• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphene Bridge Heterostructure Devices for Negative Differential Transconductance Circuit Applications

    2023-02-20 01:09:44MinjongLeeTaeWookKimChangYongParkKimoonLeeTakashiTaniguchiKenjiWatanabeMinguKimDoKyungHwangYoungTackLee
    Nano-Micro Letters 2023年2期

    Minjong Lee, Tae Wook Kim, Chang Yong Park, Kimoon Lee, Takashi Taniguchi,Kenji Watanabe, Min-gu Kim,6?, Do Kyung Hwang,7?, Young Tack Lee,8?

    ABSTRACT Two-dimensional van der Waals (2D vdW)material-based heterostructure devices have been widely studied for high-end electronic applications owing to their heterojunction properties. In this study, we demonstrate graphene (Gr)-bridge heterostructure devices consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/n-type molybdenum disulfide as a channel material for field-effect transistors (FET). Unlike conventional FET operation, our Gr-bridge devices exhibit nonclassical transfer characteristics (humped transfer curve),thus possessing a negative differential transconductance.These phenomena are interpreted as the operating behavior in two series-connected FETs, and they result from the gate-tunable contact capacity of the Gr-bridge layer.Multi-value logic inverters and frequency tripler circuits are successfully demonstrated using ambipolar semiconductors with narrow- and wide-bandgap materials as more advanced circuit applications based on non-classical transfer characteristics. Thus, we believe that our innovative and straightforward device structure engineering will be a promising technique for future multi-functional circuit applications of 2D nanoelectronics.

    KEYWORDS Graphene bridge; Heterostructure device; Non-classical transfer characteristics; Multi-value logic inverter; Frequency tripler

    1 Introduction

    Two-dimensional van der Waals (2D vdW) nanomaterials have provided intriguing opportunities for various applications in nanoelectronics. For example, graphene (Gr) is a versatile material owing to its excellent carrier mobility and compatibility with various applications; however,the absence of a bandgap limits its use as a semiconductor channel beyond silicon-based electronics [1, 2]. Thus, it can be considered as a conductor material in future electronic devices, and several research groups have used exfoliated Gr as source (S), drain (D), and gate (G) electrodes to achieve all-2D material-based field-effect transistor (FET) applications [3–6]. The Gr S/D electrodes can effectively overcome the Schottky barrier, generally observed between 2D vdW semiconductors and metal contacts [7–10], owing to its gatedependent Fermi level (EF) modulation [4, 11]. Because of this advantage, Gr electrodes are widely used in 2D vdW materials-based advanced electronic devices, thereby providing an innovative device structure and excellent device performance.

    The 2D vdW semiconductors, such as transition metal dichalcogenides (TMDs) and 2D Xenes, have emerged because of their unique electrical properties since the discovery of Gr. Among these, tungsten diselenide (WSe2)and molybdenum ditelluride (MoTe2) possess strong gatedependent characteristics; essentially, they exhibit ambipolar properties in FET applications [12, 13]. The tunable bandgap of WSe2and MoTe2is investigated as 1.22 (bulk)to 1.64 eV (monolayer) [14, 15] and 0.9 (bulk) to 1.1 eV(monolayer) [16, 17], respectively. In contrast, black phosphorus (BP) and palladium diselenide (PdSe2), which have narrower bandgaps, exhibit stronger ambipolar properties than WSe2and MoTe2active channels; therefore, they allow the realization of high-performance device applications. The tunable bandgap of BP and PdSe2is reported as 0.3 (bulk) to 1.0 eV (monolayer) [18–20] and near-zero (bulk) to 1.3 eV(monolayer) [21–25], respectively.

    These 2D vdW ambipolar semiconductors are expected to open new horizons for future nanoelectronics by developing new functionalized device applications, such as frequency doublers [26–30], reconfigurable homojunction diodes [31–34], and security circuits [35]. In advanced studies on 2D vdW semiconductors, heterostructure devices constructed using various 2D vdW materials as lego-like building blocks have been explored by numerous research groups to fabricate creative device architectures and investigate their unique junction properties [36–39]. A representative assembled device is a vertically stacked heterojunction diode consisting of two 2D vdW semiconductors for photodiodes [40–43], light-emitting diodes [44, 45], Esaki diodes[46–48], and extraordinary applications [49, 50].

    In this study, a laterally series-connected ambipolar semiconductor/Gr/n-type molybdenum disulfide (MoS2)cascade channel device, called a Gr-bridge heterostructure,was studied beyond heterostructure junction device applications. Each active channel part exhibits distinct transport characteristics, such as ambipolar (PdSe2or WSe2), mostly metallic (Gr-bridge), and unipolar (MoS2) properties. However, the series-connected cascade channel combines the transport characteristics of each part, thereby obeying the largest resistance among the channel materials, i.e., the total resistance of the Gr-bridged cascade channel. The Gr-bridge reduces the potential barrier height between the ambipolar semiconductor andn-type MoS2junction region owing to its metallic and gapless energy band properties. Using this approach, the Gr-bridge allows the realization of unique switching devices and advanced application methods. We successfully demonstrated a multi-value logic inverter circuit and a frequency tripler for advanced electronic applications. Thus, we believe that the Gr-bridge heterojunction structure will open the gate for future electronics by designing device architectures and blending electrical properties toward high-end applications.

