• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    4?Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency

    2023-02-20 01:09:46LingLiuHanruiXiaoKeJinZuoXiaoXiaoyanDuKeyouYanFengHaoQinyeBaoChenyiYiFangyangLiuWentaoWangChuantianZuoLimingDing
    Nano-Micro Letters 2023年2期

    Ling Liu, Hanrui Xiao,2, Ke Jin, Zuo Xiao, Xiaoyan Du, Keyou Yan, Feng Hao,Qinye Bao, Chenyi Yi, Fangyang Liu, Wentao Wang, Chuantian Zuo,9?,Liming Ding?

    ABSTRACT After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years, it is becoming harder and harder to improve their power conversion efficiencies. Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells, including 2-terminal and 4-terminal structures. However, very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells. In this work, semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells, achieving a power conversion efficiency of 21.25% for the tandem cells with spin-coated perovskite layer. By using drop-coating instead of spin-coating to make the inorganic perovskite films, 4-terminal tandem cells with an efficiency of 22.34%are made. The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells. In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series. The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.

    KEYWORDS 4-Terminal tandem solar cells; Inorganic perovskite solar cells; Organic solar cells; Semitransparent; Drop-coating

    1 Introduction

    The power conversion efficiencies (PCE) of perovskite solar cells (PSC) and organic solar cells (OSC) increased very fast in the past decade. Certified PCEs of 25.7% [1] and 19.2%[2] have been achieved for single-junction PSC and OSC,respectively. As the PCEs getting closer to their theoretical limits, it is becoming harder and harder to further improve the PCE of single-junction PSC and OSC. Tandem solar cells are receiving increasing attentions because they have the potential to produce much higher PCEs than single-junction solar cells. Tandem solar cells can be divided into two types: two-terminal (2-T) and four-terminal (4-T) structures[3]. 2-T tandem cells are more popular due to their higher PCE. But it needs complicated equipment to make highquality interconnecting layer, which is the key to make highperformance 2-T tandem cells [4]. For 4-T tandem cells, the two sub-cells are made separately by using common device fabrication equipment [5]. In addition, the device structure of the sub-cells in 4-T tandem cells can be different (e.g., one isp–i–nstructure and the other isn–i–pstructure). Another advantage of 4-T tandem cells is that the device performance is less susceptible to spectrum variation [4].

    Both 2-T and 4-T perovskite-based tandem solar cells have been investigated, such as perovskite/silicon [6–8],perovskite/CIGS [9, 10], and perovskite/perovskite [11–13]tandem cells. The PCE of perovskite/organic solar cells legs behind the other perovskite-based tandem cells due to the lack of high-performance low-bandgap organic solar cells.Promoted by the fast-increasing efficiency of organic solar cells in the recent years, more and more people pay attention to perovskite/organic tandem solar cells. Compared with other perovskite-based tandem solar cells, perovskite/organic tandem solar cells possess low-temperature solution processing and light weight. A state-of-the-art PCE of 24.0%has been achieved for organic–inorganic hybrid perovskite/organic tandem solar cells [14]. Inorganic perovskite shows better thermal stability than organic–inorganic hybrid perovskite, but the PCE of inorganic perovskite/organic tandem solar cells is much lower than that of hybrid perovskite/organic tandem solar cells [15]. In 2019, we first reported 2-T inorganic perovskite/organic tandem solar cells [16],after which a series works were carried out [17–23]. A PCE of 21.4% has been achieved for 2-T inorganic perovskite/organic tandem cells [24]. To date, very few works have been done about 4-T inorganic perovskite/organic tandem cells. Li et al. fabricated 4-T tandem cells by using CsPbBr3and PBDB-T-SF:IT-4F as the light-harvesting layers for the sub-cells, achieving a PCE of 14.03% [25]. There is still large room for the enhancement of PCE for 4-T inorganic perovskite/organic tandem cells.

    In this work, we made 4-T inorganic perovskite/organic tandem solar cells by using semi-transparent inorganic PSC and D18-Cl-B:N3:PC61BM OSC as the sub-cells and investigated the relation between device performance and fabrication conditions. Equivalent 2-T tandem solar cells were also made by connecting the PSC and OSC in series. To obtain higher PCE, we use drop-coating instead of spin-coating to make more efficient inorganic perovskite films, achieving PCEs of 15.52% and 22.34% for semi-transparent inorganic PSC and 4-T perovskite/organic tandem solar cells,respectively.

