• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extended Impact of Cold Air Invasions in East Asia in Response to a Warm South China Sea and Philippine Sea

    2023-02-06 06:31:02MarcoLEUNGDongxiaoWANGWenZHOUandYuntaoJIAN
    Advances in Atmospheric Sciences 2023年3期

    Marco Y.-T. LEUNG, Dongxiao WANG, Wen ZHOU, and Yuntao JIAN

    1School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China

    2Department of Atmospheric and Oceanic Sciences &Institute of Atmospheric Sciences,Fudan University, Shanghai 200438, China

    3Guy Carpenter Asia-Pacific Climate Impact Centre, Center for Ocean Research in Hong Kong and Macau (CORE),School of Energy and Environment, City University of Hong Kong, Hong Kong, China

    ABSTRACT During boreal winter, the invasion of cold air can lead to remarkable temperature drops in East Asia which can result in serious socioeconomic impacts. Here, we find that the intensity of strong synoptic cold days in the East China Sea and Indochina Peninsula are increasing. The enhanced synoptic cold days in these two regions are attributed to surface warming over the South China Sea and Philippine Sea (SCSPS). The oceanic forcing of the SCSPS on the synoptic cold days in the two regions is verified by numerical simulation. The warming of the SCSPS enhances the baroclinicity, which intensifies meridional wind and cold advection on synoptic timescales. This leads to a more extended region that is subject to the influence of cold invasion.

    Key words: ocean warming, extra-tropical cyclones, baroclinicity, temperature whiplash

    1. Introduction

    Cold surges are a prominent phenomenon in East Asia during boreal winter. Cold air originating from Siberia periodically migrates southeastward, leading to profound drops in temperature over East Asia on synoptic timescales. The invasion of cold surges can be associated with significant socioeconomic impacts and mortality (Zhou et al., 2011; Sun et al.,2022). Hence, previous studies have investigated the influence of cold events in East Asia and their possible causes(Zhou et al., 2009; Cheung et al., 2016; Zhang et al., 2021b;Bueh et al., 2022; Zhang et al., 2022).

    Temperature variations on synoptic timescales in East Asia are closely related to horizontal temperature advection in the lower troposphere in conjunction with the passage of extra-tropical cyclones, which is accompanied by altered wind direction and temperature advection on synoptic tempo-spatial scales (Leung et al., 2015; Leung and Zhou 2016a; Song et al., 2016; Ma and Zhu 2021). Extra-tropical cyclone genesis often occurs on the leeward side of mountains in Mongolia and the Tibetan Plateau, whose evolution is aided by the strong surface temperature gradient over the Kuroshio Current (Cho et al., 2018; Lee et al., 2020). In the developing stage, the intensification of extra-tropical cyclones is modulated by baroclinic instability, diabatic processes, and the efficiency of eddy growth, which contribute to seasonal variations in the intensity of extra-tropical cyclones (Chang and Song, 2006; Leung and Zhou, 2016b;Schemm and Rivière, 2019; Liu et al., 2020; Yang et al.,2022). Therefore, extra-tropical cyclones are modulated by low-frequency variations in atmospheric and oceanic circulations.

    The El Ni?o/Southern Oscillation (ENSO) can induce anomalous atmospheric circulation in East Asia through airsea interactions during boreal winter (Wang et al., 2000).Recent studies have demonstrated ENSO forcing on the intensity of synoptic temperature variation in eastern China(Leung and Zhou, 2016b; Jian et al., 2021a). However, it has also been pointed out that ENSO forcing on synopticscale temperatures in China is substantially weaker after the 1980s, in association with a change in the teleconnection pattern of ENSO after the 1980s (Jian et al., 2021b). Consequently, ENSO-related temperature patterns and baroclinicity in East Asia are also altered. Additionally, interannual variability in sea surface temperature over the Kuroshio Current could influence the seasonal prediction of the life cycle of baroclinic wave activity in the Northwest Pacific (Zhang et al., 2021a). Therefore, a multi-scale change in the upper ocean could be crucial to synoptic temperature variations in East Asia. In addition, the effects of local oceanic forcing on the variation in East Asia remain uncertain.

    Anthropogenic forcing is likely to drive ocean warming by changing the radiative forcing. Observational data indicate a considerable spatial difference in the rate of ocean warming(Wang et al., 2016). For instance, the tropical western Pacific warms substantially faster than the eastern Pacific because of strengthening trade winds and the cooling effect of upwelling in the eastern Pacific (Amaya et al., 2015; Seager et al., 2019). It is also noted that the warming rate in the offshore China seas accelerated after 2011, along with the Interdecadal Oscillation (Tang et al., 2020). Warming of the offshore China seas and the western Pacific may enhance baroclinicity in the lower troposphere, which may, in turn, affect extra-tropical cyclones in East Asia.

