• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Diffusive Predator-Prey Model with Spatially Heterogeneous Carrying Capacity

    2023-02-15 06:40:10CHENJiaweiandWANGBiao

    CHEN Jiawei and WANG Biao

    College of Science,Xi’an University of Science and Technology,Xi’an 710054,China.

    Abstract. We study local dynamics of a diffusive predator-prey model in a spatially heterogeneous environment,where intrinsic growth rate of the prey is spatially homogeneous,whereas carrying capacity of the habitat is spatially inhomogeneous.In comparison with the existing predator-prey models,the stability of semi-trivial steady state of this model displays distinct properties.For example,for certain intermediate ranges of the death rate of the predator,the semi-trivial steady state can change its stability at least once as the dispersal rate of the prey varies from small to large,while the stability of the semi-trivial steady state is immune from the dispersal rate of the predator.

    Key Words: Predator-prey model;carrying capacity;spatial heterogeneity;stability.

    1 Introduction

    The movement of organisms is often crucial to its persistence.The creatures are scattered to look for resources,seek breeding habitat,and avoid predation,etc.Understanding the impact of dispersal on population dynamics is still an important topic in ecology.One way to investigate how the joint action of dispersal and spatial heterogeneity influences populations and communities is by using reaction-diffusion models [1].For instance,it was shown in[2]that for a reaction-diffusion model with logistic growth term in spatially heterogeneous environments,as long as a species keeps moving randomly,the total amount of resources always supports a population strictly larger than the total carrying capacity.Recently,this model has been generalized to be a more realistic one[3],where both intrinsic growth rate and carrying capacity depend on spatial variable in the habitat.Their outcomes indicate that the total population of the species has more complicated relations with the total carrying capacity.However,when the intrinsic growth rate is constant,while the carrying capacity is spatially heterogeneous,a striking result from[4]implies that for any diffusion rate,the total amount of resources supports a population strictly smaller than the total carrying capacity.For more research concerning the effects of diffusion rate and spatial heterogeneity of the environment on dynamics of populations via reaction-diffusion models,we refer interested readers to [5-13] and reference therein.

    In this paper,we discuss a diffusive predator-prey model with spatially homogeneous intrinsic growth rate of the prey and spatially inhomogeneous carrying capacity of the habitat,and explore the effects of dispersal and spatial heterogeneity on the local dynamics of the predator and prey populations.The mathematical model can be characterized by the following reaction-diffusion system:

    whereu(x,t)andv(x,t)represent the population density of prey and predator species at locationxand timetwith corresponding diffusion ratesμandν.The initial valuesu0(x)andv0(x)are both non-negative and non-trivial.The functionK(x)denotes carrying capacity of the habitat,andd>0 is the mortality rate of the predator.is the Laplace operator in RN,which characterizes the random movement of the predator and the prey species.The habitat Ω is a bounded domain in RNwith smooth boundary?Ω.The zero Neumann boundary conditions mean that no individual can cross the boundary of the habitat.?u/?n=?u·n,wherenis the outward unit normal vector on?Ω.The constantsμ,νandkare supposed to be positive.

    To reflect spatial heterogeneity of carrying capacity of the habitat in (1.1),throughout this paper,we always assume that the carrying capacityK(x)satisfies the following condition:

    IfK(x)satisfies(1.2),then the single species equation[3,4]admits a unique positive solution for everyμ>0,denoted asθ(x,μ),andθ(x,μ)∈C2().For the sake of simplicity,we frequently writeθ(x,μ)asθ.Therefore,under the assumption(1.2),the model(1.1)has a unique semi-trivial steady state(θ,0).

    The purpose of this paper is to investigate local stability of the semi-trivial steady state(θ,0),it turns out that its stability is determined by the sign of the principal eigenvalue of an eigenvalue problem (2.12) with indefinite weights.Clearly,the principal eigenvalueλ1of(2.12)is a function of the dispersal rates of the predator and prey.Hence,it suffices to inquire about howλ1changes its sign as the dispersal rates of the predator and prey vary from small to large.To more precisely state the main results of this paper,we define some notations:

    The magnitude ofd1,d2andd3can be obtained from Lemma 2.2 in Section 2,which is given byd1<d2<d3.

    The main consequence of this paper is as follows:

    Theorem 1.1.Suppose that(1.2)holds.Then the following conclusions are true.

    (i)If d<d1,then(θ,0)is unstable for anyμ>0and ν>0.

    (ii)If d1<d<d2,and K(x)also satisfies(2.7),then for every ν>0,(θ,0)changes its stability at least once asμvaries from0to+∞.

    (iii)If d2<d<d3,and K(x)also satisfies(2.7),then there exists a unique=(d,K,Ω)>0such that for any ν>,(θ,0)is stable for everyμ>0;whereas for any ν<,(θ,0)changes its stability at least once asμvaries from0to+∞.

    (iv)If d>d3,then(θ,0)is stable for everyμ>0and ν>0.

