馮向前,殷敏,王孟佳,馬橫宇,褚光,劉元輝,徐春梅,章秀福,張運(yùn)波,王丹英,陳松
南方稻區(qū)“早秈晚粳”栽培模式晚季灌漿期氣象因子對(duì)晚粳稻品質(zhì)的影響
馮向前1,2,殷敏3,王孟佳1,馬橫宇1,褚光1,劉元輝1,徐春梅1,章秀福1,張運(yùn)波2,王丹英1,陳松1
1中國(guó)水稻研究所,杭州 311400;2長(zhǎng)江大學(xué)農(nóng)學(xué)院,湖北荊州 434025;3鹽城市新洋農(nóng)業(yè)試驗(yàn)站,江蘇鹽城 224049
【】研究南方雙季稻區(qū)晚季灌漿期溫光資源對(duì)不同類型水稻稻米品質(zhì)的影響,為適應(yīng)性雙季晚粳稻品種的篩選與優(yōu)質(zhì)栽培提供理論依據(jù)?!尽吭囼?yàn)于2018年在浙江富陽和溫州兩地開展,以當(dāng)?shù)刂髟?個(gè)秈稻品種為對(duì)照,根據(jù)專家推薦選擇20個(gè)候選粳型品種(包括10個(gè)常規(guī)粳稻、3個(gè)雜交粳稻和7個(gè)秈粳雜交稻),評(píng)估和研究灌漿期溫光條件差異對(duì)晚粳稻品質(zhì)的影響。【】(1)基于稻米品質(zhì)特征聚類,晚秈稻因其特有的長(zhǎng)寬比(3.18)與直鏈淀粉含量(19.40%)歸屬一類;相比晚秈稻,大部分雜粳型水稻糙米率、精米率、整精米率、膠稠度、堿消值和食味值分別升高了4.31%—5.28%、6.51%—9.33%、25.83%—28.34%、-1.81%—4.27%、11.62%—50.85%和2.31%—2.85%,直鏈淀粉含量和蛋白質(zhì)含量則降低了20.98%—28.14%和1.16%—14.85%,表現(xiàn)出明顯的米質(zhì)提升;常規(guī)粳稻品種的米質(zhì)表現(xiàn)則出現(xiàn)分離,部分源于蘇南和嘉興的常規(guī)粳稻(4個(gè))與雜交粳類似,同屬于米質(zhì)提升一類;而部分源于江蘇、上海的常規(guī)粳稻品種(6個(gè))因其在晚季中相對(duì)較差的米質(zhì)表現(xiàn)(高堊白度、堊白粒率和蛋白質(zhì)含量)歸屬一類;(2)晚稻灌漿期稻米品質(zhì)與氣候因素密切相關(guān),氣候因子對(duì)水稻品質(zhì)的作用主要以齊穗后10—20 d為主;加工品質(zhì)(糙米率)與日均輻射(:-0.40—-0.19,<0.05)和晝夜溫差(:-0.45—-0.28,<0.05)呈負(fù)相關(guān)關(guān)系,與日最低溫度(:0.24—0.53,<0.05)和降雨量(:0.38—0.45,<0.05)呈正相關(guān)關(guān)系;灌漿期降雨增多以及夜間溫度的提高會(huì)顯著提高堊白率和堊白粒率(:-0.37—-0.16,<0.05;:-0.43—-0.12,<0.05),從而降低稻米外觀品質(zhì),同時(shí)夜間溫度和降雨與食味值呈負(fù)相關(guān)關(guān)系(:-0.37—-0.16,<0.05;:-0.43—-0.12,<0.05);雙季晚稻灌漿期最高溫度與稻米食味值成正相關(guān)(=0.37,<0.05),日最低溫度則與稻米蛋白質(zhì)含量(=0.19,<0.05)和堊白度(=0.16,<0.05)及堊白粒率(=0.12,<0.05)成正相關(guān)。【】齊穗后10—20 d是氣候因子調(diào)控稻米品質(zhì)的關(guān)鍵時(shí)期。南方雙季稻區(qū)晚粳稻品種米質(zhì)優(yōu)化,應(yīng)著重于優(yōu)質(zhì)粳稻基因與當(dāng)?shù)剡m應(yīng)性秈稻基因的融合,選擇雜粳稻(秈粳雜交稻和雜交粳稻)相比常規(guī)粳稻更可靠便捷,常規(guī)粳稻品種在引進(jìn)應(yīng)用時(shí)則應(yīng)考慮育種來源地及其生態(tài)適應(yīng)性,南方稻區(qū)優(yōu)質(zhì)常規(guī)粳稻仍需結(jié)合當(dāng)?shù)貧夂驐l件進(jìn)行選育。
