• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oriented molybdenum disulfide-silica/hydrogenated nitrile butadiene rubber composites: Effects of nanosheets on mechanical and dielectric properties

    2023-02-09 09:01:04YnnWANGJunyingSUODongyeWANGLiWEIPingnHOUJinfengPANHongZHU
    CHINESE JOURNAL OF AERONAUTICS 2023年1期

    Ynn WANG, Junying SUO, Dongye WANG, Li WEI, Pingn HOU,Jinfeng PAN, Hong ZHU

    a AVIC Chengdu Aircraft Industrial (Group) Co., Ltd, Chengdu 610073, China

    b State Key Laboratory of Chemical Resource Engineering,College of Chemistry,Beijing University of Chemical Technology,Beijing 100029, China

    KEYWORDS Manufacture;Molybdenum disulfide;Nanocomposites;Orientation;Reinforcement

    Abstract A series of non-covalently functionalized molybdenum disulfide-silica (f-MoS2-SiO2)nanocomposites was prepared by an in-situ assembled method and used to fabricate the oriented molybdenum disulfide-SiO2/Hydrogenated Nitrile Butadiene Rubber (f-MoS2-SiO2/HNBR) composites. The characterization results show the synergistic dispersion between the functionalized molybdenum disulfide (f-MoS2) nanosheets and SiO2 nanoparticles. The addition of f-MoS2 nanosheets can improve the dispersion of fillers in the rubber matrix and weaken the filler network.The non-covalently functionalization improves the interface interaction between f-MoS2 nanosheets and the rubber matrix. Furthermore, the tensile strength of f-MoS2-SiO2/HNBR is 65.9% higher than that of SiO2/HNBR by adding 1.0wt% of f-MoS2. At the same time, the dielectric constant of f-MoS2-SiO2/HNBR is increased by 23.7% compared to SiO2/HNBR due to the microcapacitor structure of parallel f-MoS2 nanosheets in the rubber matrix. Our work provides new ideas for the development of high-performance elastomer materials.

    1. Introduction

    The Hydrogenated Nitrile Butadiene Rubber (HNBR), which processes excellent thermal stability and chemical resistance,is widely used in aviation fields.1,2Poor mechanical properties of neat HNBR are the major obstacle to its practical uses,and the reinforcement of HNBR thus becoming crucial to the applications of HNBR composites. In recent years, silica (SiO2)nanoparticles are used as a potential candidate for rubber reinforcement due to their environmental-friendly and low-cost characteristic, while the rubber composites require high SiO2weight loading (usually above 70 phr (phr means parts per 100 parts rubber by weight).3-5The overloading of SiO2leads to inferior dispersion in the rubber matrix and weak interfacial interaction between SiO2and rubber chains.6

    Introducing heterogeneous nanofillers into SiO2reinforce system may be expected to overcome the above limitations,such as One-Dimensional (1D) carbon nanotubes, carbon nanofibers,Two-Dimensional(2D)graphene nanosheets,Layered Double Hydroxide (LDH), boron nitride nanoplatelets,and MoS2nanosheets.7-11A small addition of heterogeneous nanofillers to substitute particle-structured nanofillers substantially improves the advantageous properties of rubber composites.12,13In addition, the combination of functional heterogeneous nanofillers and SiO2can not only introduce functional properties into the rubber matrix but also generate a synergetic effect in improving the performance of rubber composites.14,15Among the reported heterogeneous nanofillers, 2D nanofillers act as the barrier to efficiently restrict the self-aggregation of SiO2nanoparticles, but the strong van der Waals force between the interlayers of 2D materials makes them easy to stack in the rubber matrix. To solve the above problem, the strategies of hierarchical-structured 0D/2D nanocomposites have thus been developed to replace the simple mixture of two kinds of nanofillers.16In the past decades,many efforts have been dedicated to develop SiO2-based nanocomposites as efficient hybrid reinforcements,and considerable progress has been achieved in rubber reinforcing area.17However, it is still far from satisfaction to achieve the goal.

    MoS2nanosheets,as typical 2D nanomaterials,have drawn huge attention as promising nanofillers in recent years. MoS2nanosheets have a large aspect ratio and high tensile modulus,leading to the high reinforcing ability for rubber composites.18,19Furthermore,the gaseous impermeability and thermal endurance of MoS2nanosheets make them widely used in flame-retardant elastomer applications.20-22Many publications have reported that MoS2nanosheets can be used as multifunctional nanofillers for advanced composites.23-25However, the application of MoS2nanosheet-based hybrid reinforcements in the HNBR has rarely used been reported.

    Surface modification, including covalent and non-covalent modification, is an effective way to improve the dispersion of MoS2nanosheets in rubber matrix.The noncovalent modification is less complicated in preparation process compared to the covalent modification. Furthermore, the noncovalent modification is a mild method than covalent one, and the noncovalent modification can better retain the inherent properties of the MoS2nanosheets. Herein, a series of non-covalent modified molybdenum disulfide-SiO2nanocomposites (f-MoS2-SiO2) were fabricated to reinforce HNBR composites. This work designs a novel nanofiller and proposes a creative strategy in preparing rubber composites for excellent performances.

