• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of transgenic wheat lines expressing maize ABP7 involved in kernel development

    2023-02-03 04:26:38ZaidCHACHARSiffatUllahKHANZHANGXuhuanLENGPengfeiZONGNaZHAOJun
    Journal of Integrative Agriculture 2023年2期

    Zaid CHACHAR,Siffat Ullah KHAN,ZHANG Xu-huan,LENG Peng-fei,ZONG Na,ZHAO Jun

    Faculty of Maize Functional Genomics,National Key Facility for Crop Gene Resources and Genetic Improvement/Biotechnology Research Institute,Chinese Academy of Agricultural Sciences,Beijing 100080,P.R.China

    Abstract Wheat is one of the major food crops in the world.Functional validation of the genes in increasing the grain yield of wheat by genetic engineering is essential for feeding the ever-growing global population.This study investigated the role of ABP7,a bHLH transcription factor from maize involved in kernel development,in regulating grain yield-related traits in transgenic wheat.Molecular characterization showed that transgenic lines HB123 and HB287 contained multicopy integration of ABP7 in the genome with higher transgene expression.At the same time,QB205 was a transgenic event of single copy insertion with no significant difference in ABP7 expression compared to wild-type (WT) plants.Phenotyping under field conditions showed that ABP7 over-expressing transgenic lines HB123 and HB287 exhibited improved grain yield-related traits (e.g.,grain number per spike,grain weight per spike,thousand-grain weight,grain length,and grain width) and increased grain yield per plot,compared to WT plants,whereas line QB205 did not.In addition,total chlorophyll,chlorophyll a,chlorophyll b,and total soluble sugars were largely increased in the flag leaves of both HB123 and HB287 transgenic lines compared to the WT.These results strongly suggest that ABP7 positively regulates yieldrelated traits and plot grain yield in transgenic wheat.Consequently,ABP7 can be utilized in wheat breeding for grain yield improvement.

    Keywords: transgenic wheat,ABP7,kernel development,grain weight,grain width

    1.Introduction

    Wheat (Triticum aestivumL.) is the major food crop in the world,wheat is the most important source of carbohydrate in a majority of countries,and globally,it is the leading source of vegetal protein in human food,having a protein content of about 13%,which is relatively high compared to other major cereals.Wheat,eaten as a whole grain,is also a source of micronutrients and dietary fiber,it contains minerals,vitamins and fats(lipids),and with a small amount of animal or legume protein added is highly nutritious (Lafiandraet al.2014;Shewryet al.2015).It is expected that wheat yield needs to increase by 60% by 2050 to fulfill the food demand of the ever-growing world population (Langridge 2013).This increase is unlikely to be achieved in wheat through conventional breeding due to the limited gene pool available (Reifet al.2005).With the rapid development of genomics,molecular biology,and genetic transformation technology,the genetic engineering of wheat has become one of the effective solutions to addressing this problem (Arauset al.2019).

    Several genes have been successfully used to modify wheat for better yield through genetic engineering.Ectopic expression of a modified form of maizeShrunken2gene (Sh2r6hs),which encodes an altered AGP large subunit,under the control ofSh2promoter in transgenic wheat led to a 38% increase on average in seed weight per plant (Smidanskyet al.2002).Transgenic wheat plants expressingHvSUT1encoding barley sucrose transporter driven by Hordein B1 promoter exhibited enhanced thousand-grain weight,grain length,and width,with grain yield increasing by as much as 28%(Saalbachet al.2014).Constitutive expression of TaNFYB4 controlled by ubiquitin promoter in transgenic wheat resulted in a 20-30% increased grain yield (Yadavet al.2015).However,the number of genes that have been functionally evaluated in transgenic wheat is limited,given that many candidate genes determining yield-related traits have been identified (Nadolska-Orczyket al.2017).

    A major determinant of grain yield is the grain weight which is positively correlated with grain size,including grain length and width (Zhanget al.2014).It is thus important to identify more grain size-related genes and evaluate their effects on grain yield in wheat through genetic engineering.A previous work has identifiedABP7(Gramene ID: Zm00001d021019) as a G-box binding bHLH transcription activator whose ectopic expression led to increased seed size and weight in transgenicArabidopsisplants (China patent number ZL201210036350.4).In an effort to create new wheat varieties aiming at increasing grain yield,expression vectors ofABP7driven by different promoters were transformed into wheat.This study reports the characterization of these transgenic lines expressingABP7.The objectives were as follows: (1) identification of homozygous transgenic wheat lines harboringABP7,(2) expression analysis ofABP7in transgenic lines,(3) phenotyping yield-related traits of transgenic plants,and (4) physiological analyses of transgenic lines.

    2.Materials and methods

    2.1.Materials and growth conditions

    T1seeds of transgenic wheat lines (Table 1) transformed(done in Dr.Ye Xingguo’s lab,Institute of Crop Sciences(ICS),Chinese Academy of Agricultural Sciences (CAAS))with different constructs,and their respective host lines(CB037 and Fielder) were used as start materials in the present study.Among these lines,HB123 (CB037 background) and QB205 (Fielder background) were obtained by transformation with pCAMBIA3301-Pabp7-ABP7-Tnos in which the expression ofABP7is under the control ofABP7promoter (Pabp7),and HB287 (Fielder background)was obtained by transformation with pCAMBIA3301-Pubi-ABP7-Tnos whereABP7is driven by Ubiquitin promoter(Pubi).