雙季晚稻;品種類型;灌漿期;稻米品質(zhì);氣象因子
【研究意義】隨著居民消費(fèi)結(jié)構(gòu)的升級(jí),“南秈北粳”的傳統(tǒng)消費(fèi)模式已發(fā)生改變,1980—2016年南方一些大中型城市對(duì)粳稻的消費(fèi)購(gòu)買量年均增長(zhǎng)139.1萬噸[1],稻米市場(chǎng)對(duì)食味品質(zhì)更好的粳稻需求量逐漸增加[2-4]。加之近年來隨著“早秈晚粳”“秈改粳”模式的推廣[5-6]以及粳稻對(duì)南方雙季稻區(qū)晚季溫光較強(qiáng)的適應(yīng)性(耐寒性)[7-8],粳稻越發(fā)受到南方農(nóng)民的歡迎,種植面積也逐年擴(kuò)大。但生產(chǎn)上粳稻以北方居多,而隨著種植生態(tài)區(qū)的變更,品種米質(zhì)對(duì)于不同氣候環(huán)境特性的特異性響應(yīng)已成為限制粳稻在南方適宜生態(tài)區(qū)推廣的重大科學(xué)問題;而南方稻區(qū)優(yōu)質(zhì)雙季晚粳稻的篩選對(duì)于粳稻產(chǎn)業(yè)的發(fā)展具有重要的現(xiàn)實(shí)意義?!厩叭搜芯窟M(jìn)展】前人對(duì)南方稻區(qū)“早秈晚粳”栽培模式下適宜晚粳類型的選擇已有大量研究,桂君梅等[9]利用InDel分子標(biāo)記表明晚季種植條件下,秈粳雜交稻相比雜交粳稻具有明顯的產(chǎn)量競(jìng)爭(zhēng)潛力;陳波等[10]和王孟佳等[11]分別在江西、浙江等地開展晚季粳稻產(chǎn)量試驗(yàn),秈粳雜交稻的產(chǎn)量表現(xiàn)均高于其他晚粳類型,秈粳雜交稻的產(chǎn)量?jī)?yōu)勢(shì)可能源于冠層結(jié)構(gòu)與光合特性優(yōu)勢(shì)[12],使其灌漿期具有較高的輻射利用率和溫光利用率[13-14]。除影響產(chǎn)量形成外,因灌漿期是水稻米質(zhì)形成的關(guān)鍵時(shí)期[15-17],所以,“早燦晚粳”模式下南方稻區(qū)不同地域水稻灌漿期溫光條件影響稻米品質(zhì)的主要限制因子不盡相同[18-20]?!颈狙芯壳腥朦c(diǎn)】南方稻區(qū)雙季稻“早秈晚粳”模式在生產(chǎn)上具有巨大的推廣潛力,但前人研究多傾向雙季晚粳稻品種的育性適應(yīng)與產(chǎn)量表現(xiàn),對(duì)其稻米品質(zhì)表現(xiàn),及其對(duì)灌漿期溫光條件差異的特異性適應(yīng)則較少研究?!緮M解決的關(guān)鍵問題】本研究在專家推薦基礎(chǔ)上,收集與篩選生產(chǎn)上主栽,且具有雙季晚稻應(yīng)用潛力的粳稻品種為研究對(duì)象,以當(dāng)?shù)赝矶i稻為對(duì)照,研究不同粳稻品種在南方稻區(qū)雙季晚稻應(yīng)用中的米質(zhì)表現(xiàn),揭示調(diào)控雙季晚粳稻米品質(zhì)形成的灌漿期主控氣候因子,為南方稻區(qū)“早秈晚粳”模式中晚粳稻品種的選擇和區(qū)域性栽培措施制定提供了一定的理論依據(jù)。
