• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation

    2023-02-06 07:03:38YuZHANGShaohaoHOUSonghuaMEIYananZHAODayongLI

    Yu ZHANG, Shaohao HOU, Songhua MEI, Yanan ZHAO, Dayong LI

    Correspondence

    Finite volume method-based numerical simulation method for hydraulic fracture initiation in rock around a perforation

    1College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China2Hunan Provincial Key Laboratory of Key Technology on Hydropower Development, Zhongnan Engineering Corporation, Changsha 410014, China

    1 Introduction

    Hydraulic fracturing is a technique for increasing permeability in oil and gas resource development, grouting reinforcement in mine management, and geo-stress measurement. For the purpose of enhancing hydraulic fracturing in horizontal wells, oriented perforating methods have been developed (Kurdi, 2018; Michael and Gupta, 2020a; Yan et al., 2020). Fluid is injected into the rock through perforations, which increases fluid pressure within rock and decreases rock temperature. Then, the rock around the perforation is fractured. Therefore, fracture initiation pressure is intimately connected to the reservoir's physical and mechanical properties, geo-stress, and temperature (Morgan and Aral, 2015). Accurate prediction of fracture initiation pressure is crucial in the design and construction of hydraulic fracturing systems (Zeng et al., 2018; Michael and Gupta, 2020b). Understanding the properties of the reservoir and state of stress around the wellbore is an effective method to predict fracture initiation.

    Kurashige (1989) proposed a thermo-poro-elastic model based on Biot's pore-elasticity model considering thermal effects. The Kurashige model was used to analyze the effect of stress distribution around the wellbore on fracture initiation. A thermo-poro-elastic model that accounts for the effect of convective heat transfer was developed by Farahani et al. (2006), in which transient coupled pore pressure and temperature equations for non-isothermal conditions were developed based on conservation laws. Furthermore, Wang and Dusseault (2003) used a thermo-poro-elastic model that accounted for the coupling of heat conduction and thermal convection to calculate the shear stresses on the surface of a linear elastic porous medium around a wellbore. However, although thermo-pore-elastic models have been applied to vertical or inclined wellbores (Nguyen et al., 2010), they have rarely been applied to perforations. Most models ignore the impact of convective heat transfer from fluid flow, assuming that only conduction causes heat transfer from the wellbore to the reservoirs.

    Because the maximum principal stress is from the overlying rock pressure, perforations drilled in the direction of the maximum horizontal principal stress are more susceptible to fracture initiation (Zhou et al., 1996). Russell et al. (2006) investigated the Tullich oil field, where the maximum principal stress is the overlying rock pressure, and drew similar conclusions. Zhang et al. (2017) studied the effects of geostatic stress, fluid injection rate, and perforation parameters on the hydraulic fracturing process with a modified particle flow code (PFC) model. Morgan and Aral (2015) studied the propagation of fracturing fluids in impermeable media with a finite volume fracture network model and verified the model by comparison with the results of a hydraulic fracturing experiment. Wellbore diameter, azimuth, and inclination angle are significant controllable parameters in the study of fracture initiation in horizontal wells. These studies considered the effects of stress or stress-flow coupling on the perforation well, but rarely considered thermal effects.

    The mechanical properties of rocks at high temperatures are related to their deformation and strength characteristics. Mechanical parameters such as elasticity modulus and Poisson's ratio vary in relation to temperature. An experimental study was conducted on the thermoelastic deformation of rock around a wellbore under a triaxial stress state from 20 to 600 ℃ to study the variation of the elastic modulus and Poisson's ratio with temperature (Xi and Zhao, 2010). From room temperature to 200 ℃, the elastic modulus decreased by an average of 0.036 GPa per 1 ℃ increase, and Poisson's ratio increased from 0.25 to 0.35. The effective stress is the overall effect of normal stress and pore pressure. Mathematical relationships between the effective stress and permeability were established by fitting experimental data with the effective stress as the variable and stress sensitivity models for the reservoir (Wu et al., 2019; Hu et al., 2020). However, few results have been applied to the study of hydraulic fracturing.

    In this study, a thermo-poro-elastic model is applied to horizontal perforation with consideration of the interactions of fluid flow and heat transfer. A numerical method based on finite volume method (FVM) is proposed for simulating fracture initiation of the rock around a perforation considering the stress sensitivity. The simulation verifies the correctness of the method for two types of situations. To analyze fracture initiation of perforations more accurately, the variation of elastic modulus and Poisson's ratio with temperature is included.