    2 Experimental Section

    2.1 Solution Preparation

    SnO2colloidal dispersion (Alfa Aesar, 15 wt%) was diluted with deionized water in a volume ratio of 1:5 for the preparation of SnO2layer. ZnO precursor solution was prepared by mixing 20 mg Zinc acetate dihydrate, 5.6 μL ethanolamine in 1 mL dimethoxy ethanol. PEDOT:PSS precursor solution was filtered with disposable hydrophilic filter(0.45 μm). The CsPbI2Br precursor solution was prepared by dissolving 0.8 M CsI, 0.4 M PbI2, and 0.4 M PbBr2inN,N-dimethylformamide (DMF) and dimethyl sulfoxide(DMSO) mixed solvent (4:1,v/v). The CsPbI2.25Br0.75precursor solution was prepared by dissolving 0.8 M CsI, 0.5 M PbI2, and 0.3 M PbBr2in DMF:DMSO (4:1,v/v) mixed solvent. D18-Cl-B:N3:PC61BM solution with a weight ratio of 1:1.4:0.2 was dissolved in chloroform with a total concentration of 12.5 mg mL?1, diphenyl ether (DPE) was added into the solution as additive with a concentration of 0.5%(v/v). Solution for the hole transport layer of perovskite solar cells was prepared by dissolving PTAA and PBD2T (weight ratio 6:1) in chlorobenzene (CB) at a total concentration of 10 mg mL?1, and then stirred overnight at 40 °C. PDIN solution was prepared by mixing 2 mg PDIN and 3 μL acetic acid in 1 mL methanol.

    2.2 Materials Characterization

    The thicknesses of the films were measured by using a KLA Tencor D-120 profilometer. Absorption spectra for the films were recorded on a Shimadzu UV-1800 spectrophotometer.Scanning electronic microscopy (SEM) images were taken with a Zeiss Merlin field emission SEM (FE-SEM) operated at an accelerating voltage of 5 kV. Atomic force microscopy(AFM) image was performed on Bruker Multimode-8 scanning probe microscope.

    2.3 Fabrication of Single?junction Perovskite Cells

    Patterned ITO glass with a sheet resistance of 15 Ω sq?1was cleaned by ultrasonic treatment in detergent, deionized water, acetone, isopropanol sequentially and then treated with UV-ozone for 10 min. SnO2dispersion was spin-coated onto ITO glass at 3000 rpm for 30 s and then annealed at 150 °C in air for 30 min. ZnO precursor solution was spincoated onto the SnO2layer at 4000 rpm for 30 s and annealed at 200 °C in air for 20 min. Then the substrates were treated with UV-ozone for 5 min and transferred into a N2glovebox.For perovskite films made by spin-coating, the perovskite precursor solution was spin-coated onto the substrates at 2000 rpm for 35 s, and annealed at 250 °C for 10 min. For perovskite films made by drop-coating, 1 μL solution was dropped onto the center of a 1.5 × 1.5 cm2substrate which was preheated on a 60 °C hotplate, the solution can spread on the substrate spontaneously, producing a round film. The wet film was dried by N2blowing and annealed at 250 °C for 10 min. HTL solution was then spin-coated onto the perovskite layer at 4000 rpm for 30 s, and annealed at 120 °C for 10 min. MoO3(~ 6 nm) was evaporated onto the HTL through a shadow mask under vacuum (ca. 10–4Pa). For the fabrication of opaque cells, 100 nm Ag was evaporated onto the MoO3layer through a shadow mask under vacuum(ca. 10–4Pa). For the fabrication of semi-transparent cells,250 nm ITO was sputtered onto the MoO3layer by using a magnetron sputtering system.

    2.4 Fabrication of Single?junction Organic Cells

    A 30 nm thick PEDOT:PSS layer was made by spin-coating an aqueous dispersion onto ITO glass at 4000 rpm for 30 s.PEDOT:PSS substrates were dried at 150 °C for 10 min.The D18-Cl-B:N3:PC61BM solution was spin-coated onto PEDOT:PSS layer. PDIN solution was spin-coated onto the D18-Cl-B:N3:PC61BM layer at 5000 rpm for 30 s. Ag(~ 80 nm) was evaporated onto PDIN through a shadow mask (pressure ca. 10–4Pa).

    2.5 Device Measurements

    The illumination intensity was determined by using a monocrystalline silicon solar cell (Enli SRC 2020, 2 × 2 cm2) calibrated by NIM. The effective area for the devices is 4 mm2.J–Vcurves were measured by using a computerized Keithley 2400 SourceMeter and a Xenon-lamp-based solar simulator (Enli Tech, AM 1.5G, 100 mW cm?2). For the measurement of the filtered OSC, semi-transparent PSC with an area of ~ 1 cm2was used as the filter. The PCE for the filtered OSC was measured by putting the OSC behind the filter. The external quantum efficiency (EQE) spectra were measured by using a QE-R3011 measurement system(Enli Tech).