    Remark 1.1.If the carrying capacity of the habitat is a positive constant,thend1=d2=d3>0.The results of Theorem 1.1 reduces to (i) and (ii).In sharp contrast to spatially homogeneous carrying capacity,Theorem 1.1 reveals the process how the stability of(θ,0) changes from unstable to stable stepwise as the death rate of the predator varies from small to large,but not just simple from unstable to stable.

    Figure 1: This picture illustrates Theorem 1.1 (i) for the parameter range d∈(0,d1).The red region is a place where(θ,0) is unstable,that is,the predator can invade when the predator is relatively rare.From the biological point of view,it implies that as long as the death rate of the predator is less than some constant,the predator will successfully invade when scarce,which is independent of the dispersal rates of the predator and prey.

    Remark 1.2.The case when intrinsic growth rate of the prey is spatially heterogeneous and carrying capacity of the habitat is spatially homogeneous has been considered in[14].To compare the outcomes of Theorem 1.1 with that of[14,Theorem 1.1],we assume thatK(x)=m(x),wherem(x) is the intrinsic growth rate of the prey in [14].Part (iv) is the similar to [14,Theorem 1.1 (i)].However,asθhas opposite property with that of[14,Theorem 1.1],Parts(ii)and(iii)exhibit tremendous differences.Though the result of Part(i)is similar to that of[14,Theorem 1.1(iv)],the critical death rate of the predator is less than that of [14,Theorem 1.1 (iv)].Biologically,the predator with smaller death rate can invade when rare,which is independent of the dispersal rates of the predator and prey.

    We shall apply the following four figures to explain the outcomes of Theorem 1.1.Figs.2 and 3 are drawn for illustrative purposes only,because the real curves separating the invasive and non-invasive regions should be more complicated.

    The rest of this paper is arranged as follows: In Section 2,we give some qualitative properties ofθ,and establish a criteria for the stability of(θ,0).Section 3 is devoted to the proof of Theorem 1.1.In Section 4,we present some discussions for further investigation.

    2 Preliminary

    In this section,we firstly introduce several consequences ofθ,and then give a criteria for the local stability of(θ,0)and related properties.

    Lemma 2.1.Suppose that K(x)satisfies(1.2).Then

    (i)(x,μ)is a smooth mapping fromR+to C2().In addition,

    uniformly on.

    (ii)For every μ>0,<K andθ >K.In particular,‖θ‖L∞(Ω)<‖K‖L∞(Ω).

    Proof.The smooth dependence ofθonμcan be obtained from the implicit function theorem[1].The limiting behaviors ofθasμapproaches zero or infinity can be found in[3].Part(ii)can be derived by the maximum principle(see,e.g.,[15]).

    Lemma 2.2.For everyμ>0,we have

    Figure 3: This possible figure manifests Theorem 1.1 (iii) for the death rate of the predator d∈(d2,d3).Herein, is the unique positive root of kmaxθ-d=0,and is the unique positive root of λ1(μ,ν)=0 when μ is sufficiently small.There is a curve such that μ-ν plane can be separated by the curve into two different areas.The red area is the location where (θ,0) is unstable,whereas the blue region is the location where (θ,0) is stable.From the biological point of view,if the dispersal rate is less than some critical constant,the predator can invade when the dispersal rate of the prey is less than some constant,while cannot invade when the the dispersal rate of the prey is larger than some constant; whereas if the dispersal rate of the predator is larger than the critical constant,as long as the prey keeps moving randomly,no matter how slow or fast,the predator cannot invade when rare.

    Proof.Though the proof can be obtained from[4,Theorem 1.1],we here give a different approach.Recall thatθsatisfies

    Dividing(2.2)byθ2and applying integration by parts,we have

    Hence,for everyμ>0,

    Figure 4: This portrait exhibits Theorem 1.1 (iv) for the death rate of the predator d∈(d3,+∞).The whole blue domain is the location where (θ,0) is stable.That is,if the death rate of the predator is larger than certain constant,the predator cannot invade when rare,which is irrelevant to the dispersal rates of the predator and prey.

    asθis a strictly positive function ofxandμ.By Cauchy-Schwarz inequality,we derive

    Then

    Integrating Eq.(2.2)over Ω and applying the boundary condition,we find

    It follows from Cauchy-Schwarz inequality again that

    The strict inequality of(2.6)holds sinceθis a function ofxandμ.The right inequality of(2.1)immediately follows from(2.5)and(2.6).

    Lemma 2.3.Assume that(1.2)holds.Moreover,if K(x)satisfies

    thenmaxθ is strictly decreasing with respect toμ.

    Proof.We adopt the similar argument to that of [16,Theorem 1.2].Denote?θ/?μbyθ′.