    2 Theoretical model

    2.1 Thermo-poro-elastic model

    Deep oil and gas reservoirs are found in high temperature, high pressure, and high geo-stress conditions. Therefore, a thermo-poro-elastic model was obtained by superposing in-situ mechanical, hydraulic, and thermal induced stress effects. The detailed process is described in Section S1 of electronic supplementary materials (ESM). The reservoir material was assumed in the model to be homogeneous and linearly elastic.

    2.2 Governing equations of fluid flow and temperature

    Based on the continuity equation of fluid flow and Darcy's law, the transient fluid flow equation is

    3 Numerical simulation method based on FVM

    3.1 Numerical simulation simplification

    The interactions of fluid flow and heat transfer must be considered in a thermo-poro-elastic model. For a cylindrical coordinate system, if the interaction and polar angle are not related, decoupling the interaction of fluid flow and heat transfer can be carried out in 2D by applying an axisymmetric method. Thermally induced stress and hydraulic induced stress are not affected by the polar angle. Furthermore, the effect of stress on fluid flow is also independent of the polar angle because the stress uses the average stress. The effect of stress on heat transfer is not considered. Therefore, decoupling the interaction of fluid flow and heat transfer is simplified to a 2D question.

    3.2 Spatial and time discretization

    The wellbore is arranged vertically while intersecting the perforation, and the perforation are horizontal well. A quarter of the rock around the wellbore and perforation is selected for numerical simulation validation. The wellbore diameter is 5 mm, the perforation diameter 1 mm, and the length 4 mm. The model size is 50 mm×50 mm, which is divided into 100×100 meshes (Fig. S3). The injection fluid is water and the flow rate is 25 mL/min. The time increment is 0.001 s. The simulation parameters are detailed in Table S1.

    The discrete equation of fluid flow is obtained by integrating the partial differential equation:

    The discrete equation of temperature is

    Therefore,

    3.3 Iterative algorithm

    and the corresponding parameters also need to be iterated:

    For non-Darcy flow, the permeability should be corrected for:

    Therefore, a numerical simulation method based on FVM for hydraulic fracturing is proposed (Fig. S5), which includes the fluid pressure, fracture initiation pressure, fracture initiation location, and fracture initiation time.

    3.4 Simulation setup and boundary conditions

    There are three boundary conditions to be resolved in this model: a symmetric boundary, inner boundary, and outer boundary (Fig. S6).

    The outer boundary nodes of the model are macro scopic internal nodes for the reservoir. Therefore, a nodal algebraic equation is added outside the boundary to modify the nodal coefficients of the outer boundary.

    where the subscriptis the point of outer boundary,+1 and-1 represent the internal and external points next to the node, respectively.

    4 Results and discussion

    4.1 Model validation

    To verify the accuracy of the constructed model, the Hubbert–Willi (H-W) and Haimson–Fairhurst (H-F) models were introduced. The H-W model gives an upper limit value of the fracture initiation pressure without considering the permeability of rock around the perforation, while the H-F model gives a lower limit value with high permeability. The H-W model is given by

    The H-F model is given by

    The fracture initiation pressure is 75.67 MPa in the H-W model and 40.18 MPa in the H-F model. In this study, the minimum fracture initiation pressure is 40.95 MPa when the wellbore wall is permeable and the maximum is 58.22 MPa when the wellbore wall is impermeable. All fracture initiation pressure results are intermediate in relation to the H-W and H-F models, which indicates that the model is correct.

    4.2 Results analysis

    4.2.1Effects of the perforation azimuth

    Fig. 1a shows that the fracture initiation pressure is higher when the wellbore wall is impermeable than when it is permeable, and the pressure increases with the rise of the perforation azimuth. The minimum fracture initiation pressure is 41.58 MPa when=0° and the wellbore is impermeable. The fracture initiation pressure increases rapidly between 0° and 60°. Beyond 60°, the pressure remains almost constant and maintains a weak relationship with the perforation azimuth.

    Fig. 1 Fracture initiation of rock around a perforation under different perforation azimuths: (a) fracture initiation pressure; (b) fracture initiation time

    The patterns of crack initiation time and crack initiation pressure are similar (Fig. 1b). As the perforation azimuth rises, more injection time is required to reach fracture initiation at azimuth angles of less than 60°. Beyond 60°, the time remains a constant. Compared to when the wellbore wall is permeable, the fracture initiation time curve is flatter when the wellbore wall is impermeable, which indicates a more rapid pressure increase.