    During the winter seasons of 2017 and 2018,the transgenic lines at T1and T3generations were grown in pots filled with 15 kg of prepared soil and 10 plants in each pot in the greenhouse (day/night temperature 25/14°C,16/8 h light/dark photoperiod) at Biotechnology Research Institute (BRI),CAAS,Beijing,China.For phenotyping at T3,30 plants for each transgenic line were grown in three pots,with 10 plants in each pot as a replicate.

    During the summer seasons of 2018 and 2019,T2and T4transgenic lines and host lines were planted in the field at Zhangbei Agricultural Station,Hebei Province,China.For phenotyping at T4,the transgenic lines,along with their respective host lines,were planted in three rows,12 plants in each row in a 0.27-m2land area (plot).Fertilizers and irrigation were applied as per requirement.

    2.2.Polymerase chain reaction (PCR) assay

    For the confirmation ofABP7genes in transgenic lines(T1to T4plants),PCR was performed with gene-specific primers,as shown in Table 2.

    Table 1 List of transgenic wheat lines at T1 generation

    Table 2 List of primer used for this study

    PCR was carried out in a 25-μL reaction volume with 100 ng template DNA,1×PCR buffer with ammonium sulphate (NH4)2SO4,10 pmol L-1of each primer,25 mmol L-1MgCl2,10 mmol L-1of dNTPs mix,1 U ofTaqDNApolymerase and RNAs free water.The PCR profile was optimized at 94°C in the denaturation step,followed by annealing (58°C) and final extension (72°C) in 35 cycles.

    The PCR products were run on 0.5 μg mL-1ethidium bromide containing 1.5% agarose gel in 1× TAE buffer at 150 V for 25 min during gel electrophoresis.The product of PCR was visualized under a UV trans-illuminator and photographed through a gel documentation system(Syngene,USA.Inc).The amplicon size of transgenes was confirmed with 1 kb ladder (GenStar,Beijing,China).

    2.3.RNA extraction and quantitative real-time PCR(qRT-PCR)

    The tissues used to prepare RNA for qRT-PCR include the leaf and kernel grain at the grain-filling stage of transgenic wheat and host lines.Total RNA was prepared using TRIpure Reagent (Galen Biopharm,Beijing) according to the manufacturer’s protocol.cDNA was subsequently synthesized from 1 μg of total RNA using ReverTraAce reverse transcriptase (TaKaRa,Shiga,Japan).Gene expression was analyzed by real-time quantitative PCR with SYBR Green I (TaKaRa) on a 7500 Real-Time PCR System (ABI,Thermo Fisher,Catalog number: 4406985,China).PCRs were carried out in a total volume of 20 μL containing 800 ng of cDNA,1× SYBR Select Master Mix(Applied Biosystems,Thermo Fisher Scientific,Beijing,China) based on AmpliTaq?Fast DNA Polymerase and 400 nmol L-1of each primer,under the following thermal conditions.Holding stage: 95°C,30 s;cycling stage: 95°C,5 s,61°C,20 s,40 cycles.The cycle threshold (CT) values were determined,and the relative fold differences were calculated by the 2-ΔΔCTmethod.Theactingene (Sequence ID: XM_037615630.1) of wheat was used as an internal control for the normalization of template cDNA.The genespecific primers are shown in Table 2.

    2.4.Southern blot analysis

    PCR-positive plants were further analyzed by Southern blotting.The genomic DNA of each line was extracted using the CTAB method (Doyleet al.1990),digested withEcoRI andHindIII,and fragmented by 0.8% agarose gel electrophoresis.The blot was probed with a 550-bp DNA fragment with the sequence spanning the coding region and 3′UTR ofABP7.The primers used to amplify the probe fragment are shown in Table 2.DIG High Prime DNA labeling and detection Starter Kit II (Roche cat.no.11 585 614 910) were used to label the probe and to detect the hybridization signals on the blot.

    2.5.Phenotyping of yield components

    Transgenic lines were phenotyped at T3grown in the greenhouse conditions during winter 2018 and at T4grown in the field during summer 2019.The grain traits,including grain number per spike,thousand-grain weight,grain weight per spike,grain length,grain width,and tiller number(T4only),were measured using a SC-G grain appearance image analysis system (Hangzhou Wanshen Detection Technology Co.,Ltd.,Hangzhou,China;http://www.wseen.com/).The data for tiller numbers were collected manually.

    2.6.Leaf chlorophyll analysis

    Chlorophyll content was measured from the expanded leaves of transgenic and host plants.About 0.5 g of leaves were ground and dissolved in 10 mL of 80%acetone.The extract was centrifuged at 1 500×g for 10 min,and then the supernatant was transferred to the new tube.The absorbance was measured at 645 and 663 nm with a spectrophotometer (LUX.NO-515152316).Total chlorophyll content was calculated using the following equation:

    Total chlorophyll (mg g-1FW)=8.02A663+20.2A645(Arnon 1949;Porraet al.1989).