    2. Materials and methods

    2.1. Materials

    MoS2powder, Hexadecyl Trimethyl Ammonium Bromide(CTAB), sodium silicate, and citric acid were provided by Sigma-Aldrich. Ethanol and H2SO4were bought from Beijing Chemical Works.Zinc oxide,stearic acid antioxidant naugard 445,triallyl isocyanurate,and dicumyl peroxide were industrial products. HNBR (ZP 2010L) was produced by Nippon Zeon Co., Ltd.

    2.2. Preparation of f-MoS2-SiO2 nanocomposites

    1.5 g MoS2powder was added into 150 mL CTAB solution(1 mol/L). Then, the MoS2was ultrasonic stripped for 6 h.After that, the mixture was further stirred under 30°C for 3 h, and the f-MoS2dispersion was obtained.

    The in-situ growth of SiO2nanoparticles was referred our previous work.2640 g sodium silicate was added into above f-MoS2dispersion under stirring, and the mixture was heated at 85°C.After that,5 mL ethanol and 100 mL citric acid solution (150 g/L) was dripped into the above mixture. Then,H2SO4solution (2.5 mol/L) was used to adjust the pH to 5 and the precipitate could be observed. After 10 h, the precipitate was washed by water and ethanol for three times.The precipitate was dried in an oven at 60°C for 10 h and the gray powder was obtained, denoted as f-MoS2-SiO2. A series of f-MoS2-SiO2nanocomposites were prepared by controlling the weight of MoS2from 0.5wt%to 2.0wt%and were denoted as 0.5%-MoS2-SiO2, 1.0%-MoS2-SiO2, 1.5%-MoS2-SiO2, and 2.0%-MoS2-SiO2, respectively.

    2.3. Preparation of f-MoS2-SiO2/HNBR composites

    The f-MoS2-SiO2/HNBR composites were prepared by a mechanical mixing method. The ingredients and loadings of f-MoS2-SiO2/HNBR composites was displayed in Table 1.The temperature of two roll mills was controlled below 50°C. The distance between the two rollers was controlled below 1 mm. The ingredients and loadings of f-MoS2-SiO2/HNBR composites were listed in Table 1. HNBR was were mixed with ingredients in turn and the f-MoS2-SiO2/HNBR compounds were obtained. Then, the f-MoS2-SiO2/HNBR compounds were cured by a plate vulcanizer under 170°C and a pressure of 15 MPa for 8 min.The f-MoS2-SiO2/HNBR composites were obtained. The dimensions of the composites are the same. The schematic diagram of the manufacturing procedures was shown in Fig. 1.

    2.4. Characterization methods

    The Fourier Transform Infrared Spectroscopy(FTIR,Bruker)was used to characterize the chemical structure of samples.The elements of the samples were tested by X-ray Photoelectron(XPS,ESCALAB).The microstructure of the nanocomposites and rubber was investigated by Transmission ElectronMicroscope (TEM, Hitachi HT7700) and Scanning Electron Microscope (SEM, JSM-7800), respectively. The viscoelastic performance of rubber compounds was tested by a Rubber Process Analyzer (RPA, Alpa) under 1 Hz and 60°C. The static mechanical properties were tested by tesion machine(SANS CMT4203). The dynamic mechanical properties were tested by a Dynamic Mechanical Analyzer (DMA, Metravib VA3000) under 10 Hz,and the temperature is controlled from-60°C to 60°C with the heat rate of 3°C·min-1. The dielectric constants of rubber samples were tested by an impedance analyzer(Novocontrol Concept 80)from 0.01 Hz to 100 MHz.

    Table 1 Ingredients and loadings of f-MoS2-SiO2/HNBR composites.

    Fig. 1 Fabrication of f-MoS2-SiO2 composites.

    3. Results and discussion

    3.1. Characterization of f-MoS2 nanocomposites

    The functionalization of f-MoS2and the chemical structure of f-MoS2-SiO2nanocomposites were verified by FTIR. Fig. 2 shows the comparison of the FTIR absorption bands of pristine MoS2,f-MoS2,f-MoS2-SiO2and SiO2.Compared with the spectra of pristine MoS2, two adsorption bands at 2915 cm-1and 2845 cm-1emerge in both spectra of f-MoS2and f-MoS2-SiO2, which are attributed to the C-H stretching vibrations of the modifier.27The broad adsorption band of f-MoS2-SiO2and SiO2at 3500 cm-1is attributed to the -O-H groups of SiO2.16Moreover, the absorption bands of f-MoS2-SiO2at 1700 cm-1are metal-OH.3Furthermore, two strong adsorption bands of f-MoS2-SiO2at 1099 cm-1and 799 cm-1correspond with the stretching vibration of Si-OSi groups, and the band at 490 cm-1corresponds with the bending vibration of O-Si-O of SiO2, confirming the fabrication of f-MoS2-SiO2hybrid.

    Fig. 2 FTIR absorption spectra of pristine MoS2, f-MoS2,f-MoS2-SiO2 and SiO2.