    2 Experimental Section

    2.1 Device Fabrication

    The 285 nm SiO2/p+-Si substrate was ultrasonically cleaned in acetone, methyl alcohol, and isopropyl alcohol for 15 min each. To construct the Gr-bridge structure,polydimethylsiloxane (PDMS) stamps were used to exfoliate and transfer 2D vdW nanomaterials onto the substrate through the direct imprinting method. Next, a lift-off process was employed to form the top-gate electrode and the extended S/B/D pad electrodes. E-beam lithography and evaporation were, respectively, used for patterning and depositing metal electrodes at the 3D Convergence Center of Inha University.

    2.2 Electrical Characterization

    All transfer, output, and VTC characteristics were measured using a semiconductor parameter analyzer (4156B,Agilent) in a dark probe station at room temperature(300 K). To demonstrate the dynamic performance of the WGM-FET, sinusoidal and ramp waveform signals were generated from a function generator (AFG31022,Tektronix).

    3 Results and Discussion

    3.1 2D Ambipolar Semiconductor and Gr?Bridge Heterostructure Device

    Figure 1a shows the transfer characteristics of PdSe2(narrow bandgap, ~ 0.01 eV) and WSe2(wide bandgap, ~ 1.3 eV) channel-based conventional FET devices[15, 24]. The hexagonal boron nitride (h-BN) sandwich structure and Gr S/D electrodes were adopted to investigate their fundamental ambipolar transfer characteristics(ID–VG) (see Fig. S1 for the cross-sectional device schematics and optical microscopy (OM) images of the two ambipolar-FET devices). The WSe2-FET exhibits both lower drain ON (ID,pandID,n) and OFFID(ID,off) current levels; however, the ON/OFFIDratio (ION/IOFF) is higher than that of the PdSe2-FET. The narrow-bandgap materials typically have good electron and hole carrier mobilities;therefore, they bring a higher ONIDvalue in FET devices but poor OFFIDin general. These distinct transfer characteristics are due to their energy bandgap properties, as shown in Fig. 1b.

    In 2D vdW ambipolar semiconductors, the gate voltage (VG) can electrostatically control the carrier concentration in the active channel of FET devices, namely the electrostatic doping effect [51]. A positiveVGover the threshold voltage of then-type region (Vth,n) causesEFto reach the conduction-band edge (Ec), whereas a negativeVGnear theVthof thep-type region (Vth,p) enablesEFto reach the valence-band edge (Ev) of ambipolar semiconductor channel materials [24, 52, 53]. Consequently,a wider bandgap will result in a larger valley-like transfer characteristic curve because it needs a strongerVG(gate field) to modulate theEFfrom the intrinsic Fermi level(Ei) toEcfor then-type transition (or theEFfromEitoEvforp-type transition) with a higherION/IOFFratio.EGvalues of the ambipolar channel materials can be easily estimated by using theVthdifference (ΔVth=Vth,n-Vth,p)and the average subthreshold slopes [SSavg= (SSn+ SSp)/2]of then-type andp-type regions by Eq. (1), where q is the electron charge and SS60is the ideal SS value of 60 mV dec?1[24, 35, 52, 53].

    Figure 1c shows the schematic of a typical top-gate transistor device and the expected valley-like transfer characteristic model of ambipolar FETs. The narrow bandgap of the active channel implies that even a small change inVGleads to a large number of carriers in the active channel withVth,nandVth,pnear the transition point (center of the valley-like transfer curve), thereby resulting in a highION, highIOFF, and lowION/IOFFratio. Although a narrow-bandgap ambipolar semiconductor typically exhibits high-performance FET behavior, the inevitably highIOFFrenders it difficult to use for digital logic circuit applications with better switching characteristics, as compared to wide-bandgap ambipolar semiconductors [35]. Based on the ambipolar properties of PdSe2(narrow bandgap) and WSe2(wide bandgap) active channel materials, Gr-bridge heterostructure devices have been studied to achieve advanced electronic applications, such as multi-value logic inverters and frequency tripler circuits.

    Fig. 1 a Atomic crystal structures and ID–VG transfer characteristic curves of the ambipolar PdSe2- and WSe2-FETs. b Schematic of the relationship between Eg, Vth, and ID in ambipolar semiconductors. c Valley-like estimated electrical transfer model of 2D ambipolar semiconductorbased FETs according to the different energy bandgap properties (narrow and wide bandgap). d Conceptual device schematics and suggested electronic component symbol of the Gr-bridge heterostructure device (Gr-bridge FET). e Device configuration and resistance-in-series models of Gr-bridge FET

    Such devices were formed as a platform of sequentially connected Gr-S, ambipolar semiconductors, Gr-bridge layers, MoS2, and Gr-D, as shown in Fig. 1d. The Gr bridge layer allows for the inherent characteristics of each 2D vdW semiconductor because it can provide tunable contact properties to both 2D vdW active channels according to its gatedependent Fermi level modulation [4, 11]. Essentially, the Gr-bridge FET can be regarded as a series connection of the ambipolar-FET and MoS2-FET, with the same electrical characteristics. Figure 1e shows the simple resistance-inseries model of Gr-bridge FET. The total resistance (Rtot)depends on the sum of the resistance in each FET part owing to the series connection properties; therefore,Rtotwill follow the higher resistance of the two active channels during the device operation. Based on these operating properties, the connected ambipolar and MoS2active channel devices in series will exhibit synthetic transfer characteristic curves as a breakthrough for high-end device applications.