    2.7.Total soluble sugar measurement

    Total soluble sugar was extracted and measured according to the manufacturer’s instructions (Detection Starter Kit II Solarbio,Beijing,China).Briefly,homogenate of 0.1-0.2 g samples in distilled water was boiled in the water bath for 10 min.After cooling to room temperature,centrifuge it and take the supernatant to distilled water to make a final volume of 10 mL.Then add the reagents according to the menu provided,do the absorbance measurement at 620 nm on a spectrophotometer (LUX.NO-515152316) and make the standard curve.Total soluble sugar content was calculated as follows:

    Soluble sugar (mg g FW-1)=(Y×V1)/(W×V1/V2)=10×Y/W where Y,concentration (mg mL-1) based on the standard curve;V1,sample volume,0.04 mL;V2,extraction volume,10 mL;W,sample weight,g.

    2.8.Nutrient traits measurement

    The contents of protein,starch and wet gluten,and sedimentation value were measured by Foss Infratec 1241 (Denmark).

    2.9.Statistical analysis

    All analyses were conducted in triplicate using the Statistix 8.1 Program (Analytical Software,Tallahassee,FL,USA).The significance of the differences in data was assessed using ANOVA and analyzed statistically with Graph-Pad Prism 7.0 Software (IBMP Crop,Armonk,NY,USA).The results are presented as the mean±SD.The statistical significance of differences between the means was also analyzed byt-test (P<0.05).

    3.Results

    3.1.ldentification of homozygous transgenic wheat lines through PCR analysis

    The homozygous transgenic plants harboringABP7were screened and identified from 10 transgenic wheat lines of HB123,15 of HB287,and 7 of QB205 at T3generation through PCR using specific primers (Fig.1;Table 3).The T3seeds of these lines were propagated for further molecular and physiological analysis.

    Table 3 List of representative homozygous lines

    Fig.1 Identification of homozygous transgenic wheat lines harboring ABP7 by PCR at generation T3.M,1 kb Plus DNA ladder;+,ABP7 plasmid DNA;-,host lines;1-15 samples,individual transgenic plants.

    3.2.Southern blotting analysis

    To confirm the genome integration ofABP7and to determine its copy number in transgenic wheat lines,this study digested total genomic DNA isolated from leaf tissues of homozygous transgenic wheat lines (T4).The total genomic DNA tested positive forABP7by PCR and the host lines was digested with the restriction enzymesHindIIIand EcoRI,respectively.The digestion products were subjected to Southern blot analysis and hybridized with theABP7probe.The results showed that transgenic lines HB123-1-3-2,HB287-15-25-6,and QB205-1-3-3,respectively,have three,four,and one hybridization band(s),whereas the wild-type (WT) plants showed no hybridization signals (Fig.2).These data confirmed the integration ofABP7into the genome of transgenic wheat lines and indicated that both HB123-1-3-2 and HB287-15-25-6 harbored more than one copy ofABP7in the genome,while QB205-1-3-3 was a transgenic event with single copy insertion.

    Fig.2 Southern blot analysis of transgenic wheat lines harboring ABP7.A,schematic drawings of the T-DNA regions of the constructs expressing ABP7,showing the location of probe fragment used for hybridization and the restriction sites of EcorRI and HindIII used for genomic DNA digestion.B,southern hybridization.Genomic DNA of each line was digested with HindIII or EcoRI,fragmented by 0.8% agarose gel electrophoreses,and probed with ABP7.1,2,and 3 represent transgenic lines HB123-1-3-2,HB287-15-25-6 and QB205-1-3-3,respectively.FD and CB indicate host wheat lines Fielder and CB037,respectively;+,ABP7 plasmid as positive control.The molecular weight marker is indicated on the right.

    3.3.Enhanced expression of ABP7 in transgenic lines

    The expression level ofABP7in transgenic wheat lines was examined using quantitative real-time PCR.Results showed that the transcript level ofABP7was significantly(P<0.05) enhanced in transgenic lines HB123-1-3-2 and HB287-15-25-6 compared to their corresponding host plants CB037 and Fielder,respectively.The expression ofABP7showed no significant increase in QB205-1-3-3 compared to its host plants (Fig.3),although the level was slightly higher in the flag leaves of transgenic than that of the host.

    Fig.3 Expression level of ABP7 in homozygous transgenic wheat lines.Different letters indicate the significant difference at P<0.05 between transgenic and wild-type plants.HB123,HB287,and QB205 represent HB123-1-3-2,HB287-15-25-6,and QB205-1-3-3,respectively;CB037 and Fielder,host plants.Bars mean SD.Different letters indicate the significant difference at P<0.05.

    3.4.Yield parameters in terms of grain production in transgenic plants under the greenhouse and field conditions

    During winter seasons of 2018,transgenic wheat lines(T3) were phenotyped in a greenhouse for several traits,including grain number per spike,thousandgrain weight,and grain weight per spike.The results revealed a significant (P<0.05) increase in all the traits of transgenic line HB123-1-3-2 compared to host CB037.Similarly,all the traits,except grain number per spike,were significantly (P<0.05) increased in transgenic line HB287-15-25-6 compared to host Fielder.However,the phenotyping results for transgenic line QB205-1-3-3 at T3indicated that only three traits (i.e.,thousand-grain weights,grain weight per spike,and grain width) were significantly (P<0.05) increased compared to host Fielder(Fig.4).

