞,the two pairs of asymptotic solitons()and()can approach solution(23)respectively ast →∞andt →-∞. Hence,the soliton accelerations(see Fig.14(a))can be given by

    fort >0,

    fort <0,and the soliton interaction force is obtained by

    which periodically alternates between the attractive and repulsive types during the propagation process, as illustrated in Fig.14(b).

    Fig.14. (a)Soliton accelerations and(b)two-soliton interaction force for the case in Fig.12(b).

    4. Conclusions and discussion

    In this paper, we have made a quantitative study on the soliton interactions in the NLS equation (1) and its variablecoefficient counterpart(2)based on their exact solutions.

    (i) For the regular two-soliton and double-pole solutions (3) and (7) of the NLS equation, we have obtained the expressions of asymptotic solitons ast →±∞via the asymptotic analysis method. Then,we have analyzed the soliton interaction properties by deriving the physical quantities such as amplitudes,phase and position shifts,soliton accelerations,and interaction force. It turns out that the asymptotic solitons in solution(3)exhibit no interaction force,whereas the soliton interaction in solution(7)is attractive and its strength decays exponentially to 0 as the relative distance increases. In addition, for the bounded two-soliton solution, we have numerically calculated the soliton center positions and accelerations,and discussed their interaction scenarios when two solitons are separated with different distances. It shows that the bounded two solitons display the periodic alternating attraction and repulsion,and the interaction strength grows as the relative distance decreases.

    (ii)For the vcNLSE(2)with an integrable condition(18),we have obtained the inhomogeneous regular two-soliton and double-pole solutions via the variable transformations (17).Then,we have also derived the expressions of asymptotic solitons, and have quantitatively studied the two-soliton interactions with some inhomogeneous dispersion profiles.Quite differently,we have revealed that the variable dispersion functionf(t)significantly influences the soliton interaction dynamics.On one side,some specificf(t)may cause that only one pair of asymptotic solitons appear asT →∞orT →-∞(see Figs. 8(a), 8(b), 12(a)). On the other side, the functionf(t)plays a major role in determining the soliton interaction types,for example, the regular two-soliton solution may exhibit the repulsive interaction (see Fig. 10(b)), while the double-pole solution may display the periodical alternation between the attractive and repulsive types(see Fig.14(b)).

    Acknowledgments

    Project supported by the Natural Science Foundation of Beijing Municipality(Grant No.1212007),the National Natural Science Foundation of China (Grant No. 11705284),and the Open Project Program of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Grant No.PRP/DX-2211).