    Differentiating(1.2)with regard toμ,we obtain

    Let

    Through direct calculation,we see thatwsatisfies

    It follows from(2.7)and Lemma 2.1 that

    for anyμ>0,which implies that

    Hence,

    It follows from the maximum principle thatw ≤0.To establish the conclusion of this Lemma,we firstly show that

    Now it suffices to exclude the casew(x0)=0 for somex0∈.We argue by contradiction.Ifx0∈Ω,i.e.,wreaches its maximum atx0∈Ω.Applying the maximum principle to(2.9),we see thatw ≡0 on.It follows from(2.9)thatθ ≡maxθ.This is impossible asθis a non-constant function.Hencex0∈?Ω.However,Hopf boundary point Lemma implies that>0.This contradicts with the boundary condition of (2.9).Therefore,w<0 on.Then the inequality(2.10)follows.

    For any fixed ?μ>0,letx*be the global maximum point of maxθ.By(2.10),we can conclude

    By the continuity ofθ′,there exits someη >0 such that

    Hence

    In particular,

    The stability properties of(θ,0)is crucial for analyzing whether the predator can invade the prey.To this end,we firstly establish a criteria for the stability of(θ,0).Consider the associated linearized eigenvalue problem:

    In the following lemma,we shall show that the second equation of (2.11) is decoupled from the first.By applying the similar arguments to that of[17,Lemma 5.5]or[18,Lemma 6],we can conclude

    Lemma 2.4.The semi-trivial steady state(θ,0)of(1.1)is stable/unstable if and only if the following eigenvalue problem,for(λ,ψ)∈R×C2(),admits a positive/negative principal eigenvalue(denoted by λ1):

    Clearly,the smallest eigenvalueλ1of(2.12)is a function of bothμandν.To investigate how the stability of(θ,0)changes,it suffices to inquire howλ1changes its sign asμandνvary.The following Lemma 2.5 characterizes the monotonicity ofλ1with respect toνand the limiting behaviors ofλ1asνtends to zero and infinity,respectively.The proof of Lemma 2.5 is standard,see,e.g.,[15],we skip it here.

    Lemma 2.5.The principal eigenvalue λ1of(2.12)smoothly depends on ν>0.Furthermore,

    (i)λ1is strictly increasing in ν.

    (ii)It has the following limiting behaviors:

    3 Proof of Theorem 1.1

    3.1 Proofs of Theorem 1.1(i)and(iv)

    Theorem 1.1(i)and(iv)follows from the following lemma 3.1.

    Lemma 3.1.Assume that K(x)satisfies(1.2).Then the following outcomes hold.

    (i)If d<d1,then(θ,0)is unstable for anyμ>0and ν>0.

    (ii)If d>d3,then(θ,0)is stable for everyμ>0and ν>0.

    Proof.(i) By Lemma 2.4,the stability of (θ,0) is determined by the sign of the smallest eigenvalueλ1of

    Dividing the above equation byψ,applying integration by parts and reorganizing the result,we find

    Recall thatd1=kH(K).It follows from Lemma 2.2 that

    for everyμ>0.Therefore,λ1<0 for everyμ,ν>0.

    (ii)For this case,by Lemmas 2.1,2.2 and 2.5,we obtain

    for everyμ>0.Becauseλ1is strictly increasing inν,λ1>0 for anyμ,ν>0.This finishes the proof.

    3.2 Proof of Theorem 1.1(ii)

    In this subsection,we discuss how the stability of(θ,0)changes asμandνvary when the death rate of the predator lies in the range:

    By Lemma 2.1,we have

    Lemma 2.3 tells us thatkmaxθ-dis strictly decreasing with respect toμ.Hence,kmaxθd=0 has a unique positive root,denoted as.Moreover,

    In other words,for anyμ∈(0,),kθ-dis positive somewhere in Ω,whilekθ-d<0 for everyμ∈(,+∞).

    For the caseμ∈(,+∞),integrating(2.12)over Ω and applying the boundary condition,we derive

    askθ-d<0 andψ>0 on.Consequently,(θ,0)is stable forμ>andν>0.

    For the other caseμ∈(0,),by our assumption ofd,we see that=dhas at least one positive root,denoted byμ*.Hence,there exists someδ>0 such that

    From the above inequalities,it is not difficult to see

    For everyμ∈(μ*,),we have

    Then the following eigenvalue problem[1]

    admits a positive principal eigenvalue,denoted asσ1=σ1(μ).In addition,

    and its corresponding eigenfunction?can be chosen positive on.By(2.12)and(3.2),λ1=0 atν=1/σ1.Sinceλ1is a strictly increasing function ofν,we haveλ1>0 ifν>1/σ1,λ1<0 ifν<1/σ1.

    Claim 3.1.

    We first argue by contradiction to show thatPassing to a subsequence if necessary,we may assume thatσ1(μ)0 as.By (3.3),σ1(μ) is uniformly bounded from the above in(μ*,).Therefore,there exits some constantC*>0 such that 0.By elliptic regularity theory and Sobolev embedding theorem,we can conclude0 inC2()as.Moreover,?*satisfies

    Dividing(3.5)by?*,applying integration by parts and the boundary condition,we obtain

    This together with the boundary condition implies that?*≡c,wherecis a positive constant.Substituting?*≡cinto(3.5),we havekθ(x,μ*)=d.Clearly,we arrive at a contradiction.