    3 Results and Discussion

    We first employed CsPbI2Br (Fig. 1a) as the light-harvesting layer for wide-bandgap inorganic PSC due to its suitable bandgap and good stability [26, 27]. The active layer for the narrow-bandgap OSC is composed of a wide-bandgap polymer D18-Cl-B (Egopt= 1.98 eV) [28] (Fig. 1b), a narrow-bandgap non-fullerene molecule N3 (Egopt= 1.32 eV)[29] (Fig. 1c), and PC61BM (Fig. 1d). The CsPbI2Br film shows a light absorption onset at 650 nm and a shoulder peak at 628 nm (Fig. 1e). The D18-Cl-B:N3:PC61BM film shows relatively low absorbance for visible light, with a strong absorption peak at 822 nm and an absorption onset at 946 nm. The light absorption spectra of CsPbI2Br and D18-Cl-B:N3:PC61BM films show good complementarity.

    Fig. 1 a Crystal structure of CsPbI2Br. b–d chemical structures for D18-Cl-B, N3, and PC61BM. e UV–Vis absorption spectra for CsPbI2Br and D18-Cl-B:N3:PC61BM (1:1.4:0.2) films

    Fig. 2 a structure of the semi-transparent CsPbI2Br solar cells. b J–V curves for the opaque and semi-transparent CsPbI2Br solar cells. c Transmittance spectrum for the semi-transparent CsPbI2Br solar cell. The inset shows a photo for the semi-transparent CsPbI2Br solar cell. d structure of the organic solar cells. e J–V curves for the semi-transparent CsPbI2Br solar cells and organic solar cells. f EQE spectra for the semi-transparent CsPbI2Br solar cells and organic solar cells

    Table 1 Performance data for opaque and semi-transparent CsPbI2Br perovskite solar cells, stand-alone and filtered organic solar cells, and 4-T tandem solar cell

    For tandem solar cells, the front cell should have good transmittance for long-wavelength light to ensure sufficient light reaches the rear cell. We made semi-transparent PSC by using sputtered ITO as the electrode instead of opaque Ag electrode (Fig. 2a). ITO with a thickness of 250 nm was used to obtain good transmittance and sufficient conductivity. The transmittance of the sputtered ITO above 680 nm exceeds 90% (Fig. S1). The thickness of the perovskite layer was optimized to maximize PCE of the semi-transparent PSC (Table S1), resulting in a best PCE of 12.99%, with an open-circuit voltage (Voc) of 1.26 V, a short-circuit current density (Jsc) of 13.90 mA cm?2, and a fill factor (FF)of 73.99% (Table 1 and Fig. 2b). The average transmittance from 680 to 1100 nm for the whole semi-transparent PSC is 74.6% (Fig. 2c). The semi-transparent cell shows slightly lower PCE than the corresponding opaque cell due to lowerJsc. The reduction inJscmay be caused by the lower reflectance of ITO than that of Ag electrode, leading to reduced external quantum efficiency (EQE) near the band edge,where the light absorption is relatively weak (Fig. S2). The best single-junction OSC shows a PCE of 18.17%, with aVocof 0.84 V, aJscof 27.37 mA cm?2, and a FF of 78.60%(Fig. 2e, Table 1 and Table S2). The semi-transparent PSC exhibits a photoresponse range up to 680 nm, with an integrated current of 13.48 mA cm?2(Fig. 2f). The OSC shows much wider photoresponse range (300–975 nm), yielding an integrated current of 26.25 mA cm?2. The PSC shows much higher external quantum efficiency (EQE) than the OSC below 500 nm, which means more high-energy photons can be harvested by using PSC.

    To make 4-T tandem cells, the semi-transparent PSC was put onto the OSC (Fig. 3a). The PCE of the tandem cell is equal to the sum of the PCE for the two sub-cells, which were measured independently. CsPbI2Br cells made by using different conditions were used as filter to maximize the PCE of the filtered OSC, which yields a best PCE of 8.26% (Fig. 3b, Tables S3 and S4). The semi-transparent PSC and filtered OSC produce a total PCE of 21.25% for the 4-terminal tandem cells (Table 1). The semi-transparent PSC and filtered OSC show integrated currents of 13.48 and 12.07 mA cm?2, respectively (Fig. 3c). Compared with single-junction OSC, the tandem cell shows higher EQE below 645 nm but lower EQE above 645 nm, resulting in similar integrated currents. The higher PCE for the tandem cell is mainly contributed by the high photovoltage from the PSC.