    The frequency of cold events is expected to decrease with global warming, but extreme cold events may still occur as a result of natural variability in the climate system(Qian et al., 2018; Hu et al., 2020). Apart from extreme temperatures, recent studies have shown that the magnitude of temperature fluctuations could influence public health and agriculture (Ikram et al., 2015; Xu et al., 2020). Thus, there is a pressing need to investigate the mechanism controlling the intensity of strong synoptic cold days. This study aims to identify the trend in the intensity of strong synoptic cold days in East Asia during boreal winter and the degree to which ocean warming contributes to this trend.

    The remainder of this paper is organized as follows. Section 2 presents the data and methods, section 3 presents the results. Section 4 provides a discussion before a conclusion is presented in section 5.

    2. Data and methods

    This study employs the 2-meter air temperature (T2m)and 10-meter meridional wind (V10m) of the ERA-5 reanaly-sis (Hersbach et al., 2020). Daily values are obtained by averaging the hourly temperatures. For the sea surface temperature (SST), ERSSTv5 data are utilized (Huang et al., 2017).To identify a strong cold air invasion, a cold surge is traditionally defined as a temperature drop exceeding a specific threshold. In this study, we quantify the intensity of strong cold synoptic days using the average of the lowest 10% synoptic T2m (L10ST) for every winter. A Lanczos filter is first applied to T2m to extract the synoptic signal (≤ 14 days)(Duchon, 1979). The filter is also applied to the synoptic V10m. The study period includes winters from 1979/80 to 2020/21 (December to February). Winters are labeled according to the year of their December; for example, the 1979 winter denotes the 1979/80 winter.

    To investigate the variation in L10ST along with oceanic forcing, we use a simplified atmospheric general circulation model, SPEEDY, from the International Centre for Theoretical Physics (Molteni, 2003; Kucharski et al., 2006,2013). This model is widely used to study the atmospheric response to anomalous sea surface temperature (Jian et al.,2020; Leung et al., 2020, 2022a, b; Cheung et al., 2021;Feng et al., 2022). It is a hydrostatic model with a semiimplicit treatment of gravity waves, eight vertical levels in σcoordinates, and T30 spectral truncation resolution. The model is driven first by the climatological mean sea surface temperature. Subsequently, anomalously warm and cold sea surface temperature is prescribed to drive the sensitivity simulations. To mitigate the influence of specific initial conditions on the simulations, a composite of 135 different initial conditions is computed and investigated. Additionally, the output of the simulations is examined by a paired z-test.

    3. Results

    The climatological mean of winter L10ST over East Asia is shown in Fig. 1a. It is noted that L10ST is relatively stronger in the midlatitudes of East Asia, except for a center of local maximum in Southeast China (SEC; 25°—35°N and 110°—120°E). For the linear trend in L10ST (Fig. 1b), a significant decreasing trend is found in the East China Sea (ECS;25°—35°N and 125°—135°E) and the Indochina Peninsula(ICP; 15°—25°N and 95°—110°E). The negative trend in the East China Sea and the Indochina Peninsula indicate stronger synoptic cold days in the two regions. This also implies that the center of the local L10ST minimum in Southeast China extends northeastward and southwestward, possibly subjecting this area to the influence of cold invasion.

    The time series of areal averaged L10ST in the three regions are presented in Fig. 1c. The decreasing L10ST trend in Southeast China is approximately equivalent to that in the East China Sea and Indochina Peninsula. However,the trend in Southeast China cannot pass the significance test (Fig. 1c) because of the stronger interannual variation of L10ST in Southeast China relative to the East China Sea and the Indochina Peninsula. This results in a relatively lower signal-to-noise ratio for the decreasing trend of L10ST in Southeast China.

    Fig. 1. (a) Climatological mean L10ST (units: K). (b) Linear trend in L10ST, in units of K (10 yr—1); the yellow contour lines indicate p-values = 0.05. (c) Dashed lines show the time series of the area-averaged L10ST over the SEC, ECS, and ICP; solid lines show their corresponding linear trend.