    We shall consider the following two different cases:

    (i)σ1*>0.Integrating(3.6)over Ω and applying the boundary condition yields

    Because

    and?*>0,this is impossible.

    (ii)σ1*=0.Then?*fulfills

    Hence?*≡c*,wherec*is some positive constant.

    Dividing(3.2)byσ1,integrating the result over Ω and applying the boundary condition,we get

    By letting-,we have

    Sincekθ(x,)-d ≤kmax-d=0 and?*>0,we also reach a contradiction.The assertion follows immediately.

    3.3 Proof of Theorem 1.1(iii)

    In this subsection,we investigate the case when the death rate of the predator belongs to the region:

    In this case,we have

    for everyμ>0.By Lemma 2.1,we derive

    That is,for everyμ∈(0,),kθ-dis positive somewhere in Ω,whereaskθ-d<0 for anyμ∈(,+∞).Hence,for everyμ∈(0,),the eigenvalue problem(3.2)has a positive principal eigenvalue,denoted asσ*=σ*(μ).Sinceλ1is strictly increasing inν,we obtainλ1>0 ifν>1/σ*,λ1=0 atν=1/σ*andλ1<0 ifν<1/σ*.In addition,we can show thatλ1>0 for anyμ>andν>0.Set

    By the similarly argument as in Theorem 1.1(ii),we can prove that limμσ*(μ)=+∞and limμ0+σ*(μ)=,where0 is a finite and positive constant.Moreover,it follows from(3.3)thatσ*(μ)is a smooth function ofμ.Hence,is finite and positive.

    We shall split into two cases to finish the proof of this part.

    (i)ν<.For this case,we have 1/ν >inf0<μ<σ*(μ)for eachμ∈(0,).On the other hand,limμ-σ*(μ)=+∞.Thus 1/ν-σ*(μ) changes sign as least once asμvaries in(0,).That is,λ1changes its sign as least once asμvaries in(0,).Moreover,λ1>0 for anyμ>andν >0.Therefore,λ1changes its sign (from negative to positive) as least once asμvaries from zero to infinity.

    (ii)ν>.For this case,we obtainν>1/σ*(μ)for everyμ∈(0,).Thusλ1>0 for everyμ∈(0,).This fact together with the above discussions indicates thatλ1>0 for everyμ>0.

    Figure 5

    4 Discussions

    In this paper,we investigated a diffusive predator-prey model in spatially inhomogeneous environments subject to zero Neumann boundary conditions.In contrast to spatially homogeneous environments,the local dynamics of the model in spatially inhomogeneous environments is more complicated.It turns out that for some ranges of the death rate of the predator,the semi-trivial steady state of this model in spatially heterogeneous environments can change its stability at least once as the dispersal rates of the predator and prey vary,whereas in spatially homogeneous environments,the stability of the semi-trivial steady state of this model is irrelevant to the dispersal rates of the predator and prey.These results have significant implication in ecology.A change in dispersal rates of the predator and prey can alter the influences and consequences of interactions of different organisms.

    For a more generalized predator-prey model in spatially heterogeneous environments:

    wherer(x)is the intrinsic growth rate of the prey and depends upon the spatial variablex.It is of importance to inquire the stability of the semi-trivial steady state (u*,0) of(4.1) as it determines whether the predator can successfully invade when rare,whereu*=u*(x,μ)is the unique positive solution of

    The stability of(u*,0)has been examined in[14,Theorem 1.1]withr(x)=c1K(x)and in Theorem 1.1 withr(x)=c2for some constantsc1,c2>0,respectively.However,due to the limitations of current mathematical methods,it is difficult to acquire the stability of(u*,0)for the general model(4.1).One of the key ingredients is that the structure of

    is unclear.

    The limiting behaviors ofF(μ) asμtends to zero and infinity have been obtained in [3],however,the diagram ofF(μ) is still vague.To further understand the structure ofF(μ),we shall adopt numerical simulation to predict howF(μ) changes asμvaries from small to large.In the following figures,the vertical coordinate denotesF(μ)and the horizontal coordinate representsμ.Since the graphic ofF(μ) enormously depends onrandK,we consider the following three cases:

    (i)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,andh/Kis strictly decreasing inK.

    In this case,we chooseK(x)=x+9 andr(x)=forx∈Ω=(0,1).By some simple computations,we derive

    From Fig.5(a)and(b),we see that there exist several maximum and minimum ofF(μ).Moreover,the diagram ofF(μ)oscillates wildly around 9.5 nearμ=0.In comparison with the casesr(x)=c1K(x)andr(x)=c2forc1,c2>0,the shape ofF(μ)is more complicated.