    3.2 PdSe2?Gr?MoS2 Heterostructure FET

    The first Gr-bridge-based high-end device consists of ambipolar PdSe2(narrow bandgap) andn-type MoS2active channel materials for multi-value logic applications, as shown in Fig. 2a. Figure 2b, c shows the OM images before and after metal patterning for the extended S/D and common gate(G) electrodes. For sample preparation, the bottom h-BN,Gr S/D, MoS2-Gr-PdSe2heterostructure, and h-BN gate insulator were sequentially exfoliated and transferred onto a 285 nm-thick silicon dioxide (SiO2)/p+-silicon (Si) substrate.Subsequently, Ti/Au (5 /50 nm) electrodes were patterned and deposited using a combination of e-beam lithography and e-beam evaporation systems. The detailed step-by-step fabrication flow and thickness information for each 2D vdW material are depicted in Fig. S2 and S3, respectively.

    Fig. 2 a Cross-sectional 3D device schematic of the PdSe2-Gr-MoS2 heterostructure FET (PGM-FET) for multi-value logic applications. OM images of the PGM-FET b before and c after the extended metal electrode fabrication. d ID–VG transfer characteristic curves of the MoS2-FET(blue dashed line), PdSe2-FET (red dashed line), and PGM-FET (black solid line) at VD of 1 V. e Estimated transconductance of the PGM-FET obtained from ID–VD output characteristic curves of f MoS2-FET, g PdSe2-FET, and h PGM-FET. (Color figure online)

    Figure 2d shows theID–VGtransfer curves of the MoS2-FET (blue dashed line), PdSe2-FET (red dashed line), and PdSe2-Gr-MoS2heterostructure devices (solid black line) at a drain voltage (VD) of 1 V. We named the Gr-bridge device (PdSe2-Gr-MoS2FET) “PGM-FET.”Because the h-BN sandwich structure was adopted to provide high-quality interfaces, hysteresis-less ideal transfer properties exist in all FET operations [54–57]. The MoS2-FET exhibits strongn-type transfer characteristics,and the PdSe2-FET shows ambipolar transfer characteristics using the Gr bridge layer as a source. Because the graphene interlayer has a gate-tunable contact capacity, it can act as a “bridge,” thereby reducing the Schottky junction properties between the ambipolar andn-type active channels. The detailed Raman spectrum analysis to confirm the clean and non-interactive interface properties of Gr-bridge and TMDC channels are shown in Fig. S4. Owing to the effect of the Gr bridge interconnection, the PGM-FET exhibits a tilde ( ~)symbol-like humped transfer characteristic curve: it traces the lowerIDof either the PdSe2or MoS2FETs according to the sweptVG(see the solid black line in Fig. 2d). TheIDof the PGM-FET follows theIOFF(region I) and subthresholdID(region II) of the MoS2-FET, while regions III and IV,respectively, denote the case in the transferID,pandID,nof PdSe2.

    To analyze the detailed transport properties of the PGMFET, the transconductance (gm= dID/dVG) was calculated,and a negativegmwas observed in region III (humped curve), as shown in Fig. 2e. Figure 2f–h shows the output characteristic (ID–VD) curves of the MoS2-FET, PdSe2-FET,and PGM-FET obtained fromVGranging from ? 2 to 2 V in steps of 0.5 V. The Gr bridge provides tunable ohmic contact properties; therefore, the output curves of the MoS2and PdSe2active channels exhibit typicaln-type and ambipolar transport properties, respectively. Moreover, the PGMFET exhibits the composite output characteristics of the MoS2-FET (VGrange of ? 2 to ? 1 V) and PdSe2-FET (VGrange of ? 0.5 to 2 V).

    3.3 PGM?FET?Based Multi?value Logic Circuit Applications

    Based on the non-classical humpedID–VGtransfer properties, we extended our PGM-FET study to multi-value logic circuit applications as a first-approach method. An external resistor of 10 M? was chosen for the resistive-load inverter circuit near the humpedIDcurve, as shown in Fig. 3a. Figure 3b shows the voltage transfer characteristics (VTC) of the PGM-FET-based resistive-load inverter circuit under different supply voltage (VDD) conditions. The inset shows three distinct levels of ternary inverted output voltage (Vout)responses. Input voltages (Vin) of ? 2, 0, and 2 V generateVoutofVDD,VDD/2, and approximately 0 V, respectively. Figure 3c shows the absolute voltage gain (|dVout/dVin|) of the ternary inverter logic circuit under differentVDDconditions.The voltage gain is approximately 4 (first voltage drop) and approximately 1.6 (second voltage drop) at aVDDof 2 V.The inset shows the dynamicVoutresponses obtained from a sinusoidal waveform ofVin, which can identify the dynamic ternary levels of the demonstrated ternary logic circuit. The peak-to-peak voltage (Vp-p) and periodic time (T) were 4 V and 1 s, respectively.