    Fig. 3 a Structure for the 4-terminal perovskite/organic tandem solar cells. b J–V curves for the best semi-transparent PSC (top cell), standalone OSC, and filtered OSC (bottom cell). c EQE spectra for the semi-transparent PSC, stand-alone OSC, and filtered OSC. The dash line is the sum of the EQE for the PSC and filtered OSC

    Fig. 4 a, b Illustration of the two connecting methods to make the equivalent 2-terminal tandem solar cells. c and d J–V curves for the tandem cells shown in a and b. The insets show the corresponding interconnecting layers

    As a comparison, equivalent 2-T tandem cells were made by connecting the champion semi-transparent PSC and OSC in series (Fig. 4). There are two connecting methods to make 2-T tandem cells, as shown in Fig. 4a, b. The 2-T tandem cells shown in Fig. 4a, b produce PCEs of 19.18% and 18.83%, respectively (Fig. 4 and Table 2). Considering that the light distribution in the sub-cells is the same for the two types of tandem cells, the difference in PCE may be causedby the difference in interconnecting layers (ICL), which are HTL/MoO3/ITO/Ag/PDIN and PEDOT:PSS/ITO/SnO2/ZnO for the tandem cells shown in Fig. 4a, b, respectively. The higher PCE for the cell in Fig. 4a implies that HTL/MoO3/ITO/Ag/PDIN is a better choice to be used as ICL in tandem cells. TheJscof the 2-T tandem cells is slightly lower than theJscof the sub-cells (Table 1). The lower PCE of the 2-T structure compared with the 4-T structure is caused by mismatch of the photocurrents for the sub-cells and energy loss in the ICL.

    Table 2 Performance data for 2-T tandem solar cells made by using different connecting methods

    The above used CsPbI2Br films were made by spincoating. Recently, we developed a modified drop-coating method (also known as self-spreading method) to make perovskite solar cells [30–36]. CsPbI2Br films made by dropcoating show better photovoltaic performance than the filmsmade by spin-coating [34]. To further improve the PCE of inorganic PSC, we employed CsPbI2.25Br0.75film made by drop-coating as the perovskite layer. The CsPbI2.25Br0.75film shows more compact and uniform surface (Figs. 5a and S3),lower roughness (Fig. S4), and slightly lower bandgap than CsPbI2Br film (Fig. S5). PCEs of 17.47% and 15.52% were achieved for opaque and semi-transparent cells, respectively,which are much higher than the CsPbI2Br cells made by spin-coating (Fig. 5b). The enhanced PCE for the cells made by drop-coating is mainly due to the improved morphology of the perovskite films. The semi-transparent CsPbI2.25Br0.75cell also shows lower EQE than that of the opaque cell (Fig.S6). The semi-transparent CsPbI2.25Br0.75cell show an average transmittance of 65.4% above 690 nm (Fig. 5c). The OSC under light filtered by the CsPbI2.25Br0.75cell show a PCE of 6.82% (Fig. 5d), resulting in a total PCE of 22.34%for 4-T tandem solar cell. Compared with the CsPbI2Br cell, the CsPbI2.25Br0.75cell show higher integrated current (Fig. 5e), which is due to the broadened photoresponse(Table 3).

    Table 3 Performance data for opaque and semi-transparent CsPbI2.25Br0.75 solar cells made by drop-coating, filtered OSC, and 4-T tandem cell

    Fig. 5 a SEM images for inorganic perovskite films made by spin-coating and drop-coating. b J–V curves for opaque and semi-transparent CsPbI2.25Br0.75 solar cells made by spin-coating and drop-coating. c Transmittance spectrum for the semi-transparent CsPbI2.25Br0.75 solar cell. d and e J–V curves and EQE spectra for the semi-transparent CsPbI2.25Br0.75 cell and filtered organic (D18-Cl-B:N3:PC61BM) cell. f PCE change for stand-alone OSCs and filtered OSCs under continuous 1-sun illumination

    The stability of OSC under continuous one sun illumination was investigated. The PCEs maintain 76 and 86% of the initial values after 120 h illumination for the cells without and with PSC filter, respectively (Fig. 5f). The reduction in PCE is mainly attributed to the decrease in the fill factor (Fig. S7). The main reason is that organic solar cells are sensitive to ultraviolet light, which can break chemical bonds and cause photochemical reactions in the active layer of organic solar cells [20]. In tandem cells, the perovskite front cell act as a UV filter, thus reducing the influence of UV light on performance of organic solar cells.

    4 Conclusions

    In summary, 4-T inorganic perovskite/organic tandem solar cells were made by using semi-transparent inorganic perovskite top cell and D18-Cl-B:N3:PC61BM organic bottom cell.Semi-transparent inorganic perovskite solar cells, organic solar cells under filtered light, and 4-T tandem cells show PCEs of 12.99, 8.26, and 21.25%, respectively. Equivalent 2-T tandem solar cells made by connecting the sub-cells in series show lower PCE due to the mismatch of photocurrent of the sub-cells. Besides performance of sub-cells,connecting methods of the sub-cells also affect the device performance of 2-T tandem solar cells, which may be due to the difference in interconnecting layers. By using dropcoating instead of spin-coating to make the inorganic perovskite films, the PCE of semi-transparent inorganic PSC was enhanced to 15.52%, boosting the PCE of 4-T tandem solar cells to 22.34%, which is much higher than the PCE of the reported 4-T perovskite/organic tandem solar cells,and also higher than that of the 2-T inorganic perovskite/organic tandem solar cells. Moreover, the stability of the OSC under continuous illumination was improved because the UV light is filtered by the perovskite cells. The performance of 4-T perovskite/organic tandem solar cells can be further improved by improving the PCE of the sub-cells and the transmittance of the perovskite sub-cell.