    To investigate the possible cause of decreasing L10ST,a negated time series of L10ST in the East China Sea and Indochina Peninsula is utilized in the regression reanalysis.As shown in Figs. 2a and b, L10ST in the East China Sea and Indochina Peninsula is negatively correlated to the lowest 10% synoptic meridional wind intensity. This indicates that stronger cold synoptic days in these two regions occur along with stronger northerly winds on synoptic timescales. In Fig. 2c, a positive relationship is found between L10ST in the East China Sea, and the winter mean T2m over eastern China and the South China Sea and Philippine Sea (SCSPS;5°S—30°N and 110°—145°E). For the regression of L10ST in the Indochina Peninsula (Fig. 2d), a positive center is found in the SCSPS. Hence, the warmer near-surface air temperature over the SCSPS is concurrent with the stronger synoptic cold days in the two regions, which results in a significantly steeper meridional gradient upstream of the East China Sea(Fig. 2e) and a southward shift of the stronger baroclinic zone in the Indochina Peninsula (Fig. 2f). Thus, the warmer near-surface temperature in the SCSPS may enhance the synoptic meridional wind and synoptic cold days in the two regions by altering regional baroclinicity.

    Fig. 2. Regression of the intensity of synoptic meridional wind onto standardized and negated (a) ECS L10ST and (b)ICP L10ST. Panels (c) and (d), as in (a) and (b), but for near-surface temperature. Panels (e) and (f), as in (a) and (b),but for the meridional temperature gradient (shading). In (e) and (f), dashed and solid contours indicate the seasonal mean of the meridional temperature gradient with values of —1 × 10—5 and —2 × 10—5 K m—1, respectively. For shading,only values exceeding the 0.05 significance level are depicted. Purple and green boxes indicate the regions of ECS and ICP, respectively.

    In this study, as portrayed in Figs. 3a and b, we also examine the regression of sea surface temperature onto negated L10ST in the East China Sea and Indochina Peninsula. There is a significant positive surface temperature anomaly over the SCSPS, which may warm the air above.The area-averaged winter sea surface temperature in the SCSPS is depicted in Fig. 3c. A notable warming trend occurred after the mid-1990s. As mentioned above, a positive relationship exists between the SCSPS sea surface temperature and the intensity of strong synoptic cold days in the East China Sea and the Indochina Peninsula. Hence, the positive trend in the SCSPS sea surface temperature supports the trends in L10ST in the two regions (Figs. 3c and d). To deduce the oceanic forcing of the SCSPS on synoptic cold days, we define warm and cold SCSPS winters as the standardized sea surface temperature in the SCSPS that are > 1 and < —1, respectively. Accordingly, ten warm and cold SCSPS winters are identified, as shown in Fig. 3c.

    Fig. 3. Regression of SST onto the standardized and negated (a) ECS L10ST and (b) ICP L10ST. (c) Average SST in SCSPS (black;units: K); purple dashed lines indicate the range from ±1 standard deviation; red rectangles and blue triangles represent winters with SST larger than 1 standard deviation and less than -1 standard deviation, respectively. (d) Linear trend in SST. In (a), (b), and (d),purple contours indicate p-values = 0.05.

    The L10ST days in Southeast China for positive and negative SCSPS winters are identified. Accordingly, the composite of synoptic T2m and V10m on days —1, 1, and 2 is presented in Fig. 4. For positive SCSPS winters, a cold center is located in northeast Asia on day —1 (Fig. 4a). The negative temperature center migrates southward and extends southwestward and northeastward in the following days in conjunction with the migration of the synoptic meridional wind(Figs. 4b and c). This illustrates the passage of cold air originating from Siberia, which results in near-surface temperature fluctuation on a daily timescale in Southeast China, the East China Sea, and the Indochina Peninsula. For negative SCSPS winters, a similar migration of a negative temperature center from Siberia is observed (Figs. 4d and f). However,notably weaker magnitudes are noted in the East China Sea and Indochina Peninsula when the cold air migrates across East Asia. Therefore, the impact of the cold air invasion widens with warmer sea surface temperatures in the SCSPS.

    The probability distribution function of synoptic temperature in the East China Sea and Indochina Peninsula is presented in Figs. 5a and b. In assessing the difference between warm and cold SCSPS conditions in the two regions, we find that the number of strong synoptic cold days is significantly larger with warm SCSPS, which is associated with a reduction in weak cold days. In addition, strong synoptic warm days in the East China Sea and Indochina Peninsula also increase along with warm SCSPS. Hence, the number of strong synoptic cold days increases along with greater synoptic temperature variation during warm SCSPS events, possi-bly due to the stronger baroclinicity and synoptic meridional wind in South China.