    (ii)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,andh/Kis strictly increasing inK.In Fig.6,we selectK(x)=x+9 andr(x)=(x+9)(x+10)forx∈Ω=(0,1).It is easy to show

    Fig.6 (a) and (b) can be used to characterize the change rule ofF(μ) asμvaries from smaller and bigger scale,respectively.

    (iii)ris a function ofK,i.e.,r(x)=h(K(x)) for some functionh,buth/Kis nonmonotone with respect toK.In this case,it turns out that the image ofF(μ) is more complicated.In Fig.7,we chooseK(x)=x+9 andr(x)=(x+9)forx∈Ω=(0,1).Some calculations yield

    Figure 6

    Figure 7

    In Fig.8,we selectK(x)=x+9 andr(x)=(x+9){sin[2π(x+9)]+1}forx∈Ω=(0,1).In addition,For this case,the quantitative relation between limiting values ofF(μ)asμtend to zero and infinity is uncertain.Furthermore,there are multiply maximum and minimum ofF(μ)forμ∈[0,∞].To more precisely investigate how(u*,0)of(4.1)changes its stability asμandνvary,the death ratedof the predator should be classified into several cases according to the maximum and minimum ofF(μ).

    Figure 8

    We applied numerical simulation to predict the shape ofF(μ),which is closely related to the stability of (u*,0).Hence,appropriate assumptions onr(x) andK(x) should be explored.On the other hand,other topics concerning such as existence and multiplicity of positive steady states of(4.1)will be considered in the future.

    Acknowledgement

    This work was supported by the National Science Foundation of China(No.11801436).