    Fig. 3 a Circuit diagram of PGM-FET-based resistive-load inverter for multi-value logic circuit applications. b VTC characteristic curves of PGM-FET-based multi-value logic operations for VDD ranging from 0.1 to 2 V. The inset shows three distinguished output states (ternary logic states). c Voltage gain of the demonstrated ternary inverter logic circuit for VDD ranging from 0.1 to 2 V. The inset shows the dynamic Vout responses (red) from the sinusoidal waveform Vin (black). (Color figure online)

    We developed inverted ternary logic for the Gr-bridge structure, which simply employs a narrow-bandgap ambipolar semiconductor (PdSe2) and ann-type semiconductor(MoS2). Based on the above understanding of the PGMFET-based ternary logic circuit, we attempted to investigate a direct PdSe2-MoS2junction FET (PMJ-FET) for a more advanced and practical device model, as shown in Fig. S5. Although the PMJ-FET also exhibits a non-classical humpedID–VGtransfer curve and ternary logic circuit operation, the absence of the Gr-bridge interlayer results in rectifying properties at the PdSe2/MoS2junction [58].Consequently, the PMJ-FET exhibits asymmetric (having direction) device characteristics and a limitation in dynamic operation, whereas the PGM-FET exhibits symmetric (bidirectional) logic circuit operation properties. Furthermore,reliability problems remain in the PMJ-FET because controlling the optimized junction properties between the two different semiconductor active channels is difficult. As shown in Fig. S4d, the PMJ-FET does not trace the transfer curves of the MoS2-FET and PdSe2-FET because of the rectifying junction properties of MoS2/PdSe2[42]. Therefore, adopting the Gr-bridge device structure will provide reliability and convenience for further study of high-end multi-value logic applications.

    3.4 WSe2?Gr?MoS2 Heterostructure FET Device

    As a second approach toward advanced electronic applications, WSe2, a wide-bandgap ambipolar active channel,was chosen to realize the Gr-bridge heterostructure device instead of the PdSe2-based ternary logic circuit. Figure 4a shows the 3D device schematic of WSe2-Gr-MoS2FET,named “WGM-FET.” Figure 4b, c shows the OM images before and after patterning of the extended S/D and G electrodes, respectively, through the same device fabrication processes of PGM-FET. The detailed process flow and thickness information for each layer are shown in Figs. S6 and S7,respectively. Figure 4d shows theID–VGtransfer curves of the MoS2-FET (blue dashed line), WSe2-FET (red dashed line), and WGM-FET (solid black line) atVDof 2 V. In this case, the transfer curve of WGM-FET follows that of the MoS2-FET in regions I and II and that of WSe2-FET in regions III and IV. However, unlike the case of PGMFET, the wider bandgap of the WSe2channel allows a lowIOFFlevel of WGM-FET (wider region III); therefore, the transfer characteristic curves resemble an uppercase letter“N”. Figure 4e shows thegm–VGcurve of the WGM-FET; a negativegmwas observed in operation region III owing to thep-type transition properties of the WSe2active channel.

    Fig. 4 a Cross-sectional 3D device schematic of the WSe2-Gr-MoS2 heterostructure FET (WGM-FET) for frequency tripler circuit applications. OM images of the WGM-FET b before and c after the extended metal electrode fabrication. d ID–VG transfer characteristic curves of the MoS2-FET (blue dashed line), WSe2-FET (red dashed line), and WGM-FET (black solid line). e Estimated transconductances of the WGM-FET obtained from d. (Color figure online)

    3.5 WGM?FET?Based Frequency Tripler Circuit Applications

    These non-classical transfer characteristics of the WGMFET bring unique VTC characteristics of an upside-down letter “N”-like curve in inverter logic circuit applications, as shown in Fig. 5a. To achieve a resistive-load inverter circuit,an external resistor of 100 M? was connected to the WGMFET. Figure 5b shows the VTC curve, and the four transition states were observed as sequentially “High”, “Low”, “High”,and “Low” output states according to the voltage sweep ofVinatVDDof 2 V. The inset shows the four distinguished logic states atVinof ? 1, ? 0.5, 1, and 2 V. Figure 5c shows the voltage gain of our demonstrated inverter circuit, which has both negative and positive values.

    Fig. 5 a Circuit diagram of the WGM-FET-based resistive-load inverter circuit applications. b Upside-down letter “N”-like VTC curve of WGM-FET-based frequency tripler circuit operations at VDD of 2 V. The inset shows four distinguished output states, that is, sequentially repeated “High” and “Low” states. c Voltage gain of the demonstrated WGM-FET-based frequency tripler circuit. d Expected frequency response of frequency tripler (three cycles of Vout) converted from a single cycle of Vin. e Real-time Vout responses (red) of the frequency tripler circuit for 0.1, 0.5, and 1 Hz input sinusoidal waveform Vin (black). (Color figure online)