以當(dāng)?shù)赝矶i稻為對(duì)照,選用南方稻區(qū)主栽晚秈稻(indica rice,IR):黃華占、天優(yōu)華占、C兩優(yōu)華占;在專家推薦基礎(chǔ)上,收集與篩選生產(chǎn)上主栽,且具有雙季晚稻應(yīng)用潛力的粳稻品種(共計(jì)20個(gè))為研究對(duì)象,主要以蘇南、上海、浙北培育的粳型品種為主,其中常規(guī)粳稻(inbredjaponicarice,IJR):嘉58、南粳9108、寧粳4號(hào)、武育粳6567、武育粳6571、北粳1號(hào)、滬香粳151、南粳46、武運(yùn)粳24、秀水134;雜交粳稻(hybridjaponicarice,HJR):常優(yōu)4號(hào)、常優(yōu)5號(hào)、嘉優(yōu)5號(hào);秈粳雜交稻(hybrid indica/japonicarice,HIJR):甬優(yōu)8號(hào)、春優(yōu)927、甬優(yōu)12號(hào)、甬優(yōu)15號(hào)、甬優(yōu)1540、甬優(yōu)538、甬優(yōu)540。詳細(xì)信息見表1(數(shù)據(jù)來源:https://www. ricedata.cn)。
試驗(yàn)于2018年在浙江富陽中國(guó)水稻研究所試驗(yàn)農(nóng)場(chǎng)(119°55′E,30°04′N)和溫州桐浦鎮(zhèn)桐浦村(120°33′E,27°51′N)進(jìn)行,兩試驗(yàn)地點(diǎn)試驗(yàn)前均為早稻,富陽與溫州早稻供試品種分別為中嘉早17和中早39,于2018年3月20日播種,4月15日移栽,全生育期施氮量150 kg N·hm-2。晚稻移栽前土壤理化性質(zhì)為富陽土壤有機(jī)質(zhì)含量30.6 g·kg-1、堿解氮134.1 mg·kg-1、速效磷30.4 mg·kg-1、速效鉀137.7 mg·kg-1、pH 5.5;溫州土壤有機(jī)質(zhì)含量32.8 g·kg-1、堿解氮121.2 mg·kg-1、速效磷11.4 mg·kg-1、速效鉀38.0 mg·kg-1、pH 5.7。
田間試驗(yàn)采取單因子隨機(jī)區(qū)組設(shè)計(jì)處理,以品種為處理,3個(gè)區(qū)組重復(fù),小區(qū)面積為21 m2,于2018年6月26日播種,7月20日移栽。水育秧,手工移栽,雜交稻雙本,常規(guī)稻3—4本,行株距16.5 cm×26.4 cm;全生育期施氮量202.5 kg N·hm-2,基﹕蘗﹕穗肥比例=5﹕3﹕2;鉀和磷肥施用量分別為165 kg K2O·hm-2與97.5 kg P2O5·hm-2;鉀肥60%基肥,40%幼穗分化期追施;磷肥全部作基肥。基肥于移栽前施用并與土混勻,蘗肥和穗肥分別于移栽后7—10 d內(nèi)和幼穗分化期3—7 d內(nèi)施用,各小區(qū)20 cm埂隔離,埂上覆膜,單獨(dú)排灌,大田移栽起保持田面3—5 cm水層,分蘗期保持淺水分蘗,夠苗后排水?dāng)R田。多露輕曬,控制無效分蘗,穗分化期復(fù)水,齊穗后干濕交替灌溉,成熟前10 d左右停止灌溉,任其自然落干。田間病蟲害和雜草防治按當(dāng)?shù)馗弋a(chǎn)栽培管理要求執(zhí)行。
1.3.1 稻米品質(zhì)分析 每個(gè)田間設(shè)2次亞重復(fù),亞重復(fù)樣品量不低于130 g;稻谷經(jīng)礱谷機(jī)(大竹Otake- FC2R,日本)脫殼,分揀除雜后,計(jì)算糙米率;糙米經(jīng)精米機(jī)(Yamamoto山本VP-32,日本),在碾減率10%下(白度值3),碾磨去除胚與種皮層,所得樣品經(jīng)過篩(1 mm孔徑)后,稱重計(jì)算測(cè)定精米率;所得樣品利用大米外觀品質(zhì)檢測(cè)分析儀(萬深SC-E,杭州萬深檢測(cè)科技有限公司)測(cè)定整精米率、堊白粒率、堊白度、粒長(zhǎng)粒寬及長(zhǎng)寬比;所得樣品過篩后,所得整精米利用米飯食味儀(佐竹STA-1B,日本)測(cè)定稻米食味值,依據(jù)農(nóng)業(yè)部標(biāo)準(zhǔn)《NY/T 2639-2014 稻米直鏈淀粉的測(cè)定分光光度法》和《NY147-88米質(zhì)測(cè)定方法》分別測(cè)定稻米直鏈淀粉含量和堿消值;依據(jù)國(guó)標(biāo)《GB/T 22294-2008 糧油檢驗(yàn)大米膠稠度的測(cè)定》和《GB 5009.5-2016食品安全國(guó)家標(biāo)準(zhǔn)食品中蛋白質(zhì)的測(cè)定》測(cè)定稻米膠稠度及蛋白質(zhì)含量。