    4.2.2Effect of the stress sensitivity of permeability and porosity

    When stress sensitivity is present, both fracture initiation pressure and time are reduced (Fig. 2). The greater the perforation azimuth, the more noticeable the reduction in fracture initiation time. The fracture initiation pressure reduction is not significant.

    Fig. 2 Fracture initiation of rock around perforation when the wellbore wall is permeable: (a) fracture initiation pressure; (b) fracture initiation time

    4.2.3Distributions of fluid pressure and temperature

    Figs. 3 and 4 show the distributions of fluid pressure and temperature when=0°. Fluid pressure is distributed in an ellipse next to the perforation and reduces gradually from the perforation to the far field when the wellbore wall is impermeable. When the wellbore wall is permeable, the fluid pressure distribution is spread outwards along the wellbore because fluid flows into the reservoir from the wellbore. The temperature distribution around the wellbore and perforation is similar to the fluid pressure. However, the reservoir temperature increases gradually from the perforation to the far field.

    Fig. 3 Fluid pressure distribution when fracture initiates (θ=0°?): (a) impermeable wellbore wall; (b) permeable wellbore wall. The grey point represents the fracture initiation location. References to color refer to the online version of this figure

    Fig. 4 Temperature distribution when fracture initiates (θ=0°?): (a) impermeable wellbore wall; (b) permeable wellbore wall

    The Darcy area is distributed in an ellipse next to the perforation when the wellbore wall is impermeable (Fig. 5). When the wellbore wall is permeable, the Darcy area is like a right-angle trapezoid shape because the perforation channel enhances the flow distance.

    Fig. 5 Darcy and non-Darcy areas when fracture initiates (θ=0°): (a) impermeable wellbore wall; (b) permeable wellbore wall. The red represents non-Darcy area; the blue represents the Darcy area. References to color refer to the online version of this figure

    4.2.4Distribution of permeability

    Fig. 6 shows the distribution of permeability when=0°. The permeability above the perforation is higher than at the same horizontal height when the wellbore wall is impermeable, because the fluid pressure in the perforation is higher than others at the same height. The permeability distribution is spread outwards along the wellbore similar to the temperature distribution when the wellbore is permeable. The increasing permeability in the near-well area causes an increase in flow rate and a wider range of fluid flow.

    Fig. 6 Distribution of permeability when fracture initiates (θ=0°?): (a) impermeable wellbore wall; (b) permeable wellbore wall

    5 Conclusions

    1. As the perforation azimuth rises, a longer injection time and higher fluid pressure are required to reach fracture initiation. The fracture initiation pressure is higher when the wellbore wall is impermeable than when it is permeable.

    2. Fluid pressure is distributed in an ellipse next to the perforation and reduces gradually from the perforation to the far field when the wellbore wall is impermeable. When the wellbore wall is permeable, the fluid pressure distribution is spread outwards along the wellbore because fluid flows into the reservoir from the wellbore.

    3. The stress sensitivity of permeability and porosity increases fluid pressure and permeability in the area around the well, which causes a wider range of fluid flow and a reduction in both fracture initiation pressure and time.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China (Nos. 51890914 and 52179119), the Natural Science Foundation of Shandong Province (No. ZR2019MEE001), and the Open Research Fund of Hunan Provincial Key Laboratory of Hydropower Development Key Technology (No. PKLHD202001), China.

    Author contributions

    Yu ZHANG designed the research. Shaohao HOU and Songhua MEI processed the corresponding data. Yu ZHANG wrote the first draft of the manuscript. Yanan ZHAO helped to organize the manuscript. Shaohao HOU and Dayong LI revised and edited the final version.

    Conflict of interest

    Yu ZHANG, Shaohao HOU, Songhua MEI, Yanan ZHAO, and Dayong LI declare that they have no conflict of interest.