    TheVinsweep from “Low (? 1 V)” to “High(2 V)” should produce sequential output states of“High–Low–High–Low” and the backwardVinsweep from“High” to “Low” generated the reversed output states of“Low–High–Low–High.” That is, a double sweep ofVinof “Low–High–Low,” similar to a single waveform, will produce the “High–Low–High–Low–High–Low–High”sequential output states. The repeatable “High” and “Low”output logic states enable an advanced frequency response application with respect to the sinusoidal waveform ofVin, as shown in Fig. 5d. As a result, a single cycle of sinusoidal waveformVinshould produce three cycles of the waveformVout. This circuit application method can be regarded as a “frequency tripler,” which can generate the output frequency (fout) to triple the value from the input frequency (fin). Finally, for the first time, we successfully demonstrated a frequency tripler application with a single Gr-bridge heterostructure FET consisting of a wide-bandgap ambipolar semiconductor. Figure 5e shows the real-timeVoutresponses for the 0.1, 0.5, and 1 Hz sinusoidal waveforms ofVin(see Fig. S8 for the realtimeVoutresponse for the 1 Hz ramp waveformVin). TheVoutresponses were analyzed using fast Fourier transform(FFT), as shown in Fig. S9. Our frequency response application should be economical to generate triple frequency toward low-power (frequency) and low-cost, more effective than the conventional frequency multiplier circuit for future advanced electronics.

    4 Conclusions

    In this study, Gr-bridge FETs consisting of laterally series-connected ambipolar semiconductor/Gr-bridge/ntype MoS2cascade channels were studied for high-end switching device applications based on their non-classical negative differential transconductance characteristics.The Gr-bridge layer could eliminate the Schottky junction properties between two semiconductor channels; therefore,the Gr-bridge FETs showed synthetic transfer characteristics, perfectly tracing the lowerIDof each channel material based on the simple resistance-in-series model, unlike the heterojunction devices without the Gr-bridge layer. Moreover, we successfully implemented two types of advanced electronic applications based on the bandgap properties of PdSe2(narrow-bandgap) and WSe2(wide-bandgap)ambipolar semiconductors for a multi-value logic inverter(PGM-FET) and frequency tripler (WGM-FET) circuits,respectively. Thus, we believe that the results of our Gr-bridge heterostructure devices and multi-functional circuit applications will provide reliability and convenience to open up a breakthrough toward future advanced electronics.

    AcknowledgementsY. T. L. acknowledges the financial support from the National Research Foundation of Korea (NRF) (No. NRF-2021R1C1C1005235). D. K. H. acknowledges the financial support from the Korea Institute of Science and Technology (KIST) Institution Program (No. 2E31532).

    FundingOpen access funding provided by Shanghai Jiao Tong University.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi. org/ 10. 1007/s40820- 022- 01001-5.