1.3.2 主要?dú)夂騾?shù) 氣象數(shù)據(jù)于試驗(yàn)田附近安裝小型氣象站(CR800自動(dòng)氣象站,北京天諾基業(yè)科技有限公司)自動(dòng)采集,收獲時(shí)停止收集。富陽和溫州2018年水稻灌漿期生長(zhǎng)季氣候變化如圖1所示。
試驗(yàn)所有數(shù)據(jù)采用Excel 2019(Microsoft,USA)整理,利用R語言(R 4.0.4)分析包(tidyverse、agricolae)、(FactoMineR、factoextra、corrplot、ggplot2)和(rio、factoextra)分別對(duì)數(shù)據(jù)進(jìn)行方差分析(ANOVA)、主成分分析和聚類分析,并采用0.05顯著性水平下的最小顯著性差異(LSD)檢驗(yàn)來區(qū)分平均值,比較不同處理之間的差異。使用OriginPro 2021(9.8.0.200 Learning Edition,OriginLab,USA)correlation plot插件對(duì)齊穗后逐日氣象因子與稻米品質(zhì)進(jìn)行相關(guān)性分析并依據(jù)相關(guān)系數(shù)作出相關(guān)系數(shù)隨灌漿進(jìn)程變化的趨勢(shì)圖。
晝夜溫差:一日內(nèi)從早到晚的溫度差值Temperature gap: Daily temperature difference between day and night
表1 試驗(yàn)品種詳細(xì)信息
IR:秈稻;IJR:常規(guī)粳稻;HJR:雜交粳稻;HIJR:秈粳雜交稻
IR: indica rice; IJR:Inbred japonica rice; HJR: Hybird japonica rice; HIJR: Hybrid indica/japonica rice
基于本試驗(yàn)所測(cè)稻米品質(zhì)數(shù)據(jù),采用Ward層次聚類法對(duì)23個(gè)供試材料進(jìn)行聚類分析,聚類結(jié)果如圖2所示,以合并距離10為閾值,可將供試材料分為3個(gè)類群,第Ⅰ類為供試晚秈稻(C兩優(yōu)華占、黃華占和天優(yōu)華占);第Ⅱ類有7個(gè)品種,分別為北粳1號(hào)、寧粳4號(hào)、滬香粳151、南粳9108、武育粳6567、武育粳6571、甬優(yōu)8號(hào);除甬優(yōu)8號(hào)外,其他均為常規(guī)粳稻,且在其推廣區(qū)域主要在蘇南與上海地區(qū),以中稻種植;第Ⅲ類有13個(gè)品種,分別為甬優(yōu)538、甬優(yōu)1540、春優(yōu)927、甬優(yōu)12號(hào)、秀水134、甬優(yōu)540、常優(yōu)5號(hào)、甬優(yōu)15號(hào)、南粳46、武運(yùn)粳24、常優(yōu)4號(hào)、嘉58、嘉優(yōu)5號(hào),主要為雜粳型水稻(雜交粳稻和秈粳雜交稻),此外還包括4個(gè)常規(guī)粳稻品種(秀水134、南粳46、武運(yùn)粳24和嘉58)?;诰垲惤Y(jié)果進(jìn)一步對(duì)供試群體開展主成分分析(圖3),結(jié)果表明第Ⅰ類群的秈稻在稻米品質(zhì)的表現(xiàn)上完全區(qū)別于第Ⅱ類群和第Ⅲ類群(主要以長(zhǎng)寬比與直鏈淀粉含量作為主要區(qū)分特征),第Ⅱ類群與第Ⅲ類群在主成分一和主成分二載荷存在一定交集,但亦有所差異,以正向特征分析,第Ⅱ類群整體上處于主成分一的負(fù)值區(qū)和主成分二的正值區(qū),這表明相對(duì)第Ⅲ類群,其具有較低的堊白值與較高的整精米率。