    猜你喜歡
    李敏雪峰
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    Rumor Spreading Model with Immunization Strategy and Delay Time on Homogeneous Networks?
    看山是山?看山非山?
    雪峰下的草場
    中國三峽(2016年5期)2017-01-15 13:58:43
    Discussion on James Joyce’s The Dead
    西江文藝(2016年6期)2016-05-30 23:28:20
    The Influence of Missionary School on China’s Foreign LanguageEducation
    西江文藝(2016年6期)2016-05-30 07:53:17
    張碧晨 演繹新一代GIRL POWER
    Coco薇(2016年4期)2016-04-06 16:57:38
    王雪峰國畫
    歌海(2016年1期)2016-03-28 10:08:55
    韓雪峰的“臺賬”
    小幽默二則
    亚洲国产精品合色在线| 亚洲专区字幕在线| 亚洲一码二码三码区别大吗| 久久久久国产精品人妻aⅴ院| 淫妇啪啪啪对白视频| 美女 人体艺术 gogo| 69av精品久久久久久| 日本免费a在线| 变态另类丝袜制服| 午夜激情av网站| 大码成人一级视频| 一二三四社区在线视频社区8| 精品人妻在线不人妻| 国产成年人精品一区二区| 国产成年人精品一区二区| 午夜免费观看网址| 国产精品野战在线观看| 国产日韩一区二区三区精品不卡| 9色porny在线观看| 制服人妻中文乱码| 日韩一卡2卡3卡4卡2021年| 久久久久精品国产欧美久久久| 九色国产91popny在线| 精品一区二区三区av网在线观看| 级片在线观看| 免费在线观看日本一区| av天堂久久9| 熟女少妇亚洲综合色aaa.| 亚洲国产精品久久男人天堂| 国产精品一区二区免费欧美| netflix在线观看网站| 少妇 在线观看| 日韩中文字幕欧美一区二区| 亚洲成人免费电影在线观看| 欧美一区二区精品小视频在线| 亚洲精品在线观看二区| 国产不卡一卡二| www.999成人在线观看| 亚洲无线在线观看| 国产熟女xx| 国产精品av久久久久免费| 宅男免费午夜| 日韩成人在线观看一区二区三区| 亚洲成人久久性| 亚洲国产精品久久男人天堂| 国产成人免费无遮挡视频| 久久国产精品影院| 久久人人97超碰香蕉20202| 日韩精品免费视频一区二区三区| 少妇被粗大的猛进出69影院| 国产精品一区二区三区四区久久 | 丁香六月欧美| 亚洲欧美精品综合一区二区三区| 人人妻,人人澡人人爽秒播| 深夜精品福利| 久久精品国产亚洲av高清一级| 国产欧美日韩一区二区精品| 欧美日韩亚洲国产一区二区在线观看| 久久人人爽av亚洲精品天堂| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清 | 亚洲成av片中文字幕在线观看| 露出奶头的视频| 一级片免费观看大全| 后天国语完整版免费观看| www.精华液| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| www.自偷自拍.com| 日韩精品免费视频一区二区三区| 亚洲人成77777在线视频| 满18在线观看网站| 日本a在线网址| 国产精品精品国产色婷婷| 十八禁网站免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 自线自在国产av| 亚洲国产毛片av蜜桃av| 免费少妇av软件| 亚洲欧美精品综合久久99| 一夜夜www| 免费搜索国产男女视频| 国产精品久久久久久人妻精品电影| 高清黄色对白视频在线免费看| cao死你这个sao货| 欧美乱妇无乱码| 在线观看午夜福利视频| 国产成人精品久久二区二区91| 国产精品日韩av在线免费观看 | 桃色一区二区三区在线观看| 日韩欧美国产在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 黄片小视频在线播放| 91成年电影在线观看| 国产成人精品在线电影| 国产精华一区二区三区| √禁漫天堂资源中文www| 熟妇人妻久久中文字幕3abv| 97碰自拍视频| 久久中文看片网| videosex国产| 亚洲一码二码三码区别大吗| 人人妻人人澡人人看| 高清在线国产一区| 欧美一级毛片孕妇| 黄色片一级片一级黄色片| 欧美色视频一区免费| 欧美国产日韩亚洲一区| 91九色精品人成在线观看| 一级毛片女人18水好多| 久久国产精品人妻蜜桃| 欧美国产日韩亚洲一区| 成人亚洲精品av一区二区| 欧美最黄视频在线播放免费| 一级a爱视频在线免费观看| 999久久久国产精品视频| 婷婷六月久久综合丁香| 久久久精品欧美日韩精品| 国产亚洲av嫩草精品影院| 97超级碰碰碰精品色视频在线观看| 黄色丝袜av网址大全| 无限看片的www在线观看| 午夜福利高清视频| 宅男免费午夜| av网站免费在线观看视频| 成人国语在线视频| 多毛熟女@视频| 搡老妇女老女人老熟妇| 