    Electronic supplementary materials

    Sections S1?S3

    Farahani H, Yu M, Miska S, et al., 2006. Modeling transient thermo-poroelastic effects on 3D wellbore stability. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/103159-MS

    Hu Z, Klaver J, Schmatz J, et al., 2020. Stress sensitivity of porosity and permeability of Cobourg limestone. Engineering Geology, 273:105632. https://doi.org/10.1016/j.enggeo.2020.105632

    Kurashige M, 1989. A thermoelastic theory of fluid-filled porous materials. International Journal of Solids and Structures, 25(9):1039-1052. https://doi.org/10.1016/0020-7683(89)90020-6

    Kurdi M, 2018. A new computational model to predict breakdown pressures in cased and perforated wells in unconventional reservoirs. SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/194038-STU

    Michael A, Gupta I, 2020a. Analytical orientation criteria for drilling and completion-induced fracture initiation considering fluid infiltration from the wellbore. Journal of Petroleum Science and Engineering, 190:107033. https://doi.org/10.1016/j.petrol.2020.107033

    Michael A, Gupta I, 2020b. A semi-analytical modeling approach for hydraulic fracture initiation and orientation in shale reservoirs. Proceedings of the 8th Unconventional Resources Technology Conference. https://doi.org/10.15530/urtec-2020-3137

    Morgan WE, Aral MM, 2015. An implicitly coupled hydro-geomechanical model for hydraulic fracture simulation with the discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences, 73:82-94. https://doi.org/10.1016/j.ijrmms.2014.09.021

    Nguyen D, Miska S, Yu MJ, et al., 2010. Modeling thermal effects on wellbore stability. Trinidad and Tobago Energy Resources Conference. https://doi.org/10.2118/133428-MS

    Russell KA, Ayan C, Hart NJ, et al., 2006. Predicting and preventing wellbore instability: Tullich field development, North Sea. SPE Drilling & Completion, 21(1):12-22. https://doi.org/10.2118/84269-PA

    Wang Y, Dusseault MB, 2003. A coupled conductive–convective thermo-poroelastic solution and implications for wellbore stability. Journal of Petroleum Science and Engineering, 38(3-4):187-198. https://doi.org/10.1016/S0920-4105(03)00032-9

    Wu Z, Cui C, Trivedi J, et al., 2019. Pressure analysis for volume fracturing vertical well considering low-velocity non-Darcy flow and stress sensitivity. Geofluids, Article ID 2046061. https://doi.org/10.1155/2019/2046061

    Xi BP, Zhao YS, 2010. Experimental study of thermophysico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure. Chinese Journal of Rock Mechanics and Engineering, 29(6):1245-1252 (in Chinese).

    Yan X, Huang ZQ, Zhang Q, et al., 2020. Numerical investigation of the effect of partially propped fracture closure on gas production in fractured shale reservoirs. Energies, 13(20):5339. https://doi.org/10.3390/en13205339

    Zeng QD, Liu WZ, Yao J, 2018. Hydro-mechanical modeling of hydraulic fracture propagation based on embedded discrete fracture model and extended finite element method. Journal of Petroleum Science and Engineering, 167:64-77. https://doi.org/10.1016/j.petrol.2018.03.086

    Zhang LQ, Zhou J, Han ZH, 2017. Hydraulic fracturing process by using a modified two-dimensional particle flow code-case study. Progress in Computational Fluid Dynamics, An International Journal, 17(1):13. https://doi.org/10.1504/PCFD.2017.081715

    Zhou SH, Hillis RR, Sandiford M, 1996. On the mechanical stability of inclined wellbores. SPE Drilling & Completion, 11(2):67-73. https://doi.org/10.2118/28176-PA