    Fig.4 Phenotyping yield-related traits grain number per spike (A-C),thousand-grain weight (D-F),and grain weight per spike (G-I)in transgenic wheat lines at T3 and host lines in 2018.Bars mean SD.Different letters on top of the bars indicate the significant difference at P<0.05 between transgenic and host plants.*,significant difference at P<0.05.

    The transgenic wheat lines (T4) were phenotyped again in the following year 2019 under field conditions.The traits,including grain number per spike,thousand-grain weight,grain weight per spike,grain length,grain width (Figs.5 and 6),and grain yield per plot,were significantly (P<0.05)increased in both HB123-1-3-2 and HB287-15-25-6 transgenic lines compared to their respective hosts CB-037 and Fielder.The quality traits of grains,including contents of protein,starch and wet gluten,and sedimentation value,were also measured,but we did not detect any significant difference in these traits between transgenic lines and their respective host lines (Appendix A).

    For transgenic line QB205-1-3-3,all the traits tested(Figs.5 and 6) showed no significant difference (P<0.05)to its host Fielder,although the values of most of the traits were slightly higher in transgenic plants than those in the host.

    Fig.5 Phenotyping yield-related traits grain number (A-C),thousand-grain weight (D-F),grain weight per spike (G-I),grain length (J-L),and grain width (M-O) in transgenic wheat lines at T4 and host plants in 2019.Bars mean SD.Different letters on top of the bars indicate the significant difference at P<0.05 between transgenic and host plants.*,significant difference at P<0.05.

    Fig.6 Grain phenotypes in transgenic lines HB123-1-3-2 (A),HB287-15-25-6 (B),and QB205-1-3-3 (C) at T4 comparing to their hosts CB037 or Fielder.

    3.5.Chlorophyll content in transgenic lines

    The chlorophyll content in flag leaves reflects the photosynthetic activity and yield potential of wheat plants(Liet al.2012).To examine if the observed phenotypes are related to any change in chlorophyll in transgenic wheat lines,chlorophyll content was measured in flag leaves of transgenic (T4) and host plants.As shown in(Fig.7),total chlorophyll,chlorophylla,and chlorophyllbwere all significantly (P<0.05) increased in the flag leaves of both HB123-1-3-2 and HB287-15-25-6 transgenic lines compared to the respective host plants.No significant difference (P<0.05) in chlorophyll was observed between transgenic line QB205-1-3-3 and its host,although the values were slightly higher in the transgenic line.

    Fig.7 Chlorophyll measurement in flag leaves of transgenic lines HB123-1-3-2(A-C),HB287-15-25-6 (D-F) and QB205-1-3-3 (G-I) and host lines.Bars mean SD.Different letters on top of the bars indicate the significant difference at P<0.05.*,significant difference at P<0.05.Photos of flag leaves of transgenic lines HB123-1-3-2 (J),HB287-15-25-6 (K),and QB205-1-3-3 (L) with their respective host lines are also shown.

    3.6.Soluble sugars in transgenic wheat lines

    Soluble sugars are essential for plant growth and development (Lastdrageret al.2014).To explore the possible relationship between soluble sugar and grain phenotypes observed inABP7transformed transgenic wheat lines,this study measured total soluble sugar content in flag leaves of transgenic and host plants.The results showed that total soluble sugar content was increased more than four times in both HB123-1-3-2 and HB287-15-25-6 transgenic lines compared to respective hosts (Fig.8).In transgenic line QB205-1-3-3,the total soluble sugar content was also significantly (P<0.05) increased,but to a less extent than that in HB123-1-3-2 and HB287-15-25-6.

    Fig.8 Soluble sugar in flag leaves of transgenic lines HB123-1-3-2 (A),HB287-15-25-6 (B),and QB205-1-3-3 (C) and host lines.Bars mean SD.Different letters on top of the bars indicate the significant difference at P<0.05.*,significant difference at P<0.05.

    4.Discussion

    To evaluate the effect of seed size-relatedABP7in wheat aiming at creating new varieties with increased grain yield,we generated and characterized transgenic wheat lines expressingABP7driven by different promoters.We found thatABP7over-expression in homozygous transgenic wheat lines improved grain yield-related traits,including grain number per spike,grain weight per spike,thousandgrain weight,grain length,and grain width compared to WT plants,leading to increased grain yield per plot.These results strongly suggest thatABP7is functional in promoting grain yield-related traits in wheat and can be utilized in wheat breeding for yield improvement.

    This study found that transgenic lines harboring multicopy transgenes,such as HB123-1-3-2 and HB287-15-25-6,showed much higher expression ofABP7and accordingly strong phenotypes of yield-related traits compared to WT plants.This may attribute to the combinatorial effects of multicopyABP7in transgenic plants.In contrast,the transgenic line QB205-1-3-3 with single copy insertion of transgene showed no significant difference inABP7expression and yieldrelated phenotypes compared to WT plants.This might reflect the low/null transcription activity at the site ofABP7insertion in the genome of the transgenic plants.These results suggest that the copy number ofABP7insertion into the wheat genome might be involved in the determination of its expression level and its effect on grain yield-related traits in transgenic wheat.