    久久婷婷成人综合色麻豆| 久久久久亚洲av毛片大全| 成人av一区二区三区在线看| 丝袜在线中文字幕| 深夜精品福利| 青草久久国产| 校园春色视频在线观看| 老熟妇乱子伦视频在线观看| 亚洲国产毛片av蜜桃av| 日日干狠狠操夜夜爽| 性少妇av在线| 中文字幕高清在线视频| 国产深夜福利视频在线观看| 黑丝袜美女国产一区| 99热国产这里只有精品6| 50天的宝宝边吃奶边哭怎么回事| 不卡一级毛片| 美女高潮到喷水免费观看| 久久九九热精品免费| 搡老乐熟女国产| 黄色成人免费大全| 两个人免费观看高清视频| 国产成人精品久久二区二区91| 久久久久久亚洲精品国产蜜桃av| 亚洲av片天天在线观看| 久久久久亚洲av毛片大全| 久久久久久久午夜电影 | 亚洲五月色婷婷综合| 一a级毛片在线观看| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 国产精品野战在线观看 | 日本vs欧美在线观看视频| 麻豆一二三区av精品| 亚洲精品在线美女| 亚洲精品国产精品久久久不卡| 男人操女人黄网站| 麻豆一二三区av精品| 午夜精品国产一区二区电影| 亚洲性夜色夜夜综合| 99久久国产精品久久久| 日韩免费高清中文字幕av| 新久久久久国产一级毛片| 淫秽高清视频在线观看| 国产精品亚洲av一区麻豆| 欧美乱码精品一区二区三区| 国产真人三级小视频在线观看| 精品免费久久久久久久清纯| 多毛熟女@视频| 欧美日韩精品网址| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 欧美激情久久久久久爽电影 | 国产成人精品久久二区二区91| 中出人妻视频一区二区| 久久国产精品影院| 国产欧美日韩精品亚洲av| 午夜精品在线福利| 99国产精品99久久久久| av中文乱码字幕在线| 久久久精品欧美日韩精品| 国产麻豆69| 在线国产一区二区在线| 国产成人系列免费观看| 日韩欧美免费精品| 99热国产这里只有精品6| 国产国语露脸激情在线看| 日本欧美视频一区| 免费av毛片视频| 亚洲久久久国产精品| 黄色视频,在线免费观看| www.www免费av| e午夜精品久久久久久久| 久久午夜综合久久蜜桃| 欧美人与性动交α欧美软件| 热re99久久精品国产66热6| 亚洲成人精品中文字幕电影 | 久久精品国产亚洲av高清一级| 麻豆国产av国片精品| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| 水蜜桃什么品种好| 国产av一区二区精品久久| 久久精品成人免费网站| 久久人妻av系列| 999久久久精品免费观看国产| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 在线观看舔阴道视频| 午夜影院日韩av| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 亚洲男人天堂网一区| 久9热在线精品视频| 91精品国产国语对白视频| 久久久久亚洲av毛片大全| 久久人妻福利社区极品人妻图片| 欧洲精品卡2卡3卡4卡5卡区| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 欧美成人免费av一区二区三区| 午夜激情av网站| 91麻豆精品激情在线观看国产 | 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 亚洲欧洲精品一区二区精品久久久| 精品国产超薄肉色丝袜足j| 国产一区二区三区综合在线观看| 色婷婷av一区二区三区视频| 久久国产精品影院| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 麻豆久久精品国产亚洲av | 国产精品国产高清国产av| av视频免费观看在线观看| 久久性视频一级片| 好看av亚洲va欧美ⅴa在| 国产一区在线观看成人免费| 精品久久久久久久毛片微露脸| 久久精品国产亚洲av高清一级| 精品久久久久久,| 国产精品免费一区二区三区在线| 国产精品久久久久久人妻精品电影| 久99久视频精品免费| 成人影院久久| 久久国产亚洲av麻豆专区| 一本大道久久a久久精品| 又黄又爽又免费观看的视频| 国产精品亚洲一级av第二区| 亚洲少妇的诱惑av| 一a级毛片在线观看| 午夜福利免费观看在线| 一区二区三区精品91| 狂野欧美激情性xxxx| xxxhd国产人妻xxx| 又黄又爽又免费观看的视频| 日本五十路高清| 国产一区二区三区综合在线观看| 中出人妻视频一区二区| 999精品在线视频| 嫩草影院精品99| 欧美成人免费av一区二区三区| 一边摸一边做爽爽视频免费| 久久久精品欧美日韩精品| 老司机福利观看| 在线观看免费视频日本深夜| 极品教师在线免费播放| 最新美女视频免费是黄的| 91字幕亚洲| 性色av乱码一区二区三区2| 黑人猛操日本美女一级片| 999精品在线视频| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 亚洲精品一区av在线观看| 久久99一区二区三区| 亚洲欧美一区二区三区黑人| 正在播放国产对白刺激| 精品人妻1区二区| 精品福利永久在线观看| 久久青草综合色| 亚洲成人免费av在线播放| 日韩人妻精品一区2区三区| 脱女人内裤的视频| 亚洲第一av免费看| 日本一区二区免费在线视频| 一级a爱视频在线免费观看| 啦啦啦 在线观看视频| 国产亚洲欧美98| 国产精品免费视频内射| 91成年电影在线观看| 国产97色在线日韩免费| 亚洲色图av天堂| 国产一区二区三区综合在线观看| 中文字幕色久视频| 一进一出抽搐gif免费好疼 | 亚洲va日本ⅴa欧美va伊人久久| 精品国产美女av久久久久小说| 中文字幕人妻熟女乱码| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 99久久综合精品五月天人人| 18禁观看日本| 18禁裸乳无遮挡免费网站照片 | 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 最近最新中文字幕大全免费视频| 久久国产精品人妻蜜桃| 日本欧美视频一区| 精品国产一区二区久久| 激情视频va一区二区三区| 俄罗斯特黄特色一大片| 亚洲色图综合在线观看| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 嫩草影视91久久| 91av网站免费观看| 老司机福利观看| 