    To verify the forcing of sea surface temperature in the SCSPS on the size of the cold air invasion in East Asia, two numerical simulations are carried out using the ICTP AGCM. By considering a similar regression pattern in Figs. 3a and b, the two simulations are driven by the regression pattern of sea surface temperature in SCSPS (Pos_Run;black box in Fig. 3b) and its negated pattern (Neg_Run),respectively.

    The difference in near-surface L10ST between the two simulations (Pos_Run — Neg_Run) is presented in Fig. 6a.Notably, significant negative differences are found in the East China Sea and the Indochina Peninsula. This demonstrates that warmer sea surface temperatures can induce significantly stronger synoptic cold days in the SCSPS. In addition, warmer sea surface temperature also results in colder temperatures in South China and a negative difference in the meridional temperature gradient (a steeper gradient)extending from the East China Sea to the Indochina Peninsula(Figs. 6b and c). Therefore, the results of the numerical simulation prove that warm sea surface temperatures in the SCSPS heat the near-surface air, leading to a stronger landsea thermal contrast and baroclinicity. This ultimately induces a change in the synoptic meridional wind intensity and an extension of the cold air invasion into East Asia(Fig. 6a).

    Fig. 4. (a—c) Composite of T2m (shading; units: K) and V10m at the levels of —1.5 and 1.5 (contours; units:m s—1) on days —1, 1, and 2, corresponding to L10ST days in South China, for positive SCSPS winters. Panels(d—f), as in (a—c), but for negative SCSPS winters. The gray box indicates the region of SEC.

    Fig. 5. Probability distribution function of synoptic temperature in a warm SCSPS (dashed red line) and a cold SCSPS(dashed blue line) in the (a) ECS and (b) ICP, with the difference between warm and cold SCSPS (green bars);black stars indicate differences exceeding the 0.05 significance level. Solid red and blue vertical lines indicate the average of the first decile of synoptic temperature for warm and cold SCSPS, respectively.

    Fig. 6. (a) Difference in L10ST between Pos_Run and Neg_Run simulations; Panels (b) and (c), as in (a), but for near-surface temperature and its meridional gradient; yellow contours indicate a z-score = 1.96.

    4. Summary and discussion

    The variation in the intensity of strong synoptic cold days in East Asia is documented in this study. Significant decreasing temperature trends in the East China Sea and Indochina Peninsula imply larger areas of cold air invasion in East Asia. These trends are attributed to sea surface warming over the South China Sea and Philippine Sea. This warming heats the air near the surface, which enhances the landsea thermal contrast between East Asia and the western Pacific, which leads to a steeper meridional temperature gradient near the surface, extending from the East China Sea to the Indochina Peninsula. This induces changes in the synoptic meridional wind intensity and L10ST. The forcing by a warm SCSPS on L10ST in the East China Sea and Indochina Peninsula is generally reproduced by a simplified atmospheric general circulation model. Apart from the change in synoptic meridional wind intensity, the stronger near-surface temperature gradient in Southeast Asia, on a seasonal timescale concurrent with a warm SCSPS, could enhance horizontal temperature advection and the subsequent invasion of cold air.

    Previous studies show that the influence of cold surges in East Asia is determined by their intensity, pathway, and frequency. As indicated by Leung et al. (2019), the intensity of synoptic temperature variations in the Indochina Peninsula is modulated by the strength of extra-tropical eddies, along with variation in baroclinic energy conversion from eddy potential energy to eddy kinetic energy. Thus, this study points out the importance of oceanic forcing in lower tropospheric baroclinicity and the size of cold air invasion in East Asia. In addition, this study suggests that the synergy between the intensity, frequency, and size of cold air invasions should be considered when evaluating their socioeconomic impacts in association with climate change. On the other hand, extra-tropical cyclones could reduce the warm sea surface temperature in SCSPS via sensible and latent heat fluxes, which play a negative feedback role in anomalous temperature in SCSPS (Abdillah et al., 2017; Dacre et al.,2020). Therefore, the intensity of strong synoptic cold days is determined, in part, by the ocean heat content in the upper SCSPS.

    Based on numerical simulations, the forcing of the SCSPS sea surface temperature on the intensity of strong synoptic cold days in East Asia is examined. The results suggest that a warm SCSPS can induce stronger-than-normal synoptic cold days in the East China Sea and Indochina Peninsula. In addition, the SCSPS sea surface temperature demonstrates a robust, increasing trend. Previous studies have attributed the interdecadal variation and trend in the SCSPS sea surface temperature to changes in ocean advection, which are driven by a weakening East Asian winter monsoon and a strengthening western North Pacific subtropical high (Wang et al., 2002;Qu et al., 2005; Cai et al., 2017; Tan et al., 2021; Liang et al., 2022). Hence, these variations in atmospheric and oceanic circulations could influence the intensity of strong synoptic cold days in East Asia by altering the sea surface temperature in the SCSPS.