    AcknowledgmentsWe thank the National Key Research and Development Program of China (2022YFB3803300), the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02), the National Natural Science Foundation of China (21961160720 and 52203217), and the China Postdoctoral Science Foundation (2021M690805) for financial support.

    FundingOpen access funding provided by Shanghai Jiao Tong University.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

    Supplementary InformationThe online version contains supplementary material available at https:// doi. org/ 10. 1007/s40820- 022- 00995-2.

    久久天躁狠狠躁夜夜2o2o| 又黄又爽又免费观看的视频| 亚洲成人中文字幕在线播放| 欧美日韩乱码在线| 成年女人毛片免费观看观看9| 国产精品电影一区二区三区| 在线天堂最新版资源| 美女大奶头视频| 色综合站精品国产| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 国产乱人伦免费视频| 婷婷精品国产亚洲av在线| 变态另类丝袜制服| 久久精品国产自在天天线| 久久久久久久午夜电影| 最近在线观看免费完整版| 国产 一区 欧美 日韩| 成人永久免费在线观看视频| 国产三级在线视频| 日本免费a在线| 国产人妻一区二区三区在| 十八禁国产超污无遮挡网站| 国内精品美女久久久久久| 国产精品,欧美在线| 最近最新免费中文字幕在线| 亚洲天堂国产精品一区在线| 黄色日韩在线| 精品一区二区免费观看| 禁无遮挡网站| 国产探花在线观看一区二区| 麻豆久久精品国产亚洲av| 99热只有精品国产| 成人性生交大片免费视频hd| 中文字幕久久专区| 国产精品一区二区三区四区免费观看 | 天美传媒精品一区二区| 欧美日韩中文字幕国产精品一区二区三区| 露出奶头的视频| 久久6这里有精品| 国产精华一区二区三区| 久久久久性生活片| 高清在线国产一区| 看片在线看免费视频| 欧美激情久久久久久爽电影| 成年女人看的毛片在线观看| 欧美又色又爽又黄视频| 日日撸夜夜添| 我要搜黄色片| 一本一本综合久久| 精品人妻一区二区三区麻豆 | 国产一级毛片七仙女欲春2| 99久久中文字幕三级久久日本| 亚洲精华国产精华精| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 深夜a级毛片| 日本免费a在线| 一级av片app| 两性午夜刺激爽爽歪歪视频在线观看| 人妻夜夜爽99麻豆av| 国产高清视频在线播放一区| 国产真实乱freesex| 午夜老司机福利剧场| 狂野欧美白嫩少妇大欣赏| 亚洲男人的天堂狠狠| 成熟少妇高潮喷水视频| 国产综合懂色| 欧美激情国产日韩精品一区| av天堂中文字幕网| av福利片在线观看| 亚洲经典国产精华液单| 在线观看66精品国产| 99久久久亚洲精品蜜臀av| 日本色播在线视频| 国产精品人妻久久久影院| 我要搜黄色片| 久9热在线精品视频| 婷婷丁香在线五月| 啦啦啦韩国在线观看视频| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 欧美精品国产亚洲| 69人妻影院| 99热6这里只有精品| 最近最新中文字幕大全电影3| 欧美人与善性xxx| 日韩一本色道免费dvd| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 亚洲人成网站在线播放欧美日韩| 在线免费观看的www视频| 日本欧美国产在线视频| 韩国av一区二区三区四区| 亚洲美女黄片视频| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 成人毛片a级毛片在线播放| 国产一区二区亚洲精品在线观看| 男人狂女人下面高潮的视频| 在线观看免费视频日本深夜| 女生性感内裤真人,穿戴方法视频| 国产麻豆成人av免费视频| 中国美白少妇内射xxxbb| 99国产极品粉嫩在线观看| 日本免费a在线| 成人亚洲精品av一区二区| 国产精品1区2区在线观看.| 日日撸夜夜添| 国内精品久久久久久久电影| 日韩国内少妇激情av| 成人国产麻豆网| 成人无遮挡网站| 国产精品一区二区免费欧美| av中文乱码字幕在线| 国产精品免费一区二区三区在线| 嫩草影院入口| 又黄又爽又刺激的免费视频.| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 天堂av国产一区二区熟女人妻| 人人妻人人澡欧美一区二区| 日日干狠狠操夜夜爽| 直男gayav资源| 免费观看在线日韩| 久久久久久国产a免费观看| 欧美色欧美亚洲另类二区| 熟妇人妻久久中文字幕3abv| 丰满人妻一区二区三区视频av| 真人一进一出gif抽搐免费| 国产激情偷乱视频一区二区| 少妇丰满av| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 成年女人毛片免费观看观看9| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| 国产视频内射| 欧美最新免费一区二区三区| 变态另类丝袜制服| 中文字幕免费在线视频6| 九九在线视频观看精品| 国产精品自产拍在线观看55亚洲| 国产在视频线在精品| 精品一区二区三区人妻视频| 亚洲av第一区精品v没综合| 别揉我奶头 嗯啊视频| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 精品久久久久久成人av| 不卡一级毛片| 两个人视频免费观看高清| 老女人水多毛片| 999久久久精品免费观看国产| 国产 一区精品| 午夜免费男女啪啪视频观看 | 97超级碰碰碰精品色视频在线观看| 亚洲avbb在线观看| 波多野结衣巨乳人妻| 国产探花极品一区二区| 色哟哟哟哟哟哟| 少妇人妻一区二区三区视频| 九色成人免费人妻av| 国产精品久久视频播放| 亚洲人成伊人成综合网2020| 亚洲av电影不卡..在线观看| 午夜视频国产福利| 一区二区三区激情视频| 亚洲成人中文字幕在线播放| 露出奶头的视频| a在线观看视频网站| 午夜福利成人在线免费观看| 亚洲中文日韩欧美视频| 身体一侧抽搐| 99热网站在线观看| 久久久久久久精品吃奶| 麻豆av噜噜一区二区三区| 啦啦啦韩国在线观看视频| 日本熟妇午夜| 3wmmmm亚洲av在线观看| 欧美日韩乱码在线| 精品久久久久久久久久免费视频| 搡老岳熟女国产| 男人的好看免费观看在线视频| 赤兔流量卡办理| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 成熟少妇高潮喷水视频| 日韩欧美国产一区二区入口| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 有码 亚洲区| 特大巨黑吊av在线直播| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 国产一区二区三区在线臀色熟女| 亚洲人成网站高清观看| 热99在线观看视频| 国产成人aa在线观看| 又黄又爽又免费观看的视频| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 日本免费一区二区三区高清不卡| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看 | a在线观看视频网站| 日韩在线高清观看一区二区三区 | 老司机午夜福利在线观看视频| 欧美三级亚洲精品| 欧美激情在线99| 国产精品一区二区免费欧美| 一a级毛片在线观看| 久99久视频精品免费| 少妇高潮的动态图| 欧美性感艳星| 可以在线观看毛片的网站| 国产不卡一卡二| 简卡轻食公司| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 成人精品一区二区免费| 亚洲综合色惰| 极品教师在线视频| 亚洲精品一区av在线观看| a在线观看视频网站| 国产伦在线观看视频一区| 亚洲av美国av| 久久精品国产亚洲av天美| 97碰自拍视频| 真人一进一出gif抽搐免费| 亚洲国产精品合色在线| 国内毛片毛片毛片毛片毛片| 国产在线男女| 亚洲国产欧洲综合997久久,| 黄色丝袜av网址大全| 日日啪夜夜撸| 国产真实乱freesex| 国产黄片美女视频| 狠狠狠狠99中文字幕| 国产精品野战在线观看| 亚州av有码| 亚洲av不卡在线观看| 91午夜精品亚洲一区二区三区 | 日韩一本色道免费dvd| 97热精品久久久久久| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 乱码一卡2卡4卡精品| 村上凉子中文字幕在线| 99热6这里只有精品| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 欧美绝顶高潮抽搐喷水| 乱人视频在线观看| 亚洲中文日韩欧美视频| 有码 亚洲区| av黄色大香蕉| 久久亚洲精品不卡| 国产v大片淫在线免费观看| 22中文网久久字幕| 亚洲欧美日韩高清专用| 久久香蕉精品热| 亚洲七黄色美女视频| 成人精品一区二区免费| 国产黄a三级三级三级人| 日本三级黄在线观看| 亚洲乱码一区二区免费版| 亚洲欧美日韩高清专用| 日本成人三级电影网站| 色播亚洲综合网| 亚洲午夜理论影院| 国国产精品蜜臀av免费| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 亚洲天堂国产精品一区在线| 午夜a级毛片| 成年免费大片在线观看| 精品人妻1区二区| 好男人在线观看高清免费视频| 精品福利观看| 我要搜黄色片| 