    亚洲欧美色中文字幕在线| 亚洲av日韩在线播放| 亚洲精品av麻豆狂野| 国产男女内射视频| 青草久久国产| 美女脱内裤让男人舔精品视频| 亚洲男人天堂网一区| 亚洲国产日韩一区二区| avwww免费| 亚洲av综合色区一区| 久久青草综合色| 青青草视频在线视频观看| 久久久久精品国产欧美久久久 | av在线播放精品| 日本一区二区免费在线视频| 国产精品国产三级专区第一集| 一本一本久久a久久精品综合妖精| 一级爰片在线观看| 欧美日韩亚洲高清精品| netflix在线观看网站| 9色porny在线观看| 高清av免费在线| 精品一区二区三卡| 国产一区二区 视频在线| 日本爱情动作片www.在线观看| 日日摸夜夜添夜夜爱| 亚洲 欧美一区二区三区| 9热在线视频观看99| 日韩制服丝袜自拍偷拍| 精品少妇黑人巨大在线播放| 交换朋友夫妻互换小说| 亚洲第一区二区三区不卡| 成人黄色视频免费在线看| 国产激情久久老熟女| 在线观看免费高清a一片| 日韩中文字幕欧美一区二区 | 十八禁网站网址无遮挡| a级毛片在线看网站| 日韩制服骚丝袜av| 啦啦啦视频在线资源免费观看| 卡戴珊不雅视频在线播放| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 女人高潮潮喷娇喘18禁视频| 免费高清在线观看日韩| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 午夜精品国产一区二区电影| 捣出白浆h1v1| 视频在线观看一区二区三区| xxx大片免费视频| 国产成人啪精品午夜网站| 日日爽夜夜爽网站| 免费黄色在线免费观看| 欧美精品高潮呻吟av久久| 亚洲第一青青草原| 美女大奶头黄色视频| 女人精品久久久久毛片| 亚洲欧美一区二区三区久久| 国产野战对白在线观看| 国产一区二区激情短视频 | 亚洲第一区二区三区不卡| 又大又黄又爽视频免费| 日日爽夜夜爽网站| www.自偷自拍.com| 色网站视频免费| 国产精品一国产av| 中国国产av一级| 亚洲欧美中文字幕日韩二区| 精品一品国产午夜福利视频| 中文字幕人妻丝袜制服| xxx大片免费视频| 精品卡一卡二卡四卡免费| 丰满饥渴人妻一区二区三| 一区福利在线观看| 1024视频免费在线观看| 久久久久久久久免费视频了| 麻豆精品久久久久久蜜桃| 久久狼人影院| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx| 欧美乱码精品一区二区三区| videos熟女内射| videosex国产| 久久久久视频综合| 国产精品一区二区精品视频观看| 亚洲精品一二三| 男女边摸边吃奶| 久久久国产一区二区| 2021少妇久久久久久久久久久| 人人妻,人人澡人人爽秒播 | 日韩大码丰满熟妇| 久久99热这里只频精品6学生| 建设人人有责人人尽责人人享有的| 天天影视国产精品| av网站免费在线观看视频| xxx大片免费视频| 久久精品亚洲熟妇少妇任你| 欧美97在线视频| 免费女性裸体啪啪无遮挡网站| 日日撸夜夜添| 夜夜骑夜夜射夜夜干| 99久久人妻综合| 国产精品.久久久| 别揉我奶头~嗯~啊~动态视频 | 欧美少妇被猛烈插入视频| a级毛片黄视频| 国产又爽黄色视频| 欧美精品人与动牲交sv欧美| 国产激情久久老熟女| 下体分泌物呈黄色| 久久天堂一区二区三区四区| 日韩人妻精品一区2区三区| 美女扒开内裤让男人捅视频| 麻豆乱淫一区二区| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 成人影院久久| 在线观看www视频免费| 免费在线观看完整版高清| 91国产中文字幕| 久久热在线av| 亚洲美女搞黄在线观看| avwww免费| 亚洲精品aⅴ在线观看| 亚洲综合色网址| 免费在线观看视频国产中文字幕亚洲 | 欧美日韩亚洲国产一区二区在线观看 | 欧美少妇被猛烈插入视频| 少妇 在线观看| 少妇被粗大的猛进出69影院| 亚洲美女黄色视频免费看| 青青草视频在线视频观看| 亚洲三区欧美一区| 女性生殖器流出的白浆| 777米奇影视久久| 99久国产av精品国产电影| 亚洲第一av免费看| 男的添女的下面高潮视频| 国产激情久久老熟女| 一二三四在线观看免费中文在| 久久久欧美国产精品| av网站免费在线观看视频| 国产片内射在线| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 制服诱惑二区| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放| 欧美日韩综合久久久久久| 最新在线观看一区二区三区 | 青春草国产在线视频| 欧美激情 高清一区二区三区| 免费高清在线观看视频在线观看| 精品少妇久久久久久888优播| 纯流量卡能插随身wifi吗| 在线精品无人区一区二区三| 国产国语露脸激情在线看| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 青草久久国产| 精品久久久精品久久久| 久久天堂一区二区三区四区| 日本av免费视频播放| 一二三四中文在线观看免费高清| 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| netflix在线观看网站| 一级爰片在线观看| 欧美日韩视频精品一区| 亚洲综合精品二区| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 国产亚洲最大av| 免费看av在线观看网站| 国产成人精品在线电影| svipshipincom国产片| 欧美日韩精品网址| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| 亚洲精品av麻豆狂野| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 久久久久精品国产欧美久久久 | 亚洲精品av麻豆狂野| 精品亚洲成a人片在线观看| 制服丝袜香蕉在线| 久久午夜综合久久蜜桃| 亚洲av在线观看美女高潮| 肉色欧美久久久久久久蜜桃| 丰满乱子伦码专区| 18禁观看日本| 在线天堂最新版资源| 一边亲一边摸免费视频| 亚洲精品中文字幕在线视频| av.