    It remains open of howABP7regulates grain yieldrelated traits in transgenic wheat.Many regulators that control seed size and weight through different signaling pathways have been identified inArabidopsisand crops(Li and Li 2016),including wheat homologues TaGW2 (Suet al.2011;Simmondset al.2016),TaGS5 (Wanget al.2015;Maet al.2016),TaGW7 (Wanget al.2019),TaGW8(Caoet al.2019;Yanet al.2019),and TaDA1 (Liuet al.2020).These regulators affect seed size by influencing cell proliferation and cell expansion in maternal tissues or endosperm growth (Li and Li 2016).As this study observed thatABP7over-expression in transgenic wheat lines increased grain length,grain width,and thousandgrain weight,we speculate thatABP7might function to promote cell proliferation and/or cell expansion.

    On the other hand,chlorophyll is an important light-absorbing pigment of plant photosystem,largely contributing to photosynthetic capacity (Liet al.2018),and its content in flag leaf is genetically correlated with the grain yield in wheat (Zhanget al.2009).Total soluble sugars not only function as metabolic resources and structural constituents of cells but also act as signals regulating various processes associated with plant growth and development (Lastdrageret al.2014).In the present study,we found that total chlorophyll,chlorophylla,and chlorophyllbwere largely increased together with more than four times increase of total soluble sugars in the flag leaves of both HB123-1-3-2 and HB287-15-25-6 transgenic lines compared to wild type.These data suggest thatABP7might enhance grain yield-related traits,at least in part,by increasing the photosynthetic capacity and the metabolism of photosynthetic assimilates in transgenic wheat lines.