    XPS was used to further verify the interaction between the f-MoS2nanosheets and SiO2nanoparticles. Fig. 3 shows the Mo 3d and S 2p XPS spectra of f-MoS2and f-MoS2-SiO2.The detailed binding energies of each element are listed in Table 2. The spectra exhibit significant shifts after the formation of f-MoS2-SiO2nanocomposites. The Mo 3d3/2, Mo 3d5/2, S 2p1/2and S 2p3/2of f-MoS2-SiO2all show shifts of -0.3 eV compared with that of f-MoS2, indicating strong interactions between the f-MoS2nanosheets and SiO2nanoparticles.28-31

    The microstructure of exfoliated f-MoS2and as-synthesized f-MoS2-SiO2nanocomposites were characterized by TEM. As shown in Fig.4(a),the f-MoS2exhibits a nanosheets structure.Fig. 4(b) and (c) show the SiO2nanoparticles of f-MoS2-SiO2are highly dispersed on the surface of f-MoS2nanosheets due to the functionalization of MoS2nanosheets reduces the agglomeration of the nanoparticles during the in-situ growth process. Furthermore, the diameter distribution of SiO2nanoparticles is shown in Fig. 4(d), and the average diameter of SiO2nanoparticles of f-MoS2-SiO2nanocomposites is 11 nm. As a result, the highly dispersed SiO2nanoparticles on MoS2nanosheets are favorable for improving the filler dispersion in rubber matrix, which is beneficial to the weak filler network of f-MoS2-SiO2/HNBR composites.

    3.2. Characterization of f-MoS2-SiO2 nanocomposites

    3.2.1. Effects of f-MoS2nanosheets on microstructure of f-MoS2-SiO2/HNBR composites

    Fig. 3 XPS spectra of f-MoS2 and MoS2-SiO2.

    Table 2 Binding energies of Mo 3d and S 2p.

    SEM measurement was used to investigate the microstructure of composites. Fig. 5 shows the SEM photographs of fractured-surface of f-MoS2-SiO2/HNBR and SiO2/HNBR with the same filler loading (30 phr). As shown in Fig. 5(a),(c), and (e), SiO2clusters can be clearly observed in SiO2/HNBR composites, and holes can be seen among the SiO2clusters. Above phenomena can be attributed to the weak interaction between the hydrophilic surface of SiO2and the hydrophobic rubber chains. Fig. 5(b) and (d) exhibit the 2D f-MoS2nanosheets in the rubber matrix and the hierarchical structure of f-MoS2-SiO2nanocomposites. Moreover, Fig. 5(f)shows that SiO2nanoparticles in f-MoS2-SiO2/HNBR exhibit a better dispersion than those in SiO2/HNBR,which can be attributed to the f-MoS2nanosheets act as barriers to prevent SiO2forming aggregation. At the same time, Fig. 5(d) and (f)show that f-MoS2-SiO2was wrapped by the rubber chains and embedded in the rubber matrix, indicating strong filler-rubber compatibility caused by the functionalization of f-MoS2-SiO2. Above characterization of f-MoS2-SiO2/HNBR composites illustrates that hierarchical-structured f-MoS2-SiO2nanocomposites improve the filler dispersion in rubber matrix and strengthen the filler-rubber interaction, suggesting enhanced mechanical properties of f-MoS2-SiO2/HNBR nanocomposites.

    Fig. 4 TEM images of f-MoS2, 1.0%-MoS2-SiO2 and diameter distribution of SiO2.

    Fig. 5 Microstructure of SiO2/HNBR and 1.0%-MoS2-SiO2/HNBR (filler loading is 30 phr).

    Microstructure of 1.0%-MoS2-SiO2/HNBR composites with various filler loadings was further investigated. The filler loadings are 20, 30, 40, 50 phr. As shown in Fig. 6, the orientation of the f-MoS2nanosheets can be observed in four samples.Furthermore,as the filler loadings increase from 20 phr to 50 phr, the orientation phenomenon of f-MoS2nanosheets became more significant, and the roughness of fracturedsurface of f-MoS2-SiO2/HNBR composites are gradually increased. When the filler loading is higher than 40 phr, the oriented f-MoS2nanosheets in the f-MoS2-SiO2/HNBR form a parallel structure.

    3.2.2.Effects of f-MoS2nanosheets on filler network of f-MoS2-SiO2/HNBR composites

    Effects of f-MoS2nanosheets on the filler network were further evaluated by analyzing the viscoelastic performance of f-MoS2-SiO2/HNBR compounds. Fig. 7 shows the elastic modulus(G')of f-MoS2-SiO2/HNBR compounds with various weight percentages of f-MoS2, where x denotes to the f-MoS2weight percentage. Typically, the difference between the maximum and the minimum of G'(denoted as ΔG')is used to evaluate the ‘‘Payne effect” of the compounds, and the lower ΔG value means the weaker Payne effect and thus indicates to the weaker filler network.32-34All the f-MoS2-SiO2/HNBR compounds show a lower ΔG'than SiO2/HNBR compounds,indicating the addition of 2D MoS2nanosheets can suppress the filler network. Furthermore, ΔG'of f-MoS2-SiO2/HNBR compounds decreases with MoS2weight percentage increasing on the initial stage, to the minimal ΔG'at 1.0wt%, and then increases.This phenomenon can be explained by the evolution of filler network, small amount of MoS2nanosheets can restrain the SiO2to be aggregate and weak the filler network.35However, excess MoS2leads to a more developed filler network due to the inhomogeneous dispersion and the ineluctable stack of 2D MoS2nanosheets.Thus,the above results indicate that the addition of the optimal MoS2nanosheets is beneficial to a weak filler network, which are preconditions to study the influence of the MoS2on the overall properties of rubber composites.