    Apr. 13, 2022; Revision accepted Oct. 24, 2022; Crosschecked Jan. 4, 2023

    https://doi.org/10.1631/jzus.A2200203

    ? Zhejiang University Press 2023

    欧美一级a爱片免费观看看 | 国产男靠女视频免费网站| 国产av一区二区精品久久| 午夜福利免费观看在线| 在线观看免费午夜福利视频| 精品久久久久久久久久免费视频| 三级男女做爰猛烈吃奶摸视频| 2021天堂中文幕一二区在线观| 亚洲中文av在线| 好男人在线观看高清免费视频| 精品久久久久久久久久久久久| 日本一二三区视频观看| 天堂影院成人在线观看| av福利片在线观看| av欧美777| 搡老妇女老女人老熟妇| 国产区一区二久久| 少妇熟女aⅴ在线视频| 日韩欧美 国产精品| 草草在线视频免费看| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 白带黄色成豆腐渣| 丰满的人妻完整版| 久久久久九九精品影院| 亚洲欧美日韩高清在线视频| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 久久久久九九精品影院| 中文字幕久久专区| 一进一出抽搐gif免费好疼| 岛国视频午夜一区免费看| 亚洲精品久久国产高清桃花| 久久久久久久久免费视频了| 在线观看免费视频日本深夜| 亚洲,欧美精品.| a在线观看视频网站| 黄色丝袜av网址大全| 国产乱人伦免费视频| 男人舔女人下体高潮全视频| 中国美女看黄片| 亚洲国产精品久久男人天堂| 黑人巨大精品欧美一区二区mp4| 日本 av在线| 亚洲国产精品成人综合色| 少妇的丰满在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲一区中文字幕在线| 在线观看舔阴道视频| 日韩精品中文字幕看吧| 欧美三级亚洲精品| 日本免费一区二区三区高清不卡| 日韩欧美国产一区二区入口| 美女免费视频网站| 国产精品免费一区二区三区在线| 久久精品综合一区二区三区| 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 国产日本99.免费观看| 可以免费在线观看a视频的电影网站| 色尼玛亚洲综合影院| 精品国产乱子伦一区二区三区| 久久久久免费精品人妻一区二区| 亚洲av五月六月丁香网| 不卡一级毛片| 国产野战对白在线观看| 他把我摸到了高潮在线观看| 麻豆国产97在线/欧美 | 18美女黄网站色大片免费观看| 国产熟女午夜一区二区三区| av片东京热男人的天堂| 国产亚洲av高清不卡| 国产爱豆传媒在线观看 | 欧美色欧美亚洲另类二区| 色av中文字幕| 91老司机精品| 国产亚洲精品一区二区www| 一二三四在线观看免费中文在| 一进一出抽搐gif免费好疼| 搡老岳熟女国产| 国产成年人精品一区二区| 日韩欧美免费精品| 日韩高清综合在线| 亚洲人成伊人成综合网2020| 国内久久婷婷六月综合欲色啪| 国产激情偷乱视频一区二区| www日本在线高清视频| 精品一区二区三区视频在线观看免费| 女人高潮潮喷娇喘18禁视频| 免费av毛片视频| 舔av片在线| 久久久久国内视频| 免费在线观看成人毛片| 高清在线国产一区| 亚洲av片天天在线观看| 精品福利观看| 午夜福利高清视频| 国产高清激情床上av| 国产精品日韩av在线免费观看| 99久久国产精品久久久| 国产精品久久电影中文字幕| 成人一区二区视频在线观看| 少妇熟女aⅴ在线视频| 老司机靠b影院| 18禁黄网站禁片免费观看直播| 男女床上黄色一级片免费看| 日日干狠狠操夜夜爽| 久久香蕉激情| 欧美日韩亚洲国产一区二区在线观看| 怎么达到女性高潮| 色老头精品视频在线观看| 国内少妇人妻偷人精品xxx网站 | 国产蜜桃级精品一区二区三区| 亚洲中文av在线| 麻豆av在线久日| 国产日本99.免费观看| 亚洲人成网站高清观看| 韩国av一区二区三区四区| 精品国产超薄肉色丝袜足j| 一级a爱片免费观看的视频| 床上黄色一级片| 一级片免费观看大全| 日本一区二区免费在线视频| 国产久久久一区二区三区| 9191精品国产免费久久| 国产亚洲精品久久久久久毛片| 人人妻人人澡欧美一区二区| 欧美黄色片欧美黄色片| 一夜夜www| 亚洲成人久久爱视频| 成人18禁在线播放| 9191精品国产免费久久| 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 嫩草影视91久久| 国产蜜桃级精品一区二区三区| 成人三级黄色视频| 亚洲男人天堂网一区| 国产成人精品久久二区二区91| 久99久视频精品免费| 欧美大码av| 不卡av一区二区三区| 精品电影一区二区在线| 国产欧美日韩一区二区三| 