各類群的稻米品質(zhì)表現(xiàn)如表2所示,第Ⅰ類群為秈稻類群,類群特征值為長(zhǎng)寬比(3.18)與直鏈淀粉含量(19.4%),顯著高于其他兩類。糙米率、精米率、整精米率及堊白粒率、堊白度、膠稠度、堿消值以及食味值表現(xiàn)分別為76.37%、63.25%、40.71%、11.63%、3.58%、73.76 mm、2.43級(jí)和76.83分。相比秈稻類群,第Ⅱ類群堊白度和堊白粒率增加了445.22%—489.06%和298.11%—316.48%,第Ⅲ類群堊白度和堊白粒率增加了165.32%—172.13%和151.45% —163.80%。說明外觀品質(zhì)上秈稻比粳稻好,但第Ⅲ類群外觀品質(zhì)的增加幅度顯著低于第II類群;相比秈稻類群,第Ⅱ類群的糙米率、精米率和整精米率提高了4.76%—5.83%、4.55%—6.22%和12.59%—28.34%,第Ⅲ類群的糙米率、精米率和整精米率提高了4.31% —5.28%、6.51%—9.33%和25.83%—28.34%。說明在加工品質(zhì)上秈稻比粳稻差;相比秈稻類群,第Ⅱ類群的蛋白質(zhì)含量增加了2.37%—16.35%,同時(shí)直鏈淀粉含量和食味值分別降低了39.01%—39.22%和4.22%— 11.09%,且差異均達(dá)顯著水平,說明第Ⅱ類群稻米食味品質(zhì)顯著低于晚秈稻;第Ⅲ類群主要以雜粳品種和部分常規(guī)粳稻為主,相比晚秈稻,第Ⅲ類群的加工品質(zhì)和蒸煮食味品質(zhì)略有提高,糙米率、精米率、整精米率、膠稠度和堿消值分別提高了4.31%—5.28%、6.51%—9.33%、25.83%—28.34%、-1.81%—4.27%和11.62%—50.85%。食味值與晚秈稻相比提高了2.31%—2.85%,但無顯著差異。這表明,在南方雙季晚稻粳稻選擇應(yīng)用中,以雜粳型為代表的第Ⅲ類群品種能在保持食味水平的基礎(chǔ)上一定程度提高加工和蒸煮品質(zhì),但無法避免外觀品質(zhì)的降低。
圖2 不同類型晚稻聚類分析
表2 不同類別品種的主要稻米品質(zhì)
圖中各品種稻米品質(zhì)具體數(shù)值為富陽與溫州兩地稻米品質(zhì)表現(xiàn)均值,不同小寫字母表示類別顯著差異(<0.05,LSD)
The specific value of rice quality of each variety in the figure is the average performance of rice quality in Fuyang and Wenzhou, and the different small letters indicate significant difference in class at 0.05 level (LSD)
BRR:糙米率;MRR:精米率;HRR:整精米率;CGR:堊白粒率;ChD:堊白度;TV:食味值;LWR:長(zhǎng)寬比;PC:蛋白質(zhì)含量;AC:直鏈淀粉含量;GC:膠稠度;ASV:堿消值;Dim:主成分。下同