    Fig. 6 SEM photographs of freeze-fractured surfaces of f-MoS2-SiO2/HNBR with various filler loadings.

    Fig.7 Modulus versus strain curves of SiO2/HNBR compounds and f-MoS2-SiO2/HNBR compounds, and ΔG' versus f-MoS2 weight percentages (filler loading is 30 phr).

    3.3. Mechanical performance of f-MoS2-SiO2/HNBR composites

    3.3.1. Effects of f-MoS2nanosheets on static mechanical performance

    The static mechanical performance of f-MoS2-SiO2/HNBR composites with different f-MoS2weight percentages and f-MoS2-SiO2filler loadings are shown in Figs.8 and 9,respectively. Reinforcing Index (RI) is considered as an important parameter to evaluate the reinforcing efficiency of the filler in rubber composites.26,36As shown in Fig.8,the RI and modulus of the f-MoS2-SiO2/HNBR increase as the f-MoS2weight percentage increases from 0 (SiO2/HNBR) to 1.0 wt%,because the incorporation of a small amount of f-MoS2can breakdown the SiO2aggregate and improve filler dispersion,and thus weaken the filler network of f-MoS2-SiO2/HNBR.Furthermore, the weakened filler network decreases the amounts of the entrapped rubber chain by the filler agglomeration and thus reduces the amounts of stress-concentrated regions in 1.0%-MoS2-SiO2/HNBR composites. However,the RI of f-MoS2-SiO2/HNBR decreases as the f-MoS2weight percentage increase from 1.0 wt% to 2.0 wt%. This phenomenon can be explained by the formation of a more developed filler network in f-MoS2-SiO2/HNBR composites that can decrease the effective filler volume, which is caused by the stack of excess f-MoS2nanosheets.37Meanwhile, the RI and tensile strength of all the f-MoS2-SiO2/HNBR composites are higher than those of SiO2/HNBR. Notably,the RI and tensile strength of 1.0%-MoS2-SiO2/HNBR is 229.4% and 65.9%higher than those of SiO2/HNBR,respectively, indicating that f-MoS2nanosheets play a role to improve the reinforcing efficiency of f-MoS2-SiO2nanocomposites in HNBR.

    Fig. 8 Static mechanical performance of f-MoS2-SiO2/HNBR composites with different f-MoS2 weight percentages(filler loading is 30 phr).

    3.3.2. Effects of f-MoS2-SiO2nanocomposites on static mechanical performanceconcentrated regions in f-MoS2-SiO2/HNBR composites and reduce the reinforcing efficiency of f-MoS2-SiO2.38The mechanical properties of HNBR composites reinforced by various fillers are listed in Table 3,10,26,39-49including 1.0%-MoS2-SiO2nanocomposites prepared in this work and other fillers reported in the literature. It is worth mentioning that the reinforcement abilities of 1.0%-MoS2-SiO2is better than that of other fillers especially in terms of the tensile strength.

    Fig. 9 Static mechanical performance of 1.0%-MoS2-SiO2/HNBR with different filler loadings.

    3.3.3. Effects of f-MoS2nanosheets on dynamic mechanical performance

    In order to clarify the effects of f-MoS2nanosheets on the dynamic mechanical performance of f-MoS2-SiO2/HNBR composites, the relationships between storage modulus (E')and temperature were studied. As shown in Fig. 10(a), the E'of all the samples decreases as the temperature increases,which is attributed to the energy dissipation due to the motion of rubber chains from glassy to rubber state. Furthermore, in glassy region, the E'of f-MoS2-SiO2/HNBR composites increases as the f-MoS2weight percentage increases, reaching a maximum at 1.0wt% of f-MoS2, and then decrease. This phenomenon can be explained by the motion of rubber chains. The motion of rubber chains is restricted by the low temperature and the filler network plays a key role on the E'of the f-MoS2-SiO2/HNBR composites. When the f-MoS2weight percentage is higher than 1.0wt%, the filler network is strengthened and the composites shows a lower value of E'. Fig. 10(b) shows the loss factor (tan δ)-temperature curves of f-MoS2-SiO2/HNBR and SiO2/HNBR composites.The results show that the f-MoS2-SiO2/HNBR composites exhibit higher peak value of tan δ than SiO2/HNBR composites, indicating the interfacial interaction between f-MoS2nanosheets and rubber chains leads to an increase in the friction.