    Acknowledgements.This study was jointly supported by the National Natural Science Foundation of China (Grant Nos.42120104001, 41805042), the Science and Technology Program of Guangzhou, China (Grant No. 202102020939), and the Fundamental Research Funds for the Central University, Sun Yat-Sen University (Grant No. 22qntd2202), and a project of the Center for Ocean Research in Hong Kong and Macau (CORE).

    国产成人影院久久av| 特级一级黄色大片| 熟妇人妻久久中文字幕3abv| 日韩精品青青久久久久久| 免费看a级黄色片| 少妇被粗大猛烈的视频| 97超视频在线观看视频| 一级毛片久久久久久久久女| 亚洲欧美日韩高清专用| 窝窝影院91人妻| 久久香蕉精品热| 夜夜看夜夜爽夜夜摸| 精品一区二区三区人妻视频| 亚洲av免费在线观看| 午夜福利在线观看吧| 老司机福利观看| 色av中文字幕| 亚洲在线观看片| 日本成人三级电影网站| 国产91精品成人一区二区三区| 老鸭窝网址在线观看| 极品教师在线视频| 老熟妇乱子伦视频在线观看| 久久这里只有精品中国| 日韩高清综合在线| 国产成人a区在线观看| 国产亚洲精品久久久久久毛片| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 免费黄网站久久成人精品 | 欧美精品国产亚洲| 亚洲av免费高清在线观看| 高清在线国产一区| 黄色日韩在线| 精品乱码久久久久久99久播| 真人一进一出gif抽搐免费| 国产色爽女视频免费观看| av天堂中文字幕网| 在线免费观看的www视频| 性插视频无遮挡在线免费观看| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 国产免费av片在线观看野外av| 亚洲av熟女| 男人狂女人下面高潮的视频| 国产黄片美女视频| 亚洲,欧美精品.| 亚洲人成网站高清观看| 成人亚洲精品av一区二区| 日日摸夜夜添夜夜添av毛片 | 97碰自拍视频| 观看美女的网站| 欧美黄色淫秽网站| 熟妇人妻久久中文字幕3abv| 又粗又爽又猛毛片免费看| 床上黄色一级片| 亚洲国产色片| 国产熟女xx| 人人妻人人澡欧美一区二区| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆 | 观看免费一级毛片| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 婷婷丁香在线五月| 一个人看的www免费观看视频| 国内揄拍国产精品人妻在线| 男人的好看免费观看在线视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲专区国产一区二区| 波多野结衣高清作品| 久9热在线精品视频| 欧美潮喷喷水| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图 | 九色成人免费人妻av| 别揉我奶头~嗯~啊~动态视频| 成人一区二区视频在线观看| 自拍偷自拍亚洲精品老妇| 观看美女的网站| 91麻豆av在线| 久久香蕉精品热| 男女床上黄色一级片免费看| 少妇人妻精品综合一区二区 | 精品久久久久久久久av| 麻豆av噜噜一区二区三区| 国产免费男女视频| 欧美bdsm另类| 日本 欧美在线| 天堂影院成人在线观看| 一区二区三区高清视频在线| 99国产综合亚洲精品| 日本黄色片子视频| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 1024手机看黄色片| 成人精品一区二区免费| 丁香欧美五月| 毛片一级片免费看久久久久 | 欧美最黄视频在线播放免费| 中文字幕av成人在线电影| 露出奶头的视频| 最新在线观看一区二区三区| 久久国产精品影院| 欧美一区二区国产精品久久精品| 老司机午夜福利在线观看视频| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 久久香蕉精品热| 国产国拍精品亚洲av在线观看| 可以在线观看的亚洲视频| 看免费av毛片| 国产精品1区2区在线观看.| 午夜a级毛片| 色综合站精品国产| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看 | 国产精品影院久久| 夜夜爽天天搞| 99热精品在线国产| 美女大奶头视频| 老鸭窝网址在线观看| 国产色爽女视频免费观看| 午夜福利高清视频| 一区二区三区四区激情视频 | 精品久久久久久久久av| 国产单亲对白刺激| 动漫黄色视频在线观看| 制服丝袜大香蕉在线| 中出人妻视频一区二区| 欧美日韩黄片免| 国产亚洲欧美在线一区二区| 一卡2卡三卡四卡精品乱码亚洲| av天堂中文字幕网| 国产一区二区三区在线臀色熟女| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 伊人久久精品亚洲午夜| 亚洲自偷自拍三级| 首页视频小说图片口味搜索| 久久精品91蜜桃| 午夜福利免费观看在线| www.