    5.Conclusion

    Transgenic wheat lines overexpressingABP7were generated and showed increased grain number per spike,grain weight per spike,thousand-grain weight,grain length,grain width,and grain yield per plot compared to WT plants.These data suggest thatABP7positively regulates grain yield-related traits and plot-grain yield in transgenic wheat.Consequently,ABP7can be integrated as a molecular tool into wheat breeding for high grain yield via genetic engineering.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Appendixassociated with this paper is available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    大型av网站在线播放| 脱女人内裤的视频| 999久久久精品免费观看国产| 精品一品国产午夜福利视频| 电影成人av| 极品人妻少妇av视频| 一级毛片女人18水好多| 成人特级黄色片久久久久久久 | 后天国语完整版免费观看| svipshipincom国产片| 超碰成人久久| 国产一区有黄有色的免费视频| 老司机影院毛片| 免费观看a级毛片全部| 久久午夜综合久久蜜桃| 在线观看66精品国产| 日韩精品免费视频一区二区三区| 精品免费久久久久久久清纯 | 咕卡用的链子| 久久久国产欧美日韩av| 欧美激情高清一区二区三区| 国产成人欧美在线观看 | 精品亚洲成国产av| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 午夜福利影视在线免费观看| 亚洲少妇的诱惑av| 国产伦人伦偷精品视频| 老司机午夜福利在线观看视频 | 黄色视频不卡| 中文字幕人妻熟女乱码| 两个人看的免费小视频| 超碰97精品在线观看| a级片在线免费高清观看视频| 久久免费观看电影| 亚洲精品国产色婷婷电影| 777久久人妻少妇嫩草av网站| 美女午夜性视频免费| 51午夜福利影视在线观看| 亚洲精品乱久久久久久| 老司机在亚洲福利影院| 18禁国产床啪视频网站| a在线观看视频网站| 在线播放国产精品三级| 亚洲精品中文字幕在线视频| 欧美黑人欧美精品刺激| 国产国语露脸激情在线看| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 一个人免费在线观看的高清视频| 国产精品亚洲av一区麻豆| 成人永久免费在线观看视频 | 国产高清videossex| 一二三四在线观看免费中文在| 成年动漫av网址| av网站免费在线观看视频| 人妻久久中文字幕网| 国产精品熟女久久久久浪| 国产成人系列免费观看| 久久精品91无色码中文字幕| 国产一区二区 视频在线| 日本黄色视频三级网站网址 | 亚洲天堂av无毛| 国产成人av激情在线播放| 超碰97精品在线观看| 91精品三级在线观看| 成人黄色视频免费在线看| 日本av手机在线免费观看| 妹子高潮喷水视频| 老汉色av国产亚洲站长工具| 操美女的视频在线观看| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 黄色片一级片一级黄色片| 国产1区2区3区精品| 午夜精品国产一区二区电影| 90打野战视频偷拍视频| 老司机午夜福利在线观看视频 | 国产精品av久久久久免费| 一本—道久久a久久精品蜜桃钙片| 午夜福利影视在线免费观看| 另类亚洲欧美激情| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 成年人午夜在线观看视频| 精品视频人人做人人爽| 亚洲av国产av综合av卡| 啦啦啦在线免费观看视频4| 黄色 视频免费看| 一进一出好大好爽视频| 在线天堂中文资源库| 狠狠婷婷综合久久久久久88av| 极品教师在线免费播放| 夜夜爽天天搞| 丝袜人妻中文字幕| 老司机午夜福利在线观看视频 | 黄色毛片三级朝国网站| 脱女人内裤的视频| 欧美成人午夜精品| 国产在线免费精品| 国产成人欧美在线观看 | 80岁老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 精品国内亚洲2022精品成人 | 国产高清激情床上av| 中国美女看黄片| 亚洲情色 制服丝袜| 国产亚洲av高清不卡| 国产xxxxx性猛交| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 一级,二级,三级黄色视频| 免费在线观看黄色视频的| 国产男女内射视频| 我要看黄色一级片免费的| 韩国精品一区二区三区| 女人久久www免费人成看片| 男人操女人黄网站| 亚洲欧洲精品一区二区精品久久久| 一本综合久久免费| 韩国精品一区二区三区| 国产亚洲欧美在线一区二区| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 亚洲成国产人片在线观看| 日本av手机在线免费观看| 精品久久久精品久久久| 国产精品1区2区在线观看. | 免费在线观看视频国产中文字幕亚洲| 午夜激情av网站| 亚洲精品在线观看二区| a级片在线免费高清观看视频| 叶爱在线成人免费视频播放| 亚洲av国产av综合av卡| 国产成人免费观看mmmm| 一区二区三区国产精品乱码| 国产又色又爽无遮挡免费看| 十八禁人妻一区二区| 亚洲 欧美一区二区三区| av天堂在线播放| 久久精品国产亚洲av高清一级| 一级毛片电影观看| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 精品人妻1区二区| 国产有黄有色有爽视频| 国产在线精品亚洲第一网站| 在线观看一区二区三区激情| 久9热在线精品视频| 午夜91福利影院| 久久精品熟女亚洲av麻豆精品| 又大又爽又粗| 搡老熟女国产l中国老女人| 久久精品熟女亚洲av麻豆精品| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 久久久久国内视频| 亚洲欧美日韩高清在线视频 | 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 久久精品人人爽人人爽视色| 国产人伦9x9x在线观看| 无遮挡黄片免费观看| 男女边摸边吃奶| 亚洲色图综合在线观看| 成年动漫av网址| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| 