    Table 3 Comparison of tensile strength and elongation at break of MoS2-SiO2/HNBR and various HNBR composites reported in literature.10,26,39-49

    3.4. Dielectric properties of f-MoS2-SiO2/HNBR composites

    Fig. 11 shows the dielectric properties of SiO2/HNBR and 1.0%-MoS2-SiO2/HNBR composites with various filler loadings (20, 30, 40, 50 phr), and the filler loading of SiO2/HNBR is 40 phr.Under the same filler loading of 40 phr,the dielectric constant of 1.0%-MoS2-SiO2/HNBR is increased by 23.7%compared to that of SiO2/HNBR at 103Hz.It is reported that the dielectric properties of rubber composites are mainly affected by the micro-capacitor structure and the interface polarization of fillers.50The micro-capacitor mechanism is that two fillers arranged in parallel and polymer matrix between the two can form a micro-capacitor. Each micro-capacitor can contribute to the increase in the capacitance of the composites.Within a certain range,increasing the filler content leads to an increase in the number of micro-capacitors, which is good to obtain a composite material with a higher dielectric constant.From the SEM photographs of fractured-surface of f-MoS2-SiO2/HNBR (Fig. 6), it can be observed that f-MoS2nanosheets are arranged in parallel, which increases the micro-capacitor structure, and thus improves the dielectric constant of rubber composites. Furthermore, the accumulation of polarized charges at filler-rubber interface also leads to an increase in dielectric constants according to the Maxwell-Wagner-Sillars effect.48,50The filler-rubber interfacial interaction of f-MoS2-SiO2/HNBR is higher than that of SiO2/HNBR, leading to a stronger interfacial polarization and a higher dielectric constant.

    Fig. 10 Dynamic mechanical performance of f-MoS2-SiO2/HNBR composites (filler loading is 30 phr).

    Fig. 11 Dielectric properties of SiO2/HNBR and 1.0%-MoS2-SiO2/HNBR composites with various filler loadings.

    4. Conclusions

    (1) A series of hierarchical-structured f-MoS2-SiO2were fabricated to reinforce HNBR composites in this paper,and the oriented f-MoS2-SiO2/HNBR composites were obtained by a sample mechanical mixing method.

    (2) The microstructure of f-MoS2, f-MoS2-SiO2, and f-MoS2-SiO2/HNBR composites were investigated. The 2D f-MoS2nanosheets act as a barrier to prevent SiO2forming aggregation and improve the dispersion of fillers in the rubber matrix. The f-MoS2nanosheets can efficiently weaken the filler network and strength the filler-rubber compatibility.

    (3) The effects of f-MoS2nanosheets on the mechanical performance and dielectric properties of f-MoS2-SiO2/HNBR composites were studied. The RI, tensile strength, and dielectric constant of 1.0%-MoS2-SiO2/HNBR are 229.4%, 65.9%, and 23.7% higher than those of SiO2/HNBR, respectively. Those results demonstrate the advantages of f-MoS2nanosheets, and the oriented f-MoS2-SiO2/HNBR composites have the potential to develop of high-performance elastomer materials for aviation applications.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Basic Research Program of China (No. 2015CB654703).