熟女人妻精品国产| 欧美又色又爽又黄视频| 国产成人影院久久av| 九色国产91popny在线| 一区二区三区高清视频在线| 免费搜索国产男女视频| 日日摸夜夜添夜夜添小说| 国产三级在线视频| 亚洲最大成人手机在线| 在线观看舔阴道视频| 国内揄拍国产精品人妻在线| 国产成人av教育| 国产探花极品一区二区| 亚洲18禁久久av| 美女 人体艺术 gogo| 一个人看视频在线观看www免费| 久久久久久久久大av| 毛片女人毛片| 国产午夜精品论理片| 少妇丰满av| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 美女免费视频网站| 一本一本综合久久| 国产精品影院久久| 性插视频无遮挡在线免费观看| 怎么达到女性高潮| 国产真实伦视频高清在线观看 | 一边摸一边抽搐一进一小说| 免费一级毛片在线播放高清视频| 日韩中字成人| 1024手机看黄色片| 日韩精品中文字幕看吧| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 免费av不卡在线播放| 色吧在线观看| 国产视频内射| 小说图片视频综合网站| 99在线人妻在线中文字幕| 国产麻豆成人av免费视频| 好看av亚洲va欧美ⅴa在| 精华霜和精华液先用哪个| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 国产三级在线视频| 禁无遮挡网站| 757午夜福利合集在线观看| 香蕉av资源在线| 欧美xxxx性猛交bbbb| 看十八女毛片水多多多| 露出奶头的视频| www.熟女人妻精品国产| 精品久久久久久,| 日本一二三区视频观看| 国内精品一区二区在线观看| 国产欧美日韩精品亚洲av| 成人鲁丝片一二三区免费| 亚洲人成网站在线播放欧美日韩| 国产黄色小视频在线观看| 国产色爽女视频免费观看| 午夜福利18| 高清毛片免费观看视频网站| 欧美日韩瑟瑟在线播放| 乱人视频在线观看| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 黄色配什么色好看| 99在线人妻在线中文字幕| 午夜福利成人在线免费观看| 国产精品影院久久| 日韩欧美精品免费久久 | 午夜福利在线观看吧| 在线国产一区二区在线| www.999成人在线观看| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 国产亚洲精品久久久com| 欧美+日韩+精品| www.999成人在线观看| 91麻豆av在线| 久久精品人妻少妇| 日本一二三区视频观看| 国语自产精品视频在线第100页| 国产一区二区亚洲精品在线观看| 午夜久久久久精精品| 亚洲精品在线观看二区| 性色avwww在线观看| 91在线观看av| 国产国拍精品亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 日韩精品青青久久久久久| 日韩欧美精品免费久久 | 亚洲精品久久国产高清桃花| 黄色配什么色好看| 美女xxoo啪啪120秒动态图 | 色播亚洲综合网| 怎么达到女性高潮| 在线免费观看的www视频| 极品教师在线视频| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| 国内精品一区二区在线观看| 免费大片18禁| 久久久久久久久中文| 在线免费观看的www视频| 欧美成人免费av一区二区三区| 日韩人妻高清精品专区| 久久久色成人| 亚洲av二区三区四区| 黄色视频,在线免费观看| 亚洲人成网站高清观看| 国产私拍福利视频在线观看| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 欧美日韩福利视频一区二区| 亚洲第一区二区三区不卡| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 有码 亚洲区| 国产大屁股一区二区在线视频| 日韩成人在线观看一区二区三区| 99热6这里只有精品| 日韩中文字幕欧美一区二区| 亚洲av熟女| 9191精品国产免费久久| 国产精品三级大全| 欧美一级a爱片免费观看看| 草草在线视频免费看| 国产视频内射| 好男人电影高清在线观看| 日韩高清综合在线| 小说图片视频综合网站| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 欧美性感艳星| 色综合婷婷激情| 国产高清视频在线观看网站| 男女那种视频在线观看| 欧美午夜高清在线| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 人妻夜夜爽99麻豆av| 97热精品久久久久久| 日本熟妇午夜| 性色av乱码一区二区三区2| 亚洲av中文字字幕乱码综合| 国产精品三级大全| 国产av麻豆久久久久久久| 