国产成人精品久久二区二区91| 高清毛片免费观看视频网站| 黄网站色视频无遮挡免费观看| 两个人看的免费小视频| 亚洲 欧美一区二区三区| 美国免费a级毛片| 亚洲三区欧美一区| 99国产极品粉嫩在线观看| 国产精品久久久av美女十八| 国产成人精品久久二区二区免费| 黑人操中国人逼视频| 黄色 视频免费看| 欧美老熟妇乱子伦牲交| 一二三四社区在线视频社区8| 亚洲av五月六月丁香网| 国语自产精品视频在线第100页| 日韩精品青青久久久久久| 涩涩av久久男人的天堂| 亚洲国产日韩欧美精品在线观看 | 国产成人精品在线电影| 精品人妻在线不人妻| 99在线人妻在线中文字幕| 一个人观看的视频www高清免费观看 | 丝袜人妻中文字幕| 欧美中文综合在线视频| 香蕉久久夜色| 亚洲专区中文字幕在线| 欧美激情 高清一区二区三区| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 日韩免费av在线播放| 中文字幕人妻丝袜一区二区| 1024视频免费在线观看| 99久久综合精品五月天人人| 成人永久免费在线观看视频| 欧美日本亚洲视频在线播放| 精品乱码久久久久久99久播| 黄色成人免费大全| 亚洲五月色婷婷综合| 精品欧美一区二区三区在线| 久久午夜综合久久蜜桃| 欧美乱色亚洲激情| 亚洲精品在线美女| 搡老岳熟女国产| 国产精品 国内视频| 欧美国产日韩亚洲一区| 又紧又爽又黄一区二区| 啦啦啦免费观看视频1| 美女高潮到喷水免费观看| a级毛片在线看网站| 精品日产1卡2卡| 无限看片的www在线观看| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 亚洲国产欧美网| 久久国产精品影院| 自线自在国产av| 啦啦啦免费观看视频1| 久久人妻熟女aⅴ| 欧美黄色淫秽网站| 精品国产国语对白av| www.自偷自拍.com| 亚洲无线在线观看| 国产麻豆成人av免费视频| 亚洲精品av麻豆狂野| 一进一出抽搐gif免费好疼| 十八禁网站免费在线| 如日韩欧美国产精品一区二区三区| 国产人伦9x9x在线观看| 国产精品一区二区精品视频观看| 一区福利在线观看| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 欧美性长视频在线观看| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 男人舔女人的私密视频| 日本a在线网址| 亚洲欧美日韩高清在线视频| 精品人妻在线不人妻| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 成人av一区二区三区在线看| 最近最新中文字幕大全免费视频| 成人精品一区二区免费| 在线免费观看的www视频| 日本vs欧美在线观看视频| 一级黄色大片毛片| 免费女性裸体啪啪无遮挡网站| 久久人妻av系列| 91成人精品电影| 国产亚洲av嫩草精品影院| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩精品久久久久久密| 国产精品久久电影中文字幕| 男女午夜视频在线观看| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲激情在线av| 两人在一起打扑克的视频| 激情视频va一区二区三区| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看| 色综合亚洲欧美另类图片| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 一级片免费观看大全| 亚洲国产欧美网| 久久精品aⅴ一区二区三区四区| 麻豆av在线久日| 久久久久国内视频| 老司机午夜福利在线观看视频| 国产精品久久视频播放| 97人妻精品一区二区三区麻豆 | 老司机深夜福利视频在线观看| 男女午夜视频在线观看| 国产精品日韩av在线免费观看 | 色婷婷久久久亚洲欧美| 乱人伦中国视频| 国产精品二区激情视频| 久热爱精品视频在线9| 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 久久国产精品影院| 亚洲av美国av| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 久久人人精品亚洲av| 老鸭窝网址在线观看| 欧美一级a爱片免费观看看 | 午夜成年电影在线免费观看| 国语自产精品视频在线第100页| 深夜精品福利| 精品熟女少妇八av免费久了| 50天的宝宝边吃奶边哭怎么回事| 欧美国产精品va在线观看不卡| 久久欧美精品欧美久久欧美| xxx96com| 久久久久久久久免费视频了| 9热在线视频观看99| 男女午夜视频在线观看| 国产午夜精品久久久久久| 午夜精品在线福利| 欧美久久黑人一区二区| 在线观看www视频免费| 精品国产美女av久久久久小说| 91麻豆精品激情在线观看国产| 国产99久久九九免费精品| 国产亚洲精品久久久久久毛片| 国产精品香港三级国产av潘金莲| 香蕉丝袜av| 99久久综合精品五月天人人| 精品国产超薄肉色丝袜足j| 99在线人妻在线中文字幕| 国产成人av教育| 