    av视频在线观看入口| 日日干狠狠操夜夜爽| 一边亲一边摸免费视频| 又粗又硬又长又爽又黄的视频 | 女人十人毛片免费观看3o分钟| 亚洲婷婷狠狠爱综合网| videossex国产| 一本一本综合久久| 日本三级黄在线观看| 亚洲精品乱码久久久v下载方式| 中文字幕制服av| 亚洲美女搞黄在线观看| 免费看av在线观看网站| 麻豆乱淫一区二区| 桃色一区二区三区在线观看| 免费看av在线观看网站| 免费看av在线观看网站| 亚洲精品乱码久久久v下载方式| 99热这里只有是精品50| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品一区二区| 九草在线视频观看| 少妇高潮的动态图| 美女脱内裤让男人舔精品视频 | 国产黄a三级三级三级人| 床上黄色一级片| 成人特级av手机在线观看| 国产精品爽爽va在线观看网站| 搡老妇女老女人老熟妇| 午夜亚洲福利在线播放| 夜夜爽天天搞| 久久久久网色| 一级黄片播放器| 极品教师在线视频| 国产在线精品亚洲第一网站| av黄色大香蕉| 看片在线看免费视频| 亚洲欧美成人精品一区二区| 两性午夜刺激爽爽歪歪视频在线观看| 白带黄色成豆腐渣| 你懂的网址亚洲精品在线观看 | 成人亚洲欧美一区二区av| 变态另类成人亚洲欧美熟女| 夜夜看夜夜爽夜夜摸| 91午夜精品亚洲一区二区三区| 亚洲乱码一区二区免费版| 欧美日韩精品成人综合77777| 国产精品久久久久久精品电影| 亚洲国产精品成人久久小说 | 日韩精品青青久久久久久| 国产伦精品一区二区三区视频9| 欧美一区二区亚洲| 男人的好看免费观看在线视频| 亚洲精品久久国产高清桃花| 最近2019中文字幕mv第一页| 精品久久久久久成人av| 青春草视频在线免费观看| 亚洲性久久影院| 在线观看免费视频日本深夜| 久久欧美精品欧美久久欧美| 久久婷婷人人爽人人干人人爱| 欧美一区二区国产精品久久精品| 99国产精品一区二区蜜桃av| 99久国产av精品国产电影| 久久精品国产99精品国产亚洲性色| 久久久久久久亚洲中文字幕| 看免费成人av毛片| 一进一出抽搐gif免费好疼| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 麻豆成人av视频| 91aial.com中文字幕在线观看| 观看美女的网站| 婷婷色av中文字幕| 一级黄色大片毛片| 亚洲av男天堂| 国产成人aa在线观看| 国产精品野战在线观看| 自拍偷自拍亚洲精品老妇| 青春草亚洲视频在线观看| 青春草国产在线视频 | 中文精品一卡2卡3卡4更新| 好男人在线观看高清免费视频| 啦啦啦观看免费观看视频高清| 日韩欧美 国产精品| 亚洲国产欧美人成| 国产v大片淫在线免费观看| 日韩国内少妇激情av| 婷婷色综合大香蕉| 毛片女人毛片| 亚洲欧美成人精品一区二区| 国产真实伦视频高清在线观看| 国产黄色小视频在线观看| 欧美成人精品欧美一级黄| 国产毛片a区久久久久| 五月伊人婷婷丁香| 亚洲av免费高清在线观看| 国产欧美日韩精品一区二区| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 国产 一区 欧美 日韩| 国产精品一区二区性色av| 变态另类丝袜制服| 久久草成人影院| 色综合色国产| 亚洲一级一片aⅴ在线观看| 久久久色成人| kizo精华| 99热网站在线观看| av女优亚洲男人天堂| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 欧美成人a在线观看| 老女人水多毛片| 1000部很黄的大片| 美女xxoo啪啪120秒动态图| 如何舔出高潮| 午夜福利在线观看免费完整高清在 | 简卡轻食公司| 亚洲国产日韩欧美精品在线观看| 日韩中字成人| 国产精华一区二区三区| 国产精品不卡视频一区二区| www.色视频.com| 99久国产av精品国产电影| 午夜视频国产福利| 免费观看a级毛片全部| 一个人观看的视频www高清免费观看| 亚洲国产精品国产精品| 免费观看在线日韩| a级毛片a级免费在线| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 国产精品精品国产色婷婷| 晚上一个人看的免费电影| 国产精品一区二区在线观看99 | 我的老师免费观看完整版| 亚洲内射少妇av| a级毛色黄片| 欧美+日韩+精品| 亚洲美女视频黄频| 国产精品美女特级片免费视频播放器| 九草在线视频观看| 国产精品三级大全| 精品久久久久久成人av| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲精品久久久久久婷婷小说 | 久久午夜亚洲精品久久| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| 国产美女午夜福利| 亚洲色图av天堂| 亚州av有码| 乱系列少妇在线播放| 亚洲国产日韩欧美精品在线观看| 色吧在线观看| 热99re8久久精品国产| 搞女人的毛片| 精华霜和精华液先用哪个| 男女视频在线观看网站免费| 真实男女啪啪啪动态图| 免费观看a级毛片全部| 18禁裸乳无遮挡免费网站照片| 久久这里有精品视频免费| 午夜福利在线在线| 如何舔出高潮| 日韩成人伦理影院| 免费不卡的大黄色大毛片视频在线观看 | 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 亚洲精华国产精华液的使用体验 | 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 婷婷六月久久综合丁香| 韩国av在线不卡| 国产精品一区二区在线观看99 | 神马国产精品三级电影在线观看| 一级毛片我不卡| 青春草视频在线免费观看| 国产精品无大码| 97热精品久久久久久| 日韩一区二区视频免费看| 国产真实伦视频高清在线观看| 性色avwww在线观看| 麻豆一二三区av精品| 哪个播放器可以免费观看大片| 亚洲va在线va天堂va国产| 亚洲av中文字字幕乱码综合| 免费电影在线观看免费观看| 如何舔出高潮| 色哟哟哟哟哟哟| 偷拍熟女少妇极品色| 乱码一卡2卡4卡精品| 亚洲精品自拍成人| 毛片一级片免费看久久久久| 中文资源天堂在线| 亚洲18禁久久av| 国产69精品久久久久777片| 特级一级黄色大片| 日韩精品有码人妻一区| 搡老妇女老女人老熟妇| 美女cb高潮喷水在线观看| 国产毛片a区久久久久| 