欧美日韩精品网址| av福利片在线| 免费久久久久久久精品成人欧美视频| 亚洲自偷自拍图片 自拍| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 大型av网站在线播放| 十分钟在线观看高清视频www| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 神马国产精品三级电影在线观看 | 国产一区二区激情短视频| 18美女黄网站色大片免费观看| 婷婷丁香在线五月| 午夜91福利影院| 久久久久亚洲av毛片大全| 中文字幕人妻丝袜制服| 夫妻午夜视频| 精品国产超薄肉色丝袜足j| 琪琪午夜伦伦电影理论片6080| 精品久久久久久成人av| 精品电影一区二区在线| 久久精品亚洲av国产电影网| 欧美日韩av久久| 国产精品爽爽va在线观看网站 | 午夜精品在线福利| 亚洲色图av天堂| 淫秽高清视频在线观看| 国产99久久九九免费精品| 久久国产精品男人的天堂亚洲| 国产熟女午夜一区二区三区| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯| 欧美另类亚洲清纯唯美| 国产精品永久免费网站| 久99久视频精品免费| 人妻久久中文字幕网| 老熟妇乱子伦视频在线观看| 亚洲熟妇中文字幕五十中出 | 中文字幕精品免费在线观看视频| 涩涩av久久男人的天堂| 男女之事视频高清在线观看| 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 国产精品二区激情视频| 国产国语露脸激情在线看| 超碰成人久久| 亚洲,欧美精品.| 一进一出抽搐动态| 国产熟女xx| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 欧美最黄视频在线播放免费 | 午夜免费激情av| 精品国产国语对白av| 亚洲美女黄片视频| 精品国产乱码久久久久久男人| 成人三级做爰电影| 国产精品1区2区在线观看.| 长腿黑丝高跟| 色婷婷av一区二区三区视频| 窝窝影院91人妻| 久久精品91蜜桃| 18禁国产床啪视频网站| 亚洲精华国产精华精| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸 | tocl精华| 国内久久婷婷六月综合欲色啪| 欧美激情久久久久久爽电影 | www.999成人在线观看| 在线观看免费午夜福利视频| 真人做人爱边吃奶动态| 伊人久久大香线蕉亚洲五| 黑丝袜美女国产一区| 亚洲一区高清亚洲精品| 亚洲 欧美一区二区三区| 中文字幕最新亚洲高清| 成人av一区二区三区在线看| 成在线人永久免费视频| 亚洲avbb在线观看| 欧美日韩av久久| 神马国产精品三级电影在线观看 | 精品久久蜜臀av无| 老司机靠b影院| 久久久久久大精品| 亚洲男人的天堂狠狠| 欧美激情久久久久久爽电影 | 免费观看人在逋| 中文字幕最新亚洲高清| 国产av在哪里看| 视频在线观看一区二区三区| 色播在线永久视频| 精品人妻在线不人妻| 亚洲五月婷婷丁香| 国产伦一二天堂av在线观看| 88av欧美| 亚洲精品国产一区二区精华液| 亚洲人成网站在线播放欧美日韩| 成年人免费黄色播放视频| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 免费少妇av软件| 久久久久久久精品吃奶| 成人18禁在线播放| 精品国产超薄肉色丝袜足j| 亚洲精品久久成人aⅴ小说| 人成视频在线观看免费观看| 伦理电影免费视频| 老熟妇仑乱视频hdxx| 丝袜美腿诱惑在线| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 99国产精品免费福利视频| 99在线视频只有这里精品首页| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 国产成人欧美在线观看| 欧美日韩国产mv在线观看视频| 午夜久久久在线观看| a级毛片黄视频| 99热只有精品国产| 日本一区二区免费在线视频| 国产伦一二天堂av在线观看| 午夜福利欧美成人| 电影成人av| 国产精品永久免费网站| 成人av一区二区三区在线看| av在线天堂中文字幕 | 人妻丰满熟妇av一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影| 国产人伦9x9x在线观看| 亚洲一区二区三区色噜噜 | 性欧美人与动物交配| 一级黄色大片毛片| 国产精品一区二区三区四区久久 | www.自偷自拍.com| 精品少妇一区二区三区视频日本电影| 精品乱码久久久久久99久播| 精品一区二区三区四区五区乱码| 9热在线视频观看99| 欧美午夜高清在线| 成人黄色视频免费在线看| netflix在线观看网站| 搡老岳熟女国产| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 亚洲美女黄片视频| av超薄肉色丝袜交足视频| 女人被狂操c到高潮| 亚洲欧美日韩另类电影网站| 国产一区二区在线av高清观看| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 久久精品aⅴ一区二区三区四区| 男人的好看免费观看在线视频 | 国产精品99久久99久久久不卡| 88av欧美| www国产在线视频色| 亚洲三区欧美一区| av在线天堂中文字幕 | 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 午夜视频精品福利| 久久久精品国产亚洲av高清涩受| 午夜影院日韩av| 久久久久久亚洲精品国产蜜桃av| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9| 亚洲国产精品sss在线观看 | 国产亚洲精品第一综合不卡| 狂野欧美激情性xxxx| 丁香欧美五月| 免费久久久久久久精品成人欧美视频| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产 | 嫩草影院精品99| 在线观看舔阴道视频| 香蕉丝袜av| 亚洲专区字幕在线| 69av精品久久久久久| 老司机在亚洲福利影院| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 91国产中文字幕| 久久婷婷成人综合色麻豆| 欧美日韩一级在线毛片| 女人高潮潮喷娇喘18禁视频| 婷婷丁香在线五月| 免费av毛片视频| 