2.2.1 加工品質(zhì) 稻米加工品質(zhì)與灌漿期氣象因子的相關(guān)性如圖4所示,稻米加工品質(zhì)中糙米率主要受降雨量(=0.44,<0.05)和降雨頻次(=0.38,<0.05)的影響,精米率與糙米率類似,但無統(tǒng)計(jì)顯著性。進(jìn)一步分析齊穗后不同時(shí)期氣候因子與加工品質(zhì)的關(guān)系(圖5),結(jié)果表明齊穗后日均輻射(圖5-A)、日最低氣溫(圖5-B)、晝夜溫差(圖5-D)和降雨(圖5-E)與糙米率的相關(guān)性隨灌漿時(shí)間的推進(jìn)呈拋物線規(guī)律變化在齊穗后10—20 d出現(xiàn)峰值或谷底;其中日均輻射和晝夜溫差在該階段表現(xiàn)為負(fù)相關(guān)(:-0.40— -0.19,<0.05;:-0.45—-0.28,<0.05),而最低溫度和降雨則為顯著正相關(guān)(:0.24—0.53,<0.05;:0.38—0.45,<0.05)。此外,日最高溫度和日照時(shí)數(shù)則在灌漿25—30 d后出現(xiàn)正效應(yīng)(:0.17—0.32,<0.05;:-0.27—0.52,<0.05)。這表明,不同氣候因子對(duì)雙季晚粳稻加工品質(zhì)的影響因所處階段不同而有所差異:灌漿10—20 d,夜間溫度提高和一定的降雨有利于提高稻米加工品質(zhì)(糙米率和精米率),但灌漿后25—30 d的高溫和強(qiáng)日照,則會(huì)降低加工品質(zhì)。
2.2.2 外觀品質(zhì) 稻米外觀品質(zhì)中長(zhǎng)寬比主要以品種遺傳特性為主,環(huán)境因子的影響較小。從整個(gè)灌漿期來看,堊白度及堊白粒率主要受降雨(=0.43和0.42,<0.05)和降雨頻次(= 0.39和0.40,<0.05)影響(圖4);但細(xì)化齊穗后不同時(shí)期,稻米堊白度和堊白粒率與氣象因子的關(guān)系,與加工品質(zhì)有所類似(圖5)。以堊白粒率為例,齊穗后10—20 d,日均輻射和晝夜溫差表現(xiàn)為負(fù)效應(yīng)(:-0.30— -0.47,<0.05;:-0.36—-0.54,<0.05;圖6-A,D),而最低溫度和降雨則為正效應(yīng)(:-0.37—-0.16,<0.05;:-0.43—-0.12,<0.05;圖6-B,E)。日最高溫度和稻米堊白粒率的相關(guān)因子以及日照時(shí)數(shù)和稻米堊白粒率的相關(guān)因子均與齊穗后天數(shù)呈線性關(guān)系(圖6-C,F(xiàn)),尤其是齊穗后25—30 d,達(dá)到顯著性(:0.31—0.46,<0.05;:0.26—0.48,<0.05)。鑒于稻米堊白度和堊白粒率越高,外觀品質(zhì)越差,以上結(jié)果表明,單一氣候因子調(diào)控雙季晚粳稻米加工品質(zhì)與外觀品質(zhì)時(shí),可能存在著一定的互斥效應(yīng),即敏感期(齊穗后10—20 d)的高日照輻射和晝夜溫差,有利于降低稻米堊白,但不利于提高糙米率和精米率。
DSR:日均輻射;Tmin:日最低溫度;Tmax:日最高溫度;Tgap:晝夜溫差;P:降雨量;RF:降雨頻次;DH:日照時(shí)數(shù)。*表示P<0.05。下同
紅線表示糙米率趨勢(shì)線 The red line is the trend line of brown rice rate
黑線表示堊白粒率趨勢(shì)線;紅線表示堊白度趨勢(shì)線 The black line is trend line of the chalky grain rate; The red line is trend line of the chalkiness degree
2.2.3 蒸煮和食味品質(zhì) 水稻蒸煮品質(zhì)與降雨和降雨頻次兩個(gè)氣象因子呈正相關(guān)關(guān)系,與其余氣象因子均呈負(fù)相關(guān)關(guān)系,其中膠稠度差異達(dá)顯著水平(圖4),但齊穗后逐日氣象因子與水稻蒸煮品質(zhì)(膠稠度和堿消值)的相關(guān)系數(shù)在-0.4—0.4內(nèi)波動(dòng),相關(guān)不顯著,僅在齊穗后14—30 d日最高溫度與膠稠度呈顯著負(fù)相關(guān)關(guān)系(:-0.29—-0.57,<0.05;圖7-C)。