在线天堂| 国产视频首页在线观看| 97在线人人人人妻| 国产极品天堂在线| 好男人视频免费观看在线| av在线老鸭窝| 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 亚洲成人国产一区在线观看 | 午夜福利视频精品| 赤兔流量卡办理| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| kizo精华| 日韩精品有码人妻一区| a 毛片基地| 国产一卡二卡三卡精品 | 国产乱来视频区| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | a级片在线免费高清观看视频| av福利片在线| 女性被躁到高潮视频| 黄片小视频在线播放| 成人手机av| 大片免费播放器 马上看| 无遮挡黄片免费观看| 亚洲精品视频女| 亚洲色图综合在线观看| 精品人妻在线不人妻| 日本av免费视频播放| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 久久这里只有精品19| 曰老女人黄片| 久久av网站| 久久精品久久久久久噜噜老黄| av不卡在线播放| 少妇被粗大的猛进出69影院| 亚洲美女视频黄频| 亚洲欧美日韩另类电影网站| 午夜福利免费观看在线| 国产视频首页在线观看| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 亚洲成人手机| 欧美黄色片欧美黄色片| 亚洲av福利一区| 天堂俺去俺来也www色官网| 国产高清不卡午夜福利| 综合色丁香网| 欧美97在线视频| 在线观看免费日韩欧美大片| svipshipincom国产片| 一级毛片 在线播放| 宅男免费午夜| 亚洲精华国产精华液的使用体验| 国产精品.久久久| 亚洲欧美一区二区三区黑人| 最黄视频免费看| 精品国产一区二区久久| 欧美日韩一区二区视频在线观看视频在线| 日本一区二区免费在线视频| 免费久久久久久久精品成人欧美视频| 一区二区三区乱码不卡18| av在线老鸭窝| 大话2 男鬼变身卡| av又黄又爽大尺度在线免费看| xxxhd国产人妻xxx| 国产精品免费视频内射| 韩国精品一区二区三区| 亚洲精品,欧美精品| 久久精品国产综合久久久| 久久久欧美国产精品| 性少妇av在线| 亚洲av综合色区一区| 色网站视频免费| 制服人妻中文乱码| 国产淫语在线视频| 国产麻豆69| 麻豆乱淫一区二区| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 日本91视频免费播放| 国产精品国产三级专区第一集| 咕卡用的链子| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 精品福利永久在线观看| 午夜91福利影院| 另类亚洲欧美激情| 国产精品亚洲av一区麻豆 | 久久久亚洲精品成人影院| 色播在线永久视频| 久久亚洲国产成人精品v| 最近最新中文字幕免费大全7| 啦啦啦啦在线视频资源| 久久99一区二区三区| xxxhd国产人妻xxx| 亚洲欧美成人精品一区二区| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 亚洲第一区二区三区不卡| 国产av国产精品国产| 成年动漫av网址| 亚洲国产av新网站| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 亚洲第一青青草原| svipshipincom国产片| 涩涩av久久男人的天堂| 国产国语露脸激情在线看| 国产日韩欧美视频二区| 永久免费av网站大全| 国产成人免费无遮挡视频| kizo精华| 亚洲综合色网址| 伊人久久大香线蕉亚洲五| 视频在线观看一区二区三区| 超碰成人久久| 精品国产露脸久久av麻豆| 精品少妇久久久久久888优播| 在线观看免费视频网站a站| 日韩不卡一区二区三区视频在线| 日韩中文字幕欧美一区二区 | 免费久久久久久久精品成人欧美视频| tube8黄色片| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 制服丝袜香蕉在线| 婷婷色综合www| 日韩,欧美,国产一区二区三区| 美女扒开内裤让男人捅视频| 少妇精品久久久久久久| av片东京热男人的天堂| 国产深夜福利视频在线观看| 精品国产乱码久久久久久小说| 欧美成人午夜精品| 最近最新中文字幕大全免费视频 | 亚洲图色成人| 欧美人与性动交α欧美精品济南到| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 女性生殖器流出的白浆| 黄片播放在线免费| 少妇被粗大的猛进出69影院| 国产精品免费大片| 久久狼人影院| 狂野欧美激情性xxxx| 久久久久久久国产电影| 大香蕉久久成人网| 97精品久久久久久久久久精品| 一级毛片黄色毛片免费观看视频| 咕卡用的链子| 黑丝袜美女国产一区| 人人澡人人妻人| 成人午夜精彩视频在线观看| 亚洲国产中文字幕在线视频| tube8黄色片| 国产一区二区在线观看av| 久久久精品区二区三区| 一级,二级,三级黄色视频| 免费日韩欧美在线观看| 欧美激情高清一区二区三区 | 欧美精品人与动牲交sv欧美| av女优亚洲男人天堂| 人体艺术视频欧美日本| netflix在线观看网站| 久久鲁丝午夜福利片| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 成人国产av品久久久| 久久99精品国语久久久| 久久精品国产综合久久久| 国产探花极品一区二区| 青青草视频在线视频观看| 国产又色又爽无遮挡免| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 观看av在线不卡| 男人爽女人下面视频在线观看| 色94色欧美一区二区| 国产男人的电影天堂91| 老熟女久久久| 看非洲黑人一级黄片| 亚洲精品中文字幕在线视频| 免费高清在线观看视频在线观看| 日韩一区二区三区影片| 婷婷色麻豆天堂久久| 黄色视频在线播放观看不卡| 亚洲国产欧美一区二区综合| 9热在线视频观看99| 国产成人精品久久二区二区91 | 久久久久精品人妻al黑| 国产成人av激情在线播放| 久久亚洲国产成人精品v| 激情五月婷婷亚洲| 青春草视频在线免费观看| 国产精品亚洲av一区麻豆 | 丰满乱子伦码专区| 亚洲国产看品久久| 国产精品三级大全| 另类亚洲欧美激情| 久久午夜综合久久蜜桃| 国产毛片在线视频| 日本av手机在线免费观看| a级片在线免费高清观看视频| 男女高潮啪啪啪动态图| 