精品第一国产精品| 国产黄a三级三级三级人| 99精品在免费线老司机午夜| 亚洲人成77777在线视频| 香蕉久久夜色| 精品福利永久在线观看| 国产亚洲精品久久久久久毛片| 91国产中文字幕| 亚洲成人久久性| 人人妻人人澡人人看| 午夜免费成人在线视频| 婷婷丁香在线五月| 久久精品国产清高在天天线| 免费在线观看日本一区| 天天添夜夜摸| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 久久久久久人人人人人| 久久久久久亚洲精品国产蜜桃av| 一区福利在线观看| 久久人妻av系列| 亚洲精品美女久久av网站| 91精品国产国语对白视频| 黑丝袜美女国产一区| 欧美性长视频在线观看| 午夜福利在线观看吧| 亚洲中文字幕日韩| 视频区图区小说| 亚洲美女黄片视频| √禁漫天堂资源中文www| 久久精品国产清高在天天线| 亚洲精品av麻豆狂野| 露出奶头的视频| 老司机深夜福利视频在线观看| 交换朋友夫妻互换小说| 精品一区二区三区视频在线观看免费 | 99热国产这里只有精品6| 日本五十路高清| 91麻豆av在线| 久久中文看片网| 啦啦啦在线免费观看视频4| 国产不卡一卡二| 亚洲一区中文字幕在线| 大陆偷拍与自拍| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 每晚都被弄得嗷嗷叫到高潮| 女人精品久久久久毛片| 国产主播在线观看一区二区| 黄色怎么调成土黄色| 露出奶头的视频| 不卡av一区二区三区| av超薄肉色丝袜交足视频| 热re99久久精品国产66热6| 一进一出抽搐动态| 久久国产精品男人的天堂亚洲| 高清在线国产一区| 女生性感内裤真人,穿戴方法视频| 搡老熟女国产l中国老女人| 69av精品久久久久久| 久久香蕉精品热| 日韩有码中文字幕| 成人三级黄色视频| 久久影院123| 五月开心婷婷网| 国产成+人综合+亚洲专区| 母亲3免费完整高清在线观看| 在线观看www视频免费| bbb黄色大片| 国产在线观看jvid| 国产人伦9x9x在线观看| 国产亚洲欧美在线一区二区| 国产精品乱码一区二三区的特点 | 成人影院久久| 久久久国产精品麻豆| 免费日韩欧美在线观看| 国产精品成人在线| 新久久久久国产一级毛片| 国产精品久久电影中文字幕| 国产精品二区激情视频| 美国免费a级毛片| 亚洲国产欧美一区二区综合| 免费在线观看影片大全网站| 亚洲成国产人片在线观看| 国产精品国产av在线观看| 国产精品电影一区二区三区| 男女之事视频高清在线观看| 美女国产高潮福利片在线看| 久久亚洲真实| 国产乱人伦免费视频| av超薄肉色丝袜交足视频| www.熟女人妻精品国产| 精品国产乱子伦一区二区三区| 欧美午夜高清在线| 国产精品永久免费网站| 国产高清激情床上av| 精品午夜福利视频在线观看一区| 男女午夜视频在线观看| 美女 人体艺术 gogo| 少妇粗大呻吟视频| 久久久国产成人免费| 欧美亚洲日本最大视频资源| 亚洲五月婷婷丁香| 麻豆成人av在线观看| 老鸭窝网址在线观看| 欧美 亚洲 国产 日韩一| 久久中文字幕人妻熟女| 色综合婷婷激情| 日本黄色日本黄色录像| 精品一区二区三区av网在线观看| 久久中文看片网| 亚洲精品国产一区二区精华液| 国产真人三级小视频在线观看| 狂野欧美激情性xxxx| 国产成人系列免费观看| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看| 国产99白浆流出| 18禁裸乳无遮挡免费网站照片 | 叶爱在线成人免费视频播放| 人人澡人人妻人| 国产亚洲精品一区二区www| 国产成人精品在线电影| 国产熟女xx| 最近最新中文字幕大全免费视频| 亚洲专区字幕在线| 淫秽高清视频在线观看| 国产1区2区3区精品| 99国产精品免费福利视频| 久久青草综合色| 亚洲狠狠婷婷综合久久图片| 韩国av一区二区三区四区| 女性生殖器流出的白浆| 亚洲欧美日韩高清在线视频| 天堂动漫精品| 黄色怎么调成土黄色| 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 丰满的人妻完整版| 成人影院久久| 午夜免费观看网址| 午夜免费鲁丝| 国产三级黄色录像| 男男h啪啪无遮挡| 国产精品爽爽va在线观看网站 | 老司机靠b影院| 国产精品成人在线| 黄网站色视频无遮挡免费观看| 日韩人妻精品一区2区三区| 亚洲欧美日韩另类电影网站| 一区在线观看完整版| 巨乳人妻的诱惑在线观看| 看免费av毛片| 免费搜索国产男女视频| 国产深夜福利视频在线观看| 成人影院久久| 少妇裸体淫交视频免费看高清 | 国产黄色免费在线视频| 亚洲精品一区av在线观看| 两个人看的免费小视频| 一夜夜www| 少妇粗大呻吟视频| 日韩欧美在线二视频| 亚洲av电影在线进入| 亚洲欧美激情在线| 女人被狂操c到高潮| 国产欧美日韩精品亚洲av| 又黄又爽又免费观看的视频| 黄色片一级片一级黄色片| av视频免费观看在线观看| 亚洲欧美一区二区三区久久| 两性夫妻黄色片| 99re在线观看精品视频| 在线观看免费高清a一片| 久久久久国内视频| 无遮挡黄片免费观看| 看免费av毛片| 中亚洲国语对白在线视频| 黑人巨大精品欧美一区二区蜜桃| 制服人妻中文乱码| 日本a在线网址| 18禁观看日本| 91大片在线观看| а√天堂www在线а√下载| 午夜精品国产一区二区电影| 亚洲精品国产色婷婷电影| 91av网站免费观看| 国产高清视频在线播放一区| 成人18禁在线播放| 中文字幕另类日韩欧美亚洲嫩草| 12—13女人毛片做爰片一| 法律面前人人平等表现在哪些方面| 国产精品爽爽va在线观看网站 | 国产精品电影一区二区三区| 亚洲五月天丁香| 女人高潮潮喷娇喘18禁视频| 人妻丰满熟妇av一区二区三区| av网站免费在线观看视频| 亚洲伊人色综图| 黄色a级毛片大全视频| 国产精品久久久久久人妻精品电影| 99久久人妻综合| 黄色a级毛片大全视频| 久久久久久久久久久久大奶| 国产野战对白在线观看| 亚洲色图综合在线观看| 一边摸一边抽搐一进一小说| 亚洲国产毛片av蜜桃av| 在线观看免费高清a一片| 一区二区三区精品91| 在线观看一区二区三区| 黑人操中国人逼视频| 制服诱惑二区| 男女做爰动态图高潮gif福利片 | 久久香蕉精品热| 老司机福利观看| 黄色视频,在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 国产高清videossex| 久久精品国产亚洲av高清一级| 久久欧美精品欧美久久欧美|