稻米食味品質(zhì)與灌漿期氣候因子的相關(guān)性由圖4可得,其中降雨量與稻米食味值(=-0.77,<0.05)和直鏈淀粉含量(=-0.51,<0.05)呈顯著負(fù)相關(guān)關(guān)系,與蛋白質(zhì)含量顯著正相關(guān)關(guān)系(=0.42,<0.05);日均輻射(=0.38)、日最高溫度(=0.37)、日最低溫度(=0.29)及晝夜溫差(=0.51)與食味值呈顯著正相關(guān);進(jìn)一步分析,齊穗后不同時(shí)期各氣象因子的作用(圖8),日均輻射和溫差與食味值相關(guān)系數(shù)隨著灌漿進(jìn)程先升高后降低,在齊穗后10—20 d左右達(dá)到峰值(圖8-A、D,:0.32—0.73,<0.05;:0.40—0.75,<0.05),而日最低氣溫和降雨則剛好相反(圖8-B、E,:-0.37—-0.16,<0.05;:-0.43—-0.12,<0.05),日照時(shí)數(shù)在灌漿初期對(duì)食味品質(zhì)呈正向作用(:0.10—0.48,<0.05,圖8-F),而在齊穗后20—30 d,則呈負(fù)相關(guān)(:-0.41—-0.75,<0.05,圖8-F)。這表明齊穗后10—20 d日均輻射增強(qiáng)、晝夜溫差加大有利于優(yōu)質(zhì)食味稻米的形成,而陰雨寡照和夜溫提高則會(huì)提高稻米蛋白質(zhì)含量,降低直鏈淀粉含量,進(jìn)而導(dǎo)致食味品質(zhì)降低。
紅線表示膠稠度趨勢(shì)線 The red line is the trend line of alkali spreading value
綜上所述,齊穗后氣候因子對(duì)稻米品質(zhì)調(diào)控敏感期以齊穗后10—20 d為主。單一氣候因子調(diào)控雙季晚粳稻米加工品質(zhì)與外觀品質(zhì)時(shí),存在著一定的互斥效應(yīng),氣候敏感期(齊穗后10—20 d)的高日照輻射和晝夜溫差,有利于降低稻米堊白,但不利于提高糙米率和精米率。從優(yōu)質(zhì)稻米生產(chǎn)角度,日均輻射增強(qiáng)、晝夜溫差加大有利于優(yōu)質(zhì)食味稻米的形成,而陰雨寡照和夜溫提高則會(huì)提高稻米蛋白質(zhì)含量,降低直鏈淀粉含量,最終導(dǎo)致食味品質(zhì)的降低。
目前“早秈晚粳”栽培模式中雙季晚粳稻品種的選擇多基于育性表現(xiàn)和產(chǎn)量水平[10-14, 21-23],對(duì)于不同粳稻品種在南方稻區(qū)雙季晚稻上選擇應(yīng)用時(shí),基于稻米品質(zhì)的表現(xiàn)逐漸受到重視,但受限于供試品種數(shù)量和生態(tài)區(qū)限制,并未系統(tǒng)描述不同品種在“早秈晚粳”栽培模式中晚季灌漿期氣象因子與品質(zhì)指標(biāo)之間的關(guān)系以及米質(zhì)的表現(xiàn)。唐健等[24]基于江西不同生態(tài)區(qū),研究?jī)?yōu)質(zhì)晚粳稻(常優(yōu)5號(hào)等6個(gè)粳稻品種)在雙季晚稻上應(yīng)用的稻米品質(zhì)差異,結(jié)果表明常規(guī)粳稻加工品質(zhì)高于雜交粳稻,但蒸煮食味品質(zhì)低于雜交粳稻;陳波等[10]以15個(gè)不同類型粳稻品種為材料,發(fā)現(xiàn)其加工品質(zhì)表現(xiàn)為常規(guī)粳稻>雜交粳稻>秈粳雜交稻;而蒸煮食味品質(zhì)在粳型水稻之間各有優(yōu)劣但均高于秈稻。