亚洲精品一二三| 中文字幕最新亚洲高清| 黄片小视频在线播放| 国产男女内射视频| av视频免费观看在线观看| 国产精品三级大全| 热99久久久久精品小说推荐| 欧美精品av麻豆av| 亚洲欧美成人精品一区二区| 久久久久久久久免费视频了| 捣出白浆h1v1| 久久韩国三级中文字幕| 美女高潮到喷水免费观看| 啦啦啦在线免费观看视频4| 亚洲国产日韩一区二区| 美女福利国产在线| 午夜福利乱码中文字幕| av又黄又爽大尺度在线免费看| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 国产乱人偷精品视频| 国产精品秋霞免费鲁丝片| 18禁观看日本| av片东京热男人的天堂| 午夜影院在线不卡| 国产精品免费大片| 赤兔流量卡办理| 欧美精品av麻豆av| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 久热这里只有精品99| svipshipincom国产片| 午夜福利一区二区在线看| 国产成人欧美在线观看 | 伊人亚洲综合成人网| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 久热爱精品视频在线9| 国产精品 国内视频| 亚洲五月色婷婷综合| 久久99精品国语久久久| 美女视频免费永久观看网站| 成人国产麻豆网| 亚洲av在线观看美女高潮| 亚洲av男天堂| 国产一区有黄有色的免费视频| 爱豆传媒免费全集在线观看| avwww免费| 成人三级做爰电影| 在线观看一区二区三区激情| 熟女少妇亚洲综合色aaa.| 久久精品aⅴ一区二区三区四区| 久久影院123| 美女中出高潮动态图| www.精华液| 热99久久久久精品小说推荐| 伦理电影免费视频| 国产不卡av网站在线观看| 青春草亚洲视频在线观看| 丝袜喷水一区| 如日韩欧美国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久久大奶| 好男人视频免费观看在线| 久久av网站| 啦啦啦中文免费视频观看日本| 亚洲av日韩精品久久久久久密 | 亚洲欧美一区二区三区国产| 91国产中文字幕| 欧美成人精品欧美一级黄| 少妇被粗大猛烈的视频| 成年av动漫网址| 女人精品久久久久毛片| 欧美在线黄色| 中国国产av一级| 亚洲精品美女久久av网站| av卡一久久| 黑丝袜美女国产一区| 99久国产av精品国产电影| 黄频高清免费视频| 一二三四在线观看免费中文在| 亚洲精品,欧美精品| 欧美日韩亚洲高清精品| 国产成人免费观看mmmm| 日韩视频在线欧美| 精品一区在线观看国产| 日本黄色日本黄色录像| 热re99久久国产66热| 男女之事视频高清在线观看 | 久久久久久久国产电影| 国产精品亚洲av一区麻豆 | 国精品久久久久久国模美| 亚洲人成77777在线视频| 不卡av一区二区三区| 亚洲av日韩在线播放| 在线免费观看不下载黄p国产| 亚洲美女黄色视频免费看| 欧美 日韩 精品 国产| 操美女的视频在线观看| 久久精品熟女亚洲av麻豆精品| 青春草亚洲视频在线观看| www.av在线官网国产| 亚洲欧美一区二区三区久久| 中文天堂在线官网| 国产精品久久久久久精品古装| 美女主播在线视频| av在线老鸭窝| 亚洲精品国产一区二区精华液| 免费看不卡的av| 亚洲色图综合在线观看| 最近中文字幕2019免费版| 夜夜骑夜夜射夜夜干| 一级,二级,三级黄色视频| 丝袜在线中文字幕| 国产一区二区在线观看av| 精品一区二区三卡| 天堂8中文在线网| 老司机影院毛片| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 女人被躁到高潮嗷嗷叫费观| 性少妇av在线| 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 久久女婷五月综合色啪小说| 日本欧美国产在线视频| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 国产成人欧美在线观看 | 哪个播放器可以免费观看大片| 亚洲av成人不卡在线观看播放网 | 极品人妻少妇av视频| 日韩精品免费视频一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久av网站| 国产在视频线精品| 午夜福利网站1000一区二区三区| 一边摸一边做爽爽视频免费| 99热国产这里只有精品6| 国产免费又黄又爽又色| 国产日韩一区二区三区精品不卡| 精品一区二区三卡| 五月天丁香电影| 亚洲国产欧美一区二区综合| 男女高潮啪啪啪动态图| 丰满迷人的少妇在线观看| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 欧美在线黄色| 男女高潮啪啪啪动态图| 在线观看免费视频网站a站| 女人精品久久久久毛片| 久久久国产欧美日韩av| 最黄视频免费看| 亚洲专区中文字幕在线 | 日本猛色少妇xxxxx猛交久久| 国产xxxxx性猛交| 国产精品免费大片| 人妻 亚洲 视频| 多毛熟女@视频| 国产午夜精品一二区理论片| 日韩中文字幕视频在线看片| 丝瓜视频免费看黄片| 成人手机av| 国产成人欧美| 日韩精品有码人妻一区| 天天躁夜夜躁狠狠躁躁| 亚洲国产av影院在线观看| 亚洲少妇的诱惑av| 99热网站在线观看| 国产精品麻豆人妻色哟哟久久| 精品午夜福利在线看| 欧美在线黄色| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 亚洲国产av影院在线观看| 国产亚洲精品第一综合不卡| 久久久久国产一级毛片高清牌| 免费少妇av软件| 美女扒开内裤让男人捅视频| 久久狼人影院| 国产亚洲最大av| 亚洲,欧美,日韩| 在线观看国产h片| 亚洲,欧美精品.| 久久99热这里只频精品6学生| 人妻一区二区av| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 9热在线视频观看99| 国产成人精品久久久久久| 免费日韩欧美在线观看| 亚洲第一区二区三区不卡| 夜夜骑夜夜射夜夜干| 亚洲成人av在线免费| 色播在线永久视频| 美女脱内裤让男人舔精品视频| 亚洲欧美清纯卡通| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 男女下面插进去视频免费观看| 午夜激情av网站| 又大又黄又爽视频免费|