你懂的网址亚洲精品在线观看 | 国产精品一区二区三区四区免费观看| 99热精品在线国产| 日韩成人伦理影院| 欧美日本亚洲视频在线播放| 久久久精品94久久精品| 午夜爱爱视频在线播放| a级一级毛片免费在线观看| 12—13女人毛片做爰片一| 久久精品影院6| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 一进一出抽搐gif免费好疼| 国产成人福利小说| 国产真实乱freesex| av专区在线播放| 中文字幕av成人在线电影| 国产一区二区在线av高清观看| 亚洲最大成人手机在线| 婷婷亚洲欧美| 深爱激情五月婷婷| 免费观看精品视频网站| 色综合亚洲欧美另类图片| a级毛色黄片| 亚洲第一区二区三区不卡| 日韩成人av中文字幕在线观看| 国内精品久久久久精免费| 色噜噜av男人的天堂激情| 国产黄色视频一区二区在线观看 | 久久亚洲精品不卡| 男人狂女人下面高潮的视频| 午夜福利高清视频| 99久久精品国产国产毛片| 欧美人与善性xxx| 波多野结衣高清作品| 中出人妻视频一区二区| av在线观看视频网站免费| 给我免费播放毛片高清在线观看| 亚洲色图av天堂| 国产视频首页在线观看| 国产成人精品一,二区 | 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 一级黄片播放器| 成年女人看的毛片在线观看| 97热精品久久久久久| 麻豆成人av视频| 亚洲内射少妇av| 高清在线视频一区二区三区 | 高清日韩中文字幕在线| 欧美另类亚洲清纯唯美| 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区 | 亚洲aⅴ乱码一区二区在线播放| 国产av麻豆久久久久久久| 精品一区二区免费观看| 校园春色视频在线观看| 国产真实伦视频高清在线观看| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| а√天堂www在线а√下载| 成人午夜精彩视频在线观看| 97超视频在线观看视频| 国产精品永久免费网站| 国产精品福利在线免费观看| 1024手机看黄色片| 国产高清三级在线| 网址你懂的国产日韩在线| av.在线天堂| 亚洲av免费在线观看| 日韩高清综合在线| 嘟嘟电影网在线观看| 在线播放无遮挡| av免费观看日本| 嫩草影院入口| 国产色爽女视频免费观看| 久久热精品热| 观看美女的网站| 久久久久久久久久久丰满| 身体一侧抽搐| 精品久久国产蜜桃| 男人狂女人下面高潮的视频| 国产老妇女一区| 哪里可以看免费的av片| 精品无人区乱码1区二区| 免费看光身美女| 99热网站在线观看| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添av毛片| 搡女人真爽免费视频火全软件| 日本一二三区视频观看| 熟女电影av网| 亚洲va在线va天堂va国产| 国产精品.久久久| 青青草视频在线视频观看| 国产欧美日韩精品一区二区| 哪里可以看免费的av片| 亚洲欧美日韩高清在线视频| 精品午夜福利在线看| 99久久人妻综合| 久久国产乱子免费精品| 亚洲精品456在线播放app| 99国产极品粉嫩在线观看| 简卡轻食公司| 亚洲一区二区三区色噜噜| 美女内射精品一级片tv| 国语自产精品视频在线第100页| 99九九线精品视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 色5月婷婷丁香| 亚洲无线在线观看| 麻豆一二三区av精品| 长腿黑丝高跟| 真实男女啪啪啪动态图| 国产乱人视频| 国产美女午夜福利| 男女啪啪激烈高潮av片| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 黄色视频,在线免费观看| 亚洲av免费高清在线观看| 国产精品一区二区三区四区久久| 亚洲va在线va天堂va国产| 国产色婷婷99| 22中文网久久字幕| 国产精品三级大全| 日本撒尿小便嘘嘘汇集6| 婷婷精品国产亚洲av| 亚洲国产欧美人成| 老司机福利观看| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 亚洲av第一区精品v没综合| 如何舔出高潮| 你懂的网址亚洲精品在线观看 | 日本与韩国留学比较| 国产精品久久视频播放| 中文字幕av在线有码专区| 男女做爰动态图高潮gif福利片| 免费观看的影片在线观看| 国产成人一区二区在线| 亚州av有码| 蜜桃亚洲精品一区二区三区| 午夜福利在线观看免费完整高清在 | 简卡轻食公司| 亚洲色图av天堂| 成人特级av手机在线观看| 日韩欧美国产在线观看| 男人舔奶头视频| 亚洲va在线va天堂va国产| 亚洲,欧美,日韩| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 亚洲无线在线观看| 色5月婷婷丁香| 18禁在线播放成人免费| 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 麻豆成人av视频| 综合色丁香网| 国内精品一区二区在线观看| 一个人观看的视频www高清免费观看| 99久久九九国产精品国产免费| 亚洲欧美日韩卡通动漫| 波野结衣二区三区在线| 亚洲精品国产av成人精品| 全区人妻精品视频| 日韩亚洲欧美综合| 久久热精品热| 成年免费大片在线观看| 免费观看在线日韩| 亚洲一级一片aⅴ在线观看| 人人妻人人澡欧美一区二区| 天美传媒精品一区二区| 久久久a久久爽久久v久久| 99国产极品粉嫩在线观看| 一级毛片我不卡| 国产成人freesex在线| 日本免费a在线| 天天一区二区日本电影三级| 亚洲精品影视一区二区三区av| 在线观看66精品国产| 一本久久精品| 12—13女人毛片做爰片一| 久99久视频精品免费| 国产精品综合久久久久久久免费| 久久精品国产亚洲网站| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 亚洲美女视频黄频| 国产综合懂色| 99在线人妻在线中文字幕| 99久久精品一区二区三区| 国产视频首页在线观看| 国产成人freesex在线| 卡戴珊不雅视频在线播放| av福利片在线观看| 99久久精品国产国产毛片| 两个人的视频大全免费| 欧美色欧美亚洲另类二区| 亚洲成人精品中文字幕电影| 日本黄色片子视频| 精品一区二区三区人妻视频| 国产精品无大码| 