精品久久久久久久人妻蜜臀av | 亚洲国产欧美日韩在线播放| 午夜福利18| 久久久久久国产a免费观看| 一进一出抽搐动态| 日日夜夜操网爽| 午夜影院日韩av| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 少妇粗大呻吟视频| 国产精品精品国产色婷婷| 国产精品永久免费网站| 老司机靠b影院| 久久中文字幕一级| 日本三级黄在线观看| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲综合一区二区三区_| svipshipincom国产片| 麻豆久久精品国产亚洲av| 叶爱在线成人免费视频播放| 国产激情久久老熟女| 国产一级毛片七仙女欲春2 | 国产精品久久久久久av不卡| 日日夜夜操网爽| avwww免费| 久久99热6这里只有精品| 22中文网久久字幕| 18禁黄网站禁片午夜丰满| 人妻夜夜爽99麻豆av| 久久久久国内视频| 全区人妻精品视频| 99久久精品国产国产毛片| 伦理电影大哥的女人| 欧美一区二区亚洲| 特级一级黄色大片| 69人妻影院| 欧美人与善性xxx| 乱人视频在线观看| 真人做人爱边吃奶动态| 久久精品综合一区二区三区| 久久久久久久久中文| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 亚洲av成人av| 免费人成在线观看视频色| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 国产精品,欧美在线| 亚洲不卡免费看| 男人舔女人下体高潮全视频| 欧美极品一区二区三区四区| avwww免费| 成熟少妇高潮喷水视频| 热99在线观看视频| av黄色大香蕉| 88av欧美| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 成人一区二区视频在线观看| 久久久久久久午夜电影| 91在线观看av| 国产伦人伦偷精品视频| 又黄又爽又免费观看的视频| 性插视频无遮挡在线免费观看| 老熟妇乱子伦视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产精品1区2区在线观看.| 免费搜索国产男女视频| 亚洲专区国产一区二区| 午夜老司机福利剧场| 又紧又爽又黄一区二区| 给我免费播放毛片高清在线观看| 国产女主播在线喷水免费视频网站 | 国产精品嫩草影院av在线观看 | 欧美黑人巨大hd| 99久久九九国产精品国产免费| 欧美成人性av电影在线观看| 婷婷精品国产亚洲av| 亚洲性夜色夜夜综合| 免费人成在线观看视频色| 他把我摸到了高潮在线观看| 老司机福利观看| 人人妻人人澡欧美一区二区| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 女人十人毛片免费观看3o分钟| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 精品久久久久久成人av| 欧美日本亚洲视频在线播放| 国产人妻一区二区三区在| 精品福利观看| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品亚洲一区二区| 久久久久国内视频| 少妇高潮的动态图| 综合色av麻豆| 日韩大尺度精品在线看网址| 国产男靠女视频免费网站| 久久久久九九精品影院| 白带黄色成豆腐渣| 99九九线精品视频在线观看视频| 成人综合一区亚洲| 日韩欧美三级三区| 亚洲欧美精品综合久久99| 91久久精品电影网| 国产精华一区二区三区| 黄色一级大片看看| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 亚洲自偷自拍三级| 99热这里只有精品一区| 国产三级中文精品| 男人和女人高潮做爰伦理| 一个人看的www免费观看视频| 成人性生交大片免费视频hd| 国产午夜精品论理片| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久久久免| 日韩欧美 国产精品| 男人的好看免费观看在线视频| 亚洲色图av天堂| 日日干狠狠操夜夜爽| 中文资源天堂在线| 亚洲av成人av| 久久久久精品国产欧美久久久| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 97碰自拍视频| 乱系列少妇在线播放| 不卡一级毛片| 一本久久中文字幕| 婷婷亚洲欧美| 极品教师在线免费播放| 窝窝影院91人妻| 97超视频在线观看视频| 精品99又大又爽又粗少妇毛片 | 亚洲国产色片| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 日韩欧美在线乱码| 长腿黑丝高跟| 最近最新中文字幕大全电影3| 国产不卡一卡二| 久久人人精品亚洲av| 国产精品福利在线免费观看| 99在线视频只有这里精品首页| 亚洲av二区三区四区| 中文字幕熟女人妻在线| 赤兔流量卡办理| 国产黄a三级三级三级人| 天堂网av新在线| 深夜精品福利| 天堂网av新在线| 男人舔女人下体高潮全视频| 欧美黑人巨大hd| 国产精品99久久久久久久久| 亚洲国产欧美人成| 国产久久久一区二区三区| 精品一区二区三区视频在线观看免费| 久久6这里有精品| 国产亚洲精品av在线| 淫秽高清视频在线观看| 成人综合一区亚洲| 在线观看一区二区三区| 桃色一区二区三区在线观看| 999久久久精品免费观看国产| 99久久无色码亚洲精品果冻| 亚洲美女搞黄在线观看 | 午夜福利成人在线免费观看| 成人三级黄色视频| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 亚洲欧美清纯卡通| av福利片在线观看| 日本爱情动作片www.