天天添夜夜摸| 99精品久久久久人妻精品| 国产又黄又爽又无遮挡在线| 9191精品国产免费久久| 一本综合久久免费| 悠悠久久av| 久久精品国产清高在天天线| 少妇裸体淫交视频免费看高清 | 啦啦啦韩国在线观看视频| 白带黄色成豆腐渣| 成人三级黄色视频| 90打野战视频偷拍视频| 青草久久国产| 日本三级黄在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 国产爱豆传媒在线观看 | 最新美女视频免费是黄的| 亚洲一区中文字幕在线| 久久久国产欧美日韩av| 免费高清视频大片| 1024视频免费在线观看| 老司机午夜福利在线观看视频| 真人做人爱边吃奶动态| 亚洲一区二区三区色噜噜| 在线永久观看黄色视频| 亚洲av第一区精品v没综合| bbb黄色大片| 国产在线精品亚洲第一网站| av福利片在线观看| 啦啦啦免费观看视频1| 欧美性猛交╳xxx乱大交人| 国产欧美日韩一区二区精品| 级片在线观看| 激情在线观看视频在线高清| 丁香欧美五月| 成在线人永久免费视频| 操出白浆在线播放| 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 欧美在线黄色| 欧美日韩乱码在线| 国产视频内射| 国产av麻豆久久久久久久| 夜夜看夜夜爽夜夜摸| 一进一出好大好爽视频| 日韩av在线大香蕉| 婷婷丁香在线五月| 成人永久免费在线观看视频| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 午夜精品在线福利| 级片在线观看| 777久久人妻少妇嫩草av网站| 久久国产乱子伦精品免费另类| videosex国产| 精品熟女少妇八av免费久了| 黄色a级毛片大全视频| 动漫黄色视频在线观看| 国产私拍福利视频在线观看| 色精品久久人妻99蜜桃| 亚洲av电影不卡..在线观看| 亚洲自偷自拍图片 自拍| av中文乱码字幕在线| 国产一区二区在线av高清观看| 真人一进一出gif抽搐免费| 亚洲天堂国产精品一区在线| 国产精品1区2区在线观看.| 国内揄拍国产精品人妻在线| 两个人视频免费观看高清| 国产单亲对白刺激| 亚洲专区字幕在线| 国产三级在线视频| 免费看美女性在线毛片视频| 欧美色欧美亚洲另类二区| 欧美高清成人免费视频www| 18禁观看日本| 国产精品九九99| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| www日本在线高清视频| 搡老岳熟女国产| 大型av网站在线播放| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 在线a可以看的网站| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片| 中文字幕最新亚洲高清| 亚洲成人免费电影在线观看| 国产精品,欧美在线| 男插女下体视频免费在线播放| 久久热在线av| 动漫黄色视频在线观看| 十八禁网站免费在线| 1024手机看黄色片| 一级毛片精品| 日韩精品青青久久久久久| 一个人免费在线观看的高清视频| 免费在线观看成人毛片| 欧美日韩国产亚洲二区| 无遮挡黄片免费观看| 91av网站免费观看| 亚洲精品国产一区二区精华液| 精品福利观看| 久久精品国产清高在天天线| 黄片大片在线免费观看| 91老司机精品| 久久久久久九九精品二区国产 | 一级毛片女人18水好多| 少妇粗大呻吟视频| 琪琪午夜伦伦电影理论片6080| 精品无人区乱码1区二区| 欧美高清成人免费视频www| 国产av在哪里看| 91av网站免费观看| 午夜福利成人在线免费观看| 一二三四在线观看免费中文在| 久久天堂一区二区三区四区| 黄片大片在线免费观看| 国内精品久久久久精免费| 久久精品人妻少妇| av在线天堂中文字幕| 香蕉国产在线看| 国产成人啪精品午夜网站| 亚洲成人免费电影在线观看| 免费在线观看完整版高清| 久久香蕉激情| 波多野结衣巨乳人妻| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 91av网站免费观看| 国产av一区在线观看免费| 老司机靠b影院| 成在线人永久免费视频| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜| 我要搜黄色片| 国产精品电影一区二区三区| 久久亚洲精品不卡| 可以在线观看的亚洲视频| 少妇熟女aⅴ在线视频| 男女做爰动态图高潮gif福利片| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 男女视频在线观看网站免费 | 18禁裸乳无遮挡免费网站照片| 欧美精品啪啪一区二区三区| 免费看美女性在线毛片视频| 国产伦一二天堂av在线观看| videosex国产| 国产成人精品久久二区二区免费| 