午夜福利一区二区在线看| 69精品国产乱码久久久| 成人18禁高潮啪啪吃奶动态图| 久久国产亚洲av麻豆专区| 精品免费久久久久久久清纯 | 午夜福利,免费看| 国产成人精品无人区| 可以免费在线观看a视频的电影网站| 一级a爱视频在线免费观看| 啦啦啦 在线观看视频| 大码成人一级视频| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 正在播放国产对白刺激| 日韩制服丝袜自拍偷拍| 国产成人影院久久av| 男男h啪啪无遮挡| 国产不卡一卡二| 男人操女人黄网站| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美亚洲国产| av天堂久久9| 十八禁高潮呻吟视频| 中亚洲国语对白在线视频| 窝窝影院91人妻| 啦啦啦免费观看视频1| 成年人黄色毛片网站| 高清欧美精品videossex| 亚洲第一青青草原| 欧美成人免费av一区二区三区 | av电影中文网址| 大片电影免费在线观看免费| 精品久久久精品久久久| 精品亚洲成国产av| 美女主播在线视频| 成年版毛片免费区| 亚洲性夜色夜夜综合| svipshipincom国产片| 韩国精品一区二区三区| 国产av又大| 超碰成人久久| 国产精品一区二区在线观看99| 久久久久精品国产欧美久久久| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 亚洲,欧美精品.| 亚洲成国产人片在线观看| 欧美日韩黄片免| 国产伦人伦偷精品视频| xxxhd国产人妻xxx| 美女午夜性视频免费| 精品国产乱码久久久久久小说| 午夜激情av网站| 午夜福利在线免费观看网站| 怎么达到女性高潮| 国产91精品成人一区二区三区 | 国产在线一区二区三区精| 亚洲视频免费观看视频| 99国产精品免费福利视频| 一进一出抽搐动态| 国产无遮挡羞羞视频在线观看| 亚洲av第一区精品v没综合| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 少妇的丰满在线观看| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 日日摸夜夜添夜夜添小说| 久久亚洲精品不卡| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 天天操日日干夜夜撸| 色综合婷婷激情| 18禁国产床啪视频网站| 一级毛片电影观看| avwww免费| 国产精品秋霞免费鲁丝片| 少妇 在线观看| 国产有黄有色有爽视频| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 在线播放国产精品三级| 在线观看免费视频网站a站| 日本wwww免费看| 麻豆乱淫一区二区| 1024视频免费在线观看| 激情在线观看视频在线高清 | 日韩一卡2卡3卡4卡2021年| 亚洲欧美激情在线| 一级片免费观看大全| 亚洲午夜理论影院| 五月开心婷婷网| 久久午夜综合久久蜜桃| 他把我摸到了高潮在线观看 | 黄片小视频在线播放| 老司机午夜福利在线观看视频 | 成年人黄色毛片网站| 手机成人av网站| 国产一区二区三区在线臀色熟女 | 男女高潮啪啪啪动态图| 精品一品国产午夜福利视频| 欧美成人免费av一区二区三区 | 欧美变态另类bdsm刘玥| 久久久国产一区二区| 亚洲精品在线观看二区| 一区二区av电影网| 激情视频va一区二区三区| 大型av网站在线播放| 咕卡用的链子| 天天添夜夜摸| 热re99久久国产66热| 国产精品二区激情视频| 人人澡人人妻人| 国产高清激情床上av| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 欧美日韩亚洲综合一区二区三区_| 18禁裸乳无遮挡动漫免费视频| 国产成人欧美| 日韩大码丰满熟妇| 久久精品国产综合久久久| 国产精品国产av在线观看| 久久久久视频综合| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 国产精品久久久久久精品古装| 最近最新免费中文字幕在线| 国产精品99久久99久久久不卡| 黄频高清免费视频| 欧美人与性动交α欧美软件| 国产伦人伦偷精品视频| 高清欧美精品videossex| 精品久久久久久久毛片微露脸| 啦啦啦中文免费视频观看日本| 黄片小视频在线播放| 国产精品 欧美亚洲| 搡老岳熟女国产| 日本vs欧美在线观看视频| 亚洲全国av大片| 一区在线观看完整版| 丰满饥渴人妻一区二区三| 午夜福利在线观看吧| 亚洲一区中文字幕在线| cao死你这个sao货| 国产精品久久久久久精品电影小说| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 国产精品自产拍在线观看55亚洲 | 日韩欧美国产一区二区入口| bbb黄色大片| 老司机靠b影院| 91国产中文字幕| 麻豆成人av在线观看| 久久亚洲真实| 侵犯人妻中文字幕一二三四区| 男女下面插进去视频免费观看| 超碰成人久久| 久久久久久久精品吃奶| 欧美性长视频在线观看| 69av精品久久久久久 | 欧美日韩视频精品一区| 欧美日韩黄片免| 国产精品成人在线| 妹子高潮喷水视频| 美女主播在线视频| 嫩草影视91久久| 一进一出抽搐动态| 午夜免费成人在线视频| 最新在线观看一区二区三区| 国产精品久久久av美女十八| 精品午夜福利视频在线观看一区 | bbb黄色大片| 亚洲国产成人一精品久久久| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 日韩有码中文字幕| 丝瓜视频免费看黄片| 女警被强在线播放| 人人妻,人人澡人人爽秒播| 久久这里只有精品19| 日韩制服丝袜自拍偷拍| 夜夜夜夜夜久久久久| videos熟女内射| av片东京热男人的天堂| 欧美精品高潮呻吟av久久| 18禁裸乳无遮挡动漫免费视频| 亚洲美女黄片视频| 狂野欧美激情性xxxx| 日韩成人在线观看一区二区三区| 婷婷丁香在线五月| 国产高清激情床上av| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕 | 18禁观看日本| 免费不卡黄色视频| 欧美精品高潮呻吟av久久| 成年女人毛片免费观看观看9 | 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 黄色视频不卡| 91九色精品人成在线观看| 成在线人永久免费视频| 高清欧美精品videossex| 精品免费久久久久久久清纯 | 久热这里只有精品99| 高清av免费在线| 国产精品香港三级国产av潘金莲| 亚洲精品国产色婷婷电影| 国产精品免费一区二区三区在线 | 精品国产国语对白av| 俄罗斯特黄特色一大片| 中文字幕av电影在线播放| av视频免费观看在线观看| 国产成人av教育| 黄色视频在线播放观看不卡| 