91麻豆精品激情在线观看国产| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| x7x7x7水蜜桃| 欧美+亚洲+日韩+国产| 亚洲欧美日韩高清专用| av在线蜜桃| 精品久久久久久久末码| 99国产精品一区二区三区| 久久久精品欧美日韩精品| 可以在线观看毛片的网站| 亚州av有码| 精品人妻一区二区三区麻豆 | 成人高潮视频无遮挡免费网站| 国产主播在线观看一区二区| 久久久久久久精品吃奶| 制服丝袜大香蕉在线| 男女做爰动态图高潮gif福利片| 真人一进一出gif抽搐免费| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 欧美丝袜亚洲另类 | 少妇熟女aⅴ在线视频| 国产精品一及| 女人被狂操c到高潮| 老熟妇仑乱视频hdxx| 成人无遮挡网站| 午夜免费男女啪啪视频观看 | 午夜视频国产福利| 深夜a级毛片| 久9热在线精品视频| 国产精品电影一区二区三区| eeuss影院久久| 亚洲中文字幕日韩| 我的女老师完整版在线观看| 在线看三级毛片| 久久香蕉精品热| 国产高清有码在线观看视频| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| aaaaa片日本免费| 亚洲人成网站在线播放欧美日韩| 听说在线观看完整版免费高清| 直男gayav资源| 久久欧美精品欧美久久欧美| 久久性视频一级片| 欧美不卡视频在线免费观看| or卡值多少钱| 久久久精品大字幕| 一区福利在线观看| 日韩 亚洲 欧美在线| 小说图片视频综合网站| 欧美一区二区国产精品久久精品| 国产成人欧美在线观看| 久久精品91蜜桃| 男女之事视频高清在线观看| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 99久久九九国产精品国产免费| 久久精品综合一区二区三区| 级片在线观看| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 国产熟女xx| 精品乱码久久久久久99久播| 久久99热6这里只有精品| 一级黄色大片毛片| 亚洲av电影在线进入| 久久久久精品国产欧美久久久| 精品人妻视频免费看| 精品欧美国产一区二区三| 亚洲国产精品合色在线| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 欧美一区二区亚洲| 久久久精品大字幕| 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 亚洲av电影在线进入| 亚洲在线自拍视频| 国内揄拍国产精品人妻在线| 久久久久性生活片| 国产精品亚洲一级av第二区| 国产黄色小视频在线观看| 国产精品99久久久久久久久| 色播亚洲综合网| 黄色日韩在线| 亚洲成av人片免费观看| 在线观看av片永久免费下载| 日本黄色片子视频| 少妇丰满av| 色尼玛亚洲综合影院| 亚洲激情在线av| 亚洲不卡免费看| 他把我摸到了高潮在线观看| 天堂网av新在线| 变态另类丝袜制服| 欧美日本视频| 两个人视频免费观看高清| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 成年女人看的毛片在线观看| 国产美女午夜福利| 午夜影院日韩av| 如何舔出高潮| 久久精品国产亚洲av香蕉五月| av黄色大香蕉| 变态另类丝袜制服| 国产午夜精品论理片| 日本a在线网址| 久久久久国产精品人妻aⅴ院| 日韩av在线大香蕉| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 又粗又爽又猛毛片免费看| 国产视频内射| av欧美777| 级片在线观看| 国产成人福利小说| 国产伦在线观看视频一区| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 一本久久中文字幕| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 日韩欧美精品v在线| 特大巨黑吊av在线直播| 国产精品久久久久久精品电影| 国产综合懂色| 色综合站精品国产| 亚洲最大成人中文| 性色avwww在线观看| av在线蜜桃| 美女 人体艺术 gogo| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 亚洲av熟女| 国产视频一区二区在线看| 久9热在线精品视频| av天堂在线播放| 国产v大片淫在线免费观看| 久久99热这里只有精品18| 九色国产91popny在线| 国产精品三级大全| 免费看光身美女| 欧美在线一区亚洲| 欧美日韩黄片免| 国产中年淑女户外野战色| 国产真实伦视频高清在线观看 | 国产精品一区二区三区四区免费观看 | 欧美绝顶高潮抽搐喷水| 精品欧美国产一区二区三| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 在线观看免费视频日本深夜| www.www免费av| 成人毛片a级毛片在线播放| 能在线免费观看的黄片| 亚洲成人中文字幕在线播放| 国产 