亚洲av日韩精品久久久久久密| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 正在播放国产对白刺激| av在线播放免费不卡| x7x7x7水蜜桃| av中文乱码字幕在线| 日本一区二区免费在线视频| 大型黄色视频在线免费观看| 一进一出抽搐动态| 999久久久精品免费观看国产| 18美女黄网站色大片免费观看| 日本熟妇午夜| 日本a在线网址| 国产伦在线观看视频一区| 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 变态另类丝袜制服| 黄色a级毛片大全视频| 黄色女人牲交| 伦理电影免费视频| 久久亚洲精品不卡| 成人18禁在线播放| 国产免费av片在线观看野外av| 精品欧美一区二区三区在线| 中文字幕人成人乱码亚洲影| 熟女少妇亚洲综合色aaa.| 国产在线观看jvid| 成熟少妇高潮喷水视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲精品在线观看二区| 亚洲人与动物交配视频| 97碰自拍视频| 亚洲成a人片在线一区二区| 国产三级中文精品| 亚洲成a人片在线一区二区| 国产三级中文精品| av片东京热男人的天堂| 亚洲成人精品中文字幕电影| 成人国语在线视频| 亚洲国产精品999在线| 国产97色在线日韩免费| 天天躁狠狠躁夜夜躁狠狠躁| 精品日产1卡2卡| 在线视频色国产色| 成人亚洲精品av一区二区| 18禁黄网站禁片免费观看直播| 又爽又黄无遮挡网站| 2021天堂中文幕一二区在线观| 很黄的视频免费| 此物有八面人人有两片| 成年免费大片在线观看| 亚洲国产精品999在线| 国产精品亚洲av一区麻豆| 人人妻人人澡欧美一区二区| 老司机午夜福利在线观看视频| 亚洲欧美日韩无卡精品| 成熟少妇高潮喷水视频| 99久久精品热视频| 久久热在线av| 天堂√8在线中文| 免费观看精品视频网站| 亚洲国产欧美人成| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 91九色精品人成在线观看| 舔av片在线| 9191精品国产免费久久| 男女之事视频高清在线观看| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放| 精品国产超薄肉色丝袜足j| 欧美乱妇无乱码| 精品国产超薄肉色丝袜足j| 禁无遮挡网站| 成人av一区二区三区在线看| 日本一区二区免费在线视频| 日韩欧美国产一区二区入口| aaaaa片日本免费| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 国产在线观看jvid| 日韩欧美在线二视频| 日韩精品免费视频一区二区三区| 日韩欧美国产在线观看| 波多野结衣高清作品| 国产探花在线观看一区二区| 午夜福利免费观看在线| 亚洲自偷自拍图片 自拍| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 久久天躁狠狠躁夜夜2o2o| 国产视频一区二区在线看| a在线观看视频网站| 久久久久久免费高清国产稀缺| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费| 很黄的视频免费| 人人妻人人澡欧美一区二区| 免费看日本二区| 午夜福利欧美成人| 欧美极品一区二区三区四区| 欧美午夜高清在线| 亚洲人成网站高清观看| 亚洲av日韩精品久久久久久密| 91在线观看av| 国产成人精品久久二区二区91| 国产黄片美女视频| 黄片大片在线免费观看| 18禁观看日本| 国产单亲对白刺激| 久久99热这里只有精品18| 九色国产91popny在线| 亚洲精品美女久久av网站| 成人精品一区二区免费| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 亚洲成av人片免费观看| 欧美又色又爽又黄视频| 亚洲欧美精品综合久久99| 久久亚洲精品不卡| 精品久久久久久久久久免费视频| 九九热线精品视视频播放| 一本综合久久免费| 精品久久久久久久末码| 12—13女人毛片做爰片一| 精品一区二区三区四区五区乱码| 五月伊人婷婷丁香| 制服人妻中文乱码| av有码第一页| 亚洲自偷自拍图片 自拍| 国产精品久久久久久人妻精品电影| 国产精品免费视频内射| 不卡av一区二区三区| 国产高清有码在线观看视频 | 我要搜黄色片| 成年版毛片免费区| 国产av又大| 男人舔奶头视频| 狂野欧美激情性xxxx| 草草在线视频免费看| 精品一区二区三区av网在线观看| or卡值多少钱| 亚洲av五月六月丁香网| 亚洲色图 男人天堂 中文字幕| www.