在线观看 | 亚洲av五月六月丁香网| 欧美在线一区亚洲| 亚洲,欧美,日韩| 两个人视频免费观看高清| 少妇熟女aⅴ在线视频| 嫩草影院新地址| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出好大好爽视频| 亚洲天堂国产精品一区在线| 2021天堂中文幕一二区在线观| 18禁黄网站禁片午夜丰满| ponron亚洲| 国产人妻一区二区三区在| 国产免费一级a男人的天堂| 在现免费观看毛片| 两个人的视频大全免费| 亚洲精品影视一区二区三区av| 国产激情偷乱视频一区二区| 精品久久国产蜜桃| 中文字幕av在线有码专区| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 毛片女人毛片| av在线蜜桃| 狂野欧美白嫩少妇大欣赏| 国产乱人视频| 韩国av在线不卡| 免费看a级黄色片| 一级av片app| 国产一区二区三区av在线 | 天堂动漫精品| 欧美日韩亚洲国产一区二区在线观看| 麻豆一二三区av精品| 村上凉子中文字幕在线| 精品久久久久久久末码| 亚洲电影在线观看av| 精品欧美国产一区二区三| 国产乱人视频| 国产日本99.免费观看| 午夜福利18| 在线免费观看不下载黄p国产 | 国产美女午夜福利| 中文字幕av成人在线电影| 久9热在线精品视频| 亚洲 国产 在线| x7x7x7水蜜桃| 亚洲精品日韩av片在线观看| 亚洲欧美精品综合久久99| 午夜福利欧美成人| 成人鲁丝片一二三区免费| 国产三级在线视频| 老司机午夜福利在线观看视频| 午夜福利欧美成人| aaaaa片日本免费| 婷婷色综合大香蕉| 国产综合懂色| 日本精品一区二区三区蜜桃| 成人欧美大片| 乱人视频在线观看| 日韩欧美在线乱码| 成人午夜高清在线视频| 午夜免费男女啪啪视频观看 | 男女之事视频高清在线观看| 欧美不卡视频在线免费观看| 日本 av在线| 国产精品久久久久久久久免| 国产一区二区三区视频了| 中亚洲国语对白在线视频| 免费看光身美女| 两个人视频免费观看高清| 亚洲最大成人中文| 成人特级av手机在线观看| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院入口| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 日本欧美国产在线视频| 成人国产一区最新在线观看| 97超级碰碰碰精品色视频在线观看| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办 | 99久久中文字幕三级久久日本| 淫妇啪啪啪对白视频| 精品久久国产蜜桃| 中国美白少妇内射xxxbb| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区免费观看 | 午夜福利欧美成人| 欧美国产日韩亚洲一区| 88av欧美| 成人欧美大片| 嫩草影院精品99| 久久久久国产精品人妻aⅴ院| 精品久久久久久久末码| 日韩欧美 国产精品| 啦啦啦啦在线视频资源| 国产精品av视频在线免费观看| 国产色婷婷99| 黄色视频,在线免费观看| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 看十八女毛片水多多多| 亚洲最大成人手机在线| 91午夜精品亚洲一区二区三区 | 又粗又爽又猛毛片免费看| 成人亚洲精品av一区二区| 97超视频在线观看视频| 韩国av一区二区三区四区| 一个人免费在线观看电影| 又黄又爽又免费观看的视频| 美女cb高潮喷水在线观看| 色哟哟哟哟哟哟| 久久九九热精品免费| 国产女主播在线喷水免费视频网站 | 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 床上黄色一级片| 在线观看舔阴道视频| 啪啪无遮挡十八禁网站| 免费观看在线日韩| 久久精品国产亚洲网站| 男女做爰动态图高潮gif福利片| 免费人成在线观看视频色| 日本a在线网址| 国产极品精品免费视频能看的| 亚洲人与动物交配视频| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av涩爱 | 日本五十路高清| 日韩欧美在线二视频| 色哟哟·www| 黄色配什么色好看| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 精品午夜福利视频在线观看一区| 搡女人真爽免费视频火全软件 | 91在线精品国自产拍蜜月| 国产精品亚洲一级av第二区| 亚洲国产色片| 亚洲自拍偷在线| 国产 一区 欧美 日韩| 狂野欧美激情性xxxx在线观看|