一区 欧美 日韩| 久久人人爽人人爽人人片va | 国产主播在线观看一区二区| 国产综合懂色| 露出奶头的视频| 又黄又爽又免费观看的视频| 欧美成狂野欧美在线观看| 国产乱人视频| 婷婷丁香在线五月| 欧美黑人欧美精品刺激| 国产午夜精品论理片| 嫩草影院入口| 午夜福利高清视频| 精品日产1卡2卡| 久久精品国产清高在天天线| 天堂av国产一区二区熟女人妻| 国产精品免费一区二区三区在线| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 亚洲第一区二区三区不卡| 中文字幕精品亚洲无线码一区| 成人三级黄色视频| 中文字幕人妻熟人妻熟丝袜美| 免费高清视频大片| 熟妇人妻久久中文字幕3abv| 男人的好看免费观看在线视频| 欧美一区二区精品小视频在线| 最新在线观看一区二区三区| 高清日韩中文字幕在线| 免费观看精品视频网站| 亚洲av第一区精品v没综合| 欧美日韩综合久久久久久 | 91麻豆av在线| 国产精品免费一区二区三区在线| 丁香六月欧美| 欧美在线一区亚洲| 成人av一区二区三区在线看| 国产精品伦人一区二区| 亚洲av免费在线观看| 在线国产一区二区在线| 久久天躁狠狠躁夜夜2o2o| 日韩免费av在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲,欧美精品.| 色综合婷婷激情| 欧美黑人巨大hd| 日韩免费av在线播放| 国产精品久久久久久久久免 | 校园春色视频在线观看| 亚洲自偷自拍三级| 亚洲一区二区三区不卡视频| a在线观看视频网站| 午夜福利在线在线| 亚洲国产精品久久男人天堂| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲av涩爱 | 日韩欧美精品v在线| 又爽又黄a免费视频| 久久久久久国产a免费观看| 天天一区二区日本电影三级| 久久性视频一级片| 一进一出抽搐gif免费好疼| 免费在线观看亚洲国产| 神马国产精品三级电影在线观看| 亚洲一区高清亚洲精品| 日本一本二区三区精品| 久久99热这里只有精品18| 色尼玛亚洲综合影院| 国产精品av视频在线免费观看| 尤物成人国产欧美一区二区三区| 欧美又色又爽又黄视频| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| 久99久视频精品免费| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 又黄又爽又免费观看的视频| 狠狠狠狠99中文字幕| 国产老妇女一区| 日韩欧美精品免费久久 | 十八禁网站免费在线| 亚洲av成人精品一区久久| 亚洲乱码一区二区免费版| 色视频www国产| 草草在线视频免费看| 中文在线观看免费www的网站| 丰满的人妻完整版| 尤物成人国产欧美一区二区三区| 国产私拍福利视频在线观看| 精品久久久久久久久久免费视频| 亚洲18禁久久av| 麻豆一二三区av精品| 国产成年人精品一区二区| 色av中文字幕| 黄片小视频在线播放| 99热6这里只有精品| 美女大奶头视频| 又爽又黄无遮挡网站| 国产精品久久久久久亚洲av鲁大| 免费在线观看亚洲国产| av在线蜜桃| 美女 人体艺术 gogo| 少妇人妻一区二区三区视频| 国产精品久久久久久久久免 | 国产精品女同一区二区软件 | 日韩欧美在线乱码| 国产精品精品国产色婷婷| 麻豆一二三区av精品| 嫩草影院精品99| 亚洲一区二区三区不卡视频| 我要看日韩黄色一级片| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 激情在线观看视频在线高清| a在线观看视频网站| 亚洲第一区二区三区不卡| 亚洲人与动物交配视频| 人人妻,人人澡人人爽秒播| 亚洲欧美精品综合久久99| 午夜a级毛片| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 黄色丝袜av网址大全| 亚洲自偷自拍三级| 人人妻人人看人人澡| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 十八禁网站免费在线| 99久久精品一区二区三区| 床上黄色一级片| 亚洲国产日韩欧美精品在线观看| 听说在线观看完整版免费高清| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 久久久久国产精品人妻aⅴ院| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 69av精品久久久久久| 亚洲av五月六月丁香网| 色精品久久人妻99蜜桃| 日本成人三级电影网站| 亚洲精品久久国产高清桃花| 三级国产精品欧美在线观看| 一本一本综合久久| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 在线天堂最新版资源| 真人一进一出gif抽搐免费| av在线蜜桃| 亚洲成a人片在线一区二区| 在线观看一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 男女床上黄色一级片免费看| 国产在视频线在精品|