91狼人影院| 有码 亚洲区| 十八禁国产超污无遮挡网站| 国产91精品成人一区二区三区| 成人精品一区二区免费| 久久精品影院6| 精品久久久久久久久久久久久| 国产 一区精品| 午夜激情欧美在线| 在线观看av片永久免费下载| 国产真实乱freesex| 久久香蕉精品热| 久久久久久久精品吃奶| 天天一区二区日本电影三级| 少妇裸体淫交视频免费看高清| 窝窝影院91人妻| 久久久久久伊人网av| 午夜福利成人在线免费观看| 精品久久久久久久久亚洲 | 久久亚洲精品不卡| 中文字幕免费在线视频6| 村上凉子中文字幕在线| 日本黄色片子视频| 亚洲乱码一区二区免费版| 51国产日韩欧美| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 搞女人的毛片| 在线观看美女被高潮喷水网站| 日本在线视频免费播放| 中文字幕av成人在线电影| 亚洲精品色激情综合| 国产av在哪里看| 国产精品人妻久久久影院| 51国产日韩欧美| 伦精品一区二区三区| 午夜福利在线在线| 嫩草影院精品99| 国产色婷婷99| 波多野结衣高清作品| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 免费在线观看影片大全网站| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 成年人黄色毛片网站| 欧美日韩综合久久久久久 | 久久精品国产鲁丝片午夜精品 | 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 精品午夜福利视频在线观看一区| 亚洲精品成人久久久久久| 麻豆av噜噜一区二区三区| 午夜福利在线在线| 韩国av在线不卡| 亚洲 国产 在线| 国产精品嫩草影院av在线观看 | 丝袜美腿在线中文| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 亚洲,欧美,日韩| 国产精品女同一区二区软件 | 啪啪无遮挡十八禁网站| .国产精品久久| 国产精品久久久久久av不卡| 国产精品98久久久久久宅男小说| 精品久久久久久久末码| 精品不卡国产一区二区三区| 性色avwww在线观看| 99久久九九国产精品国产免费| 少妇裸体淫交视频免费看高清| 18+在线观看网站| 九色成人免费人妻av| 免费在线观看日本一区| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 国产精品一及| 天堂网av新在线| 欧美黑人欧美精品刺激| 老师上课跳d突然被开到最大视频| 久久精品国产亚洲av香蕉五月| 亚洲不卡免费看| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利成人在线免费观看| 黄色女人牲交| 国产精品一区二区免费欧美| 天堂√8在线中文| 国产探花在线观看一区二区| a级毛片免费高清观看在线播放| 亚洲国产精品久久男人天堂| 成年版毛片免费区| 欧美高清性xxxxhd video| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 日韩 亚洲 欧美在线| .国产精品久久| 色综合站精品国产| 亚洲精品456在线播放app | 欧美bdsm另类| 国产精品嫩草影院av在线观看 | 亚洲美女黄片视频| 高清毛片免费观看视频网站| 赤兔流量卡办理| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 色5月婷婷丁香| 亚洲av.av天堂| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 色综合亚洲欧美另类图片| 简卡轻食公司| 看免费成人av毛片| 色吧在线观看| 成人二区视频| 悠悠久久av| 日韩av在线大香蕉| 日日摸夜夜添夜夜添小说| eeuss影院久久| 简卡轻食公司| 婷婷精品国产亚洲av| 欧美一区二区国产精品久久精品| 欧美国产日韩亚洲一区| 国内精品美女久久久久久| av视频在线观看入口| 日日摸夜夜添夜夜添小说| 在线国产一区二区在线| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 亚洲av二区三区四区| АⅤ资源中文在线天堂| 欧美xxxx性猛交bbbb| 欧美人与善性xxx| 波多野结衣高清无吗| 久久久久九九精品影院| 伦精品一区二区三区| 久久精品国产清高在天天线| 在线看三级毛片| 亚洲国产精品合色在线| or卡值多少钱| 日本一本二区三区精品| 成人国产麻豆网| 日本撒尿小便嘘嘘汇集6| 国产极品精品免费视频能看的| 久久6这里有精品| 欧美高清成人免费视频www| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片 | 中亚洲国语对白在线视频| 亚洲性久久影院| 亚洲精品粉嫩美女一区| 蜜桃久久精品国产亚洲av| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 久久久久免费精品人妻一区二区| 日韩av在线大香蕉| 午夜福利在线观看免费完整高清在 | 日日摸夜夜添夜夜添小说| 日本与韩国留学比较| 如何舔出高潮| 91麻豆精品激情在线观看国产| 精品一区二区三区av网在线观看| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| 最后的刺客免费高清国语| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 91av网一区二区| 国产av一区在线观看免费| 亚洲熟妇中文字幕五十中出| 中国美白少妇内射xxxbb| 欧美激情在线99| 亚洲成人免费电影在线观看| 能在线免费观看的黄片| 97人妻精品一区二区三区麻豆| 国产精品久久电影中文字幕| 亚洲国产欧洲综合997久久,| 国产午夜精品论理片| 久久亚洲真实| 12—13女人毛片做爰片一| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| 亚洲三级黄色毛片| 深爱激情五月婷婷| 在线观看66精品国产| 麻豆成人午夜福利视频| 亚洲欧美日韩无卡精品| 国产综合懂色| 亚洲精品国产成人久久av| 欧美精品啪啪一区二区三区| 免费观看的影片在线观看| 久久精品人妻少妇| 精品久久久久久成人av| 天堂√8在线中文| 欧美日韩国产亚洲二区| 欧美成人一区二区免费高清观看| 22中文网久久字幕| 色av中文字幕| 天堂动漫精品| 亚洲,欧美,日韩| 亚洲精品久久国产高清桃花| 欧美+亚洲+日韩+国产| 国产v大片淫在线免费观看| 丰满人妻一区二区三区视频av| 小蜜桃在线观看免费完整版高清| 色播亚洲综合网| 不卡一级毛片| 国产单亲对白刺激| 亚洲av美国av| 国产精品亚洲美女久久久| 亚洲精品影视一区二区三区av| 国产女主播在线喷水免费视频网站 | 成人二区视频| 久久久久久久久久黄片| 色5月婷婷丁香| 国模一区二区三区四区视频| 亚洲精品亚洲一区二区| 久久精品国产亚洲av天美| 精品久久久久久久久av| 不卡视频在线观看欧美| 美女cb高潮喷水在线观看| 人人妻,人人澡人人爽秒播| 免费看日本二区| 亚洲av免费在线观看| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 亚洲精品一区av在线观看| 久久久久精品国产欧美久久久| 久久久久久国产a免费观看| 国产精品国产高清国产av| 日本欧美国产在线视频| 亚洲国产精品sss在线观看| 男女那种视频在线观看| 制服丝袜大香蕉在线| 夜夜看夜夜爽夜夜摸| 久久99热6这里只有精品| 日日撸夜夜添| 在线观看舔阴道视频| 日韩欧美精品免费久久| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 亚洲精品国产成人久久av| 国语自产精品视频在线第100页| 能在线免费观看的黄片| 热99在线观看视频| 中文字幕av在线有码专区| 天天躁日日操中文字幕| 男人舔奶头视频| 亚洲第一电影网av| 日韩强制内射视频| 又紧又爽又黄一区二区| 国产视频内射| 亚洲精品色激情综合| 久久久久久久久久成人| 一本一本综合久久| 精品久久久久久久久亚洲 | 男女之事视频高清在线观看| 动漫黄色视频在线观看| 成人二区视频| 哪里可以看免费的av片| 少妇高潮的动态图| bbb黄色大片| 黄色女人牲交| 中国美白少妇内射xxxbb| 男插女下体视频免费在线播放| 无遮挡黄片免费观看| 亚洲在线观看片| 狠狠狠狠99中文字幕| 成人av一区二区三区在线看| 午夜福利成人在线免费观看| 亚洲国产欧美人成| 又紧又爽又黄一区二区| 最新在线观看一区二区三区| 亚洲国产欧洲综合997久久,| 国产精品国产高清国产av| 亚洲成人久久爱视频| 久久精品国产亚洲av香蕉五月| 国产精品人妻久久久久久| 一本久久中文字幕| 亚洲精品日韩av片在线观看| 欧美潮喷喷水| 久久亚洲真实| 国产男靠女视频免费网站| 日本一本二区三区精品| 国产高清有码在线观看视频| 老熟妇仑乱视频hdxx| 日本在线视频免费播放| 黄色视频,在线免费观看| 亚洲第一区二区三区不卡| 91精品国产九色| 国产一区二区激情短视频| 看十八女毛片水多多多| 日本撒尿小便嘘嘘汇集6| 88av欧美| 色综合色国产| x7x7x7水蜜桃| 国产精品人妻久久久影院| 又黄又爽又免费观看的视频| 国产人妻一区二区三区在| 亚洲欧美日韩无卡精品| 国产久久久一区二区三区| 久久精品影院6| 不卡视频在线观看欧美| 丰满的人妻完整版| 能在线免费观看的黄片| 国产女主播在线喷水免费视频网站 | 在线观看舔阴道视频| 免费搜索国产男女视频| 1000部很黄的大片| 欧美丝袜亚洲另类 | 亚洲成a人片在线一区二区| 国产蜜桃级精品一区二区三区| 日日摸夜夜添夜夜添小说| 日韩强制内射视频| 欧美绝顶高潮抽搐喷水| 日韩欧美精品免费久久| 亚洲电影在线观看av| 久久久国产成人免费| 国产精品无大码| 国内久久婷婷六月综合欲色啪| 九色成人免费人妻av| 国产成人一区二区在线| 97热精品久久久久久| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 久久精品久久久久久噜噜老黄 | 精品一区二区三区人妻视频| 精品无人区乱码1区二区|