欧美一区二区国产精品久久精品| 久久久久性生活片| 精品熟女少妇av免费看| 成人性生交大片免费视频hd| av在线观看视频网站免费| 蜜桃亚洲精品一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 久久久久久久久久黄片| 成人欧美大片| 国产一区亚洲一区在线观看| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看| 男人的好看免费观看在线视频| 日韩在线高清观看一区二区三区| 九色成人免费人妻av| 精品人妻一区二区三区麻豆| 热99在线观看视频| 99久久人妻综合| 热99在线观看视频| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 亚洲av免费高清在线观看| 精品不卡国产一区二区三区| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 亚洲国产欧美人成| 99久国产av精品| 91久久精品电影网| 国产成人影院久久av| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 两个人视频免费观看高清| 97超碰精品成人国产| 国产男人的电影天堂91| 九九爱精品视频在线观看| 欧美日本亚洲视频在线播放| 在线免费十八禁| 日本-黄色视频高清免费观看| 亚洲婷婷狠狠爱综合网| 亚洲国产精品合色在线| 18禁在线播放成人免费| 国产午夜精品一二区理论片| 国产国拍精品亚洲av在线观看| 老师上课跳d突然被开到最大视频| 久久精品国产自在天天线| 干丝袜人妻中文字幕| 国产精品久久久久久亚洲av鲁大| 麻豆成人午夜福利视频| 精品一区二区三区人妻视频| 男插女下体视频免费在线播放| 国产老妇女一区| 国模一区二区三区四区视频| av天堂中文字幕网| 日本免费a在线| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 综合色丁香网| 一级毛片aaaaaa免费看小| 国产精品一区二区三区四区久久| 欧美成人精品欧美一级黄| av国产免费在线观看| 人妻系列 视频| 男女啪啪激烈高潮av片| 一本一本综合久久| 国产免费一级a男人的天堂| 日韩高清综合在线| 久久久久网色| 12—13女人毛片做爰片一| 免费人成视频x8x8入口观看| 亚洲色图av天堂| 欧美精品一区二区大全| 日本黄大片高清| 在线免费十八禁| 我的老师免费观看完整版| 春色校园在线视频观看| 亚洲av二区三区四区| 欧美zozozo另类| 精品日产1卡2卡| 婷婷亚洲欧美| 天美传媒精品一区二区| 国产伦在线观看视频一区| 乱人视频在线观看| 啦啦啦韩国在线观看视频| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 亚洲自拍偷在线| 久久人人爽人人片av| 国产爱豆传媒在线观看| 在线免费十八禁| 悠悠久久av| 亚洲国产色片| 成人毛片a级毛片在线播放| 日韩亚洲欧美综合| 国产女主播在线喷水免费视频网站 | 国产成人aa在线观看| 色哟哟哟哟哟哟| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 久久午夜福利片| 日日摸夜夜添夜夜添av毛片| 激情 狠狠 欧美| 在线播放无遮挡| 中国国产av一级| kizo精华| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 免费av观看视频| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 国产一区二区亚洲精品在线观看| av专区在线播放| 综合色av麻豆| 久久久久免费精品人妻一区二区| 国模一区二区三区四区视频| 全区人妻精品视频| 卡戴珊不雅视频在线播放| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 99久久无色码亚洲精品果冻| 夫妻性生交免费视频一级片| 卡戴珊不雅视频在线播放| 婷婷精品国产亚洲av| 嫩草影院入口| 免费无遮挡裸体视频| 免费人成视频x8x8入口观看| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 看免费成人av毛片| 欧美激情在线99| 99久久九九国产精品国产免费| 日韩av在线大香蕉| 少妇熟女aⅴ在线视频| 欧美zozozo另类| 免费无遮挡裸体视频| 国产成人a∨麻豆精品| av天堂中文字幕网| 性色avwww在线观看| 国产极品精品免费视频能看的| 1024手机看黄色片| 欧美一区二区精品小视频在线| 最近的中文字幕免费完整| 久久久午夜欧美精品| 麻豆av噜噜一区二区三区| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 看片在线看免费视频| 日日撸夜夜添| 国产在线精品亚洲第一网站| 长腿黑丝高跟| 亚洲在线观看片| 有码 亚洲区| 久久亚洲国产成人精品v| 免费看美女性在线毛片视频| 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 国产精品一区二区三区四区免费观看| 97热精品久久久久久| 婷婷精品国产亚洲av| 国内精品宾馆在线| 国产爱豆传媒在线观看| 在线免费观看不下载黄p国产| 日本五十路高清| 国产v大片淫在线免费观看| 日韩精品有码人妻一区| 国产亚洲av片在线观看秒播厂 | 日韩高清综合在线| 日本-黄色视频高清免费观看| 国产真实乱freesex| 波多野结衣高清无吗| 久久99热6这里只有精品| 久久人人精品亚洲av| 久久久国产成人精品二区| 午夜a级毛片| 又爽又黄a免费视频| 国产精品免费一区二区三区在线| 国产探花在线观看一区二区| 亚洲国产欧美人成| 免费av观看视频| 日韩av在线大香蕉| 国产午夜福利久久久久久| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久亚洲| 国产综合懂色| 国产视频首页在线观看| 大香蕉久久网| 男人和女人高潮做爰伦理| 久久99精品国语久久久| 亚洲不卡免费看| 久久人人爽人人爽人人片va| 中文资源天堂在线| 精品久久久久久久末码| av在线蜜桃| 免费看av在线观看网站| 国产av不卡久久| 亚洲精华国产精华液的使用体验 | 日本熟妇午夜| 男插女下体视频免费在线播放|