自偷自拍.com| 色av中文字幕| 男女做爰动态图高潮gif福利片| 久久人妻av系列| 亚洲国产欧美人成| 日本熟妇午夜| 黄片大片在线免费观看| 国产精品久久久久久亚洲av鲁大| 一卡2卡三卡四卡精品乱码亚洲| 国产私拍福利视频在线观看| 波多野结衣巨乳人妻| 一夜夜www| 麻豆成人av在线观看| 两性夫妻黄色片| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| 在线免费观看的www视频| 国产精品野战在线观看| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| xxxwww97欧美| 久久精品aⅴ一区二区三区四区| 男女那种视频在线观看| 听说在线观看完整版免费高清| 国内精品一区二区在线观看| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 色综合欧美亚洲国产小说| 亚洲美女视频黄频| 丁香六月欧美| 亚洲精品中文字幕一二三四区| 一边摸一边做爽爽视频免费| 99热6这里只有精品| 日韩精品免费视频一区二区三区| 啦啦啦观看免费观看视频高清| 国产精品av久久久久免费| 午夜激情av网站| 欧美色视频一区免费| 国产av在哪里看| svipshipincom国产片| 黄色视频不卡| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 午夜影院日韩av| 精品久久久久久久久久久久久| 88av欧美| 久久精品亚洲精品国产色婷小说| 一本久久中文字幕| 日本五十路高清| 久久伊人香网站| 国产精品九九99| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 亚洲自拍偷在线| 国产片内射在线| 视频区欧美日本亚洲| 亚洲专区字幕在线| 91国产中文字幕| 国产三级在线视频| 最新美女视频免费是黄的| 国产一区二区三区在线臀色熟女| 国产黄片美女视频| 黄色片一级片一级黄色片| 国产精品香港三级国产av潘金莲| 99精品在免费线老司机午夜| 欧美zozozo另类| 免费在线观看影片大全网站| 色综合欧美亚洲国产小说| 亚洲熟妇中文字幕五十中出| 特级一级黄色大片| 18美女黄网站色大片免费观看| 伊人久久大香线蕉亚洲五| 蜜桃久久精品国产亚洲av| 国产精品九九99| 欧美不卡视频在线免费观看 | av国产免费在线观看| 99热这里只有是精品50| 香蕉丝袜av| 亚洲 欧美 日韩 在线 免费| 性欧美人与动物交配| 他把我摸到了高潮在线观看| 久久精品国产综合久久久| 午夜福利在线观看吧| 亚洲av成人不卡在线观看播放网| 在线播放国产精品三级| a级毛片a级免费在线| 国产精品免费视频内射| 精品无人区乱码1区二区| 国产精品久久久久久精品电影| 欧美高清成人免费视频www| 久久精品成人免费网站| 男女午夜视频在线观看| 99热这里只有是精品50| 一夜夜www| 两个人的视频大全免费| 校园春色视频在线观看| 色综合站精品国产| 亚洲专区国产一区二区| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| www.www免费av| 午夜影院日韩av| 91老司机精品| 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 欧美国产日韩亚洲一区| 黄色视频,在线免费观看| 亚洲 欧美 日韩 在线 免费| 老司机午夜福利在线观看视频| АⅤ资源中文在线天堂| 曰老女人黄片| 精品无人区乱码1区二区| 国产精品一及| 超碰成人久久| 操出白浆在线播放| 国产精品久久久久久精品电影| 在线观看舔阴道视频| 91国产中文字幕| 五月伊人婷婷丁香| 99国产精品99久久久久| 日韩高清综合在线| 成人三级黄色视频| 成人欧美大片| 免费看十八禁软件| 精品久久久久久,| 免费在线观看日本一区| 啪啪无遮挡十八禁网站| 国产精品影院久久| 日本一本二区三区精品| 99国产精品一区二区蜜桃av| 男人舔奶头视频| 久久热在线av| 大型av网站在线播放| 日韩欧美国产一区二区入口| xxx96com| 日韩av在线大香蕉| 日本五十路高清| 欧美一级a爱片免费观看看 | 老司机靠b影院| 午夜成年电影在线免费观看| 最近视频中文字幕2019在线8| 亚洲熟女毛片儿| 成人三级做爰电影| 亚洲av电影在线进入| 久久久久久免费高清国产稀缺| 亚洲av电影不卡..在线观看| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 精品欧美一区二区三区在线| 久久久国产精品麻豆| 欧美三级亚洲精品| 亚洲男人的天堂狠狠| 黄色视频,在线免费观看| 人妻夜夜爽99麻豆av| 亚洲国产精品久久男人天堂| 日韩欧美免费精品| 18禁观看日本| 久久人妻av系列| 亚洲国产精品成人综合色| 人人妻人人澡欧美一区二区| 欧美最黄视频在线播放免费| 一边摸一边抽搐一进一小说| 亚洲专区国产一区二区|