日韩三级视频一区二区三区| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 建设人人有责人人尽责人人享有的| 亚洲av日韩精品久久久久久密| 国产成人啪精品午夜网站| 日本黄色视频三级网站网址 | 免费看十八禁软件| 91精品国产国语对白视频| 日韩精品免费视频一区二区三区| 久久精品亚洲av国产电影网| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 美女主播在线视频| 久久久精品区二区三区| 国产有黄有色有爽视频| 一级毛片女人18水好多| 热99久久久久精品小说推荐| 香蕉国产在线看| 黄色片一级片一级黄色片| 亚洲三区欧美一区| 一级片免费观看大全| 无限看片的www在线观看| av有码第一页| 99精品在免费线老司机午夜| 国产精品二区激情视频| 正在播放国产对白刺激| 人妻 亚洲 视频| 成年女人毛片免费观看观看9 | 精品久久久精品久久久| 黄色视频不卡| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 精品久久久久久久毛片微露脸| 亚洲情色 制服丝袜| 午夜福利欧美成人| 免费不卡黄色视频| 12—13女人毛片做爰片一| 高清毛片免费观看视频网站 | 欧美激情高清一区二区三区| 免费在线观看日本一区| 国产一卡二卡三卡精品| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 国产色视频综合| 精品福利观看| 精品免费久久久久久久清纯 | 国产精品1区2区在线观看. | 在线天堂中文资源库| 国产高清videossex| 99re6热这里在线精品视频| 久久国产亚洲av麻豆专区| 久久人妻福利社区极品人妻图片| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 亚洲综合色网址| 久久中文看片网| 国产1区2区3区精品| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩高清在线视频 | 国产精品免费视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 免费黄频网站在线观看国产| 国产人伦9x9x在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 中文亚洲av片在线观看爽 | 色综合婷婷激情| 狠狠狠狠99中文字幕| 国产日韩欧美视频二区| 日本wwww免费看| 国产又色又爽无遮挡免费看| 色视频在线一区二区三区| 天天添夜夜摸| 久热爱精品视频在线9| 亚洲熟女精品中文字幕| 波多野结衣av一区二区av| 在线播放国产精品三级| 女性生殖器流出的白浆| 老司机亚洲免费影院| 久久久久国内视频| 黑人巨大精品欧美一区二区蜜桃| 免费久久久久久久精品成人欧美视频| 亚洲久久久国产精品| 9191精品国产免费久久| 久久免费观看电影| 欧美亚洲日本最大视频资源| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产 | 50天的宝宝边吃奶边哭怎么回事| 黑丝袜美女国产一区| av免费在线观看网站| 别揉我奶头~嗯~啊~动态视频| 在线观看人妻少妇| av一本久久久久| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 久久精品成人免费网站| 嫩草影视91久久| 美女扒开内裤让男人捅视频| 老汉色av国产亚洲站长工具| 亚洲专区字幕在线| 超色免费av| 99国产极品粉嫩在线观看| 午夜久久久在线观看| 啦啦啦 在线观看视频| 免费日韩欧美在线观看| 成人手机av| 丁香六月天网| 黑人欧美特级aaaaaa片| 极品教师在线免费播放| 国产视频一区二区在线看| 三级毛片av免费| 成年动漫av网址| 国产精品电影一区二区三区 | √禁漫天堂资源中文www| 成年人免费黄色播放视频| 老司机亚洲免费影院| 久久午夜亚洲精品久久| 丁香欧美五月| 午夜免费鲁丝| 久久99一区二区三区| 亚洲国产欧美日韩在线播放| 人妻久久中文字幕网| 捣出白浆h1v1| 一边摸一边抽搐一进一出视频| 制服诱惑二区| 国产xxxxx性猛交| 亚洲精品久久午夜乱码| 18禁美女被吸乳视频| 亚洲精品国产区一区二| 亚洲国产欧美在线一区| 啦啦啦 在线观看视频| a级毛片黄视频| av福利片在线| 久久久精品免费免费高清| 男男h啪啪无遮挡| 久久免费观看电影| 国产在线一区二区三区精| 伦理电影免费视频| 精品国产一区二区三区久久久樱花| 又紧又爽又黄一区二区| 亚洲国产av影院在线观看| 热99久久久久精品小说推荐| 欧美日韩国产mv在线观看视频| 欧美精品一区二区大全| 中文字幕制服av| 欧美中文综合在线视频| 露出奶头的视频| 欧美成人午夜精品| 一本色道久久久久久精品综合| 欧美黑人欧美精品刺激| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 亚洲精品久久成人aⅴ小说| 真人做人爱边吃奶动态| 啪啪无遮挡十八禁网站| 久久精品国产a三级三级三级| 免费av中文字幕在线| 国产精品.久久久| 亚洲专区国产一区二区| 夜夜夜夜夜久久久久| 男女床上黄色一级片免费看| 岛国在线观看网站| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av香蕉五月 | 新久久久久国产一级毛片| 最新美女视频免费是黄的| 国产伦人伦偷精品视频| 亚洲国产成人一精品久久久| 色尼玛亚洲综合影院| 精品久久久久久久毛片微露脸| 亚洲熟女毛片儿| 中文字幕色久视频| 亚洲精品粉嫩美女一区| 亚洲色图av天堂| 国产成人av教育| 宅男免费午夜| 色婷婷久久久亚洲欧美| 午夜老司机福利片| 精品乱码久久久久久99久播| www日本在线高清视频| 黄色片一级片一级黄色片| 国产91精品成人一区二区三区 | 久久九九热精品免费| 精品国产一区二区三区四区第35| 一级毛片精品| 国产高清视频在线播放一区| 欧美成人免费av一区二区三区 | cao死你这个sao货| 久久精品国产a三级三级三级| 欧美久久黑人一区二区| 国产成人精品久久二区二区91| 欧美+亚洲+日韩+国产| 丰满迷人的少妇在线观看| 最近最新中文字幕大全免费视频| 嫩草影视91久久| 国产在线精品亚洲第一网站| cao死你这个sao货| 亚洲少妇的诱惑av| 一级毛片女人18水好多| 久久精品91无色码中文字幕| 无遮挡黄片免费观看| 中文字幕av电影在线播放| 99riav亚洲国产免费| 日本欧美视频一区| 色综合婷婷激情| 制服诱惑二区| 午夜福利一区二区在线看| 日韩免费高清中文字幕av| 免费人妻精品一区二区三区视频| 91字幕亚洲| 2018国产大陆天天弄谢| 午夜免费成人在线视频| 男女之事视频高清在线观看| 国产精品久久久久久精品电影小说| 别揉我奶头~嗯~啊~动态视频| 涩涩av久久男人的天堂|