相關(guān)研究均從不同層面描述了不同類型粳稻品種在雙季晚稻上的表現(xiàn),本研究發(fā)現(xiàn)在南方雙季稻生態(tài)區(qū),相較于傳統(tǒng)的晚秈稻,應(yīng)用雜粳稻品種(包括秈粳雜交稻和雜交粳稻)在保持食味水平的基礎(chǔ)上可一定程度提高加工品質(zhì)和蒸煮食味品質(zhì)(圖2,表2),這也與前人的研究結(jié)果基本相符,但是在外觀品質(zhì)上則出現(xiàn)不同程度劣化(圖3,表2)。目前秈粳雜交稻、雜交粳稻因較適應(yīng)雙季稻區(qū)氣候條件,產(chǎn)量潛力很高(如甬優(yōu)系列),受到一些地方歡迎,部分品種也表現(xiàn)出一定優(yōu)質(zhì),總體上未達(dá)到優(yōu)質(zhì)晚秈稻的水平。晚稻地區(qū)選擇秈粳雜交稻、雜交粳稻主要基于高產(chǎn)下兼顧優(yōu)質(zhì);對(duì)于常規(guī)粳稻晚季應(yīng)用,其品質(zhì)表現(xiàn)則因品種不同而出現(xiàn)分離?;诰垲惙治觯狙芯恐屑闻d農(nóng)業(yè)科學(xué)院培育的秀水134、嘉58和適宜蘇南浙北的南粳46、武運(yùn)粳24等品種在雙季晚稻應(yīng)用時(shí),其品質(zhì)表現(xiàn)與粳型雜交稻類似;而其他常規(guī)粳稻(以蘇滬地區(qū)培育為主),主要集中在第Ⅱ類群,其米質(zhì)表現(xiàn)不僅顯著劣于當(dāng)?shù)赝矶i稻(表2),還劣于其適宜生態(tài)區(qū)下稻米品質(zhì)表現(xiàn)。例如,南粳9108在江蘇揚(yáng)州作單季稻種植時(shí)稻米品質(zhì)表現(xiàn)為:整精米率(71.81%)、堊白度(22.51%)、堊白粒率(34.71%)、食味值(71分)[25],而在本研究中,其堊白度、堊白粒率分別增加108.37%—125.72%,38.90%—86.12%;整精米率、食味值分別下降31.5%—31.58%和7.04%—11.26%,目前,常規(guī)粳稻在雙季稻區(qū)年度間表現(xiàn)差異較大,受南方氣候影響較大,多地試驗(yàn)表明,引進(jìn)的常規(guī)粳稻中有些品種產(chǎn)量潛力較高,但外觀品質(zhì)表現(xiàn)不佳[26],有的常規(guī)粳稻品種稻瘟病嚴(yán)重[27]。鑒于此,筆者認(rèn)為南方雙季稻區(qū)優(yōu)質(zhì)晚粳稻品種篩選時(shí),可優(yōu)先考慮優(yōu)質(zhì)的粳型雜交稻(包括秈粳雜交稻和雜交粳稻),而在篩常規(guī)粳稻時(shí),則需謹(jǐn)慎考慮其氣候適應(yīng)性。
雙季晚稻不同類型粳稻品種適應(yīng)性差異出現(xiàn)的原因,似乎與品種培育單位所在地及其適宜推廣區(qū)域有關(guān)。例如,蘇滬地區(qū)培育的常規(guī)粳稻,緯度偏北,且以單季稻應(yīng)用為主,轉(zhuǎn)移到較低維度的南方雙季稻區(qū),灌漿期溫度提高[28-30]、持續(xù)陰雨[31]和花期提前[32]等因素都制約著粳稻南移優(yōu)質(zhì)高產(chǎn)的實(shí)現(xiàn)。雜交粳稻、秈粳雜交稻比常規(guī)粳稻更適合雙季稻區(qū),主要還是耐高溫耐雨水等有關(guān)(與基因有關(guān))。因此,基于本研究的結(jié)果,我們認(rèn)為雙季優(yōu)質(zhì)晚粳粳稻品種的利用和開發(fā)途徑,應(yīng)包括以下途徑:(1)南方雙季稻區(qū)優(yōu)質(zhì)高產(chǎn)的常規(guī)粳稻本土化育種。調(diào)控稻米品質(zhì)的相關(guān)基因大部分是與關(guān)聯(lián)群體遺傳結(jié)構(gòu)密切相關(guān)的數(shù)量型基因[33-35],其表達(dá)程度與環(huán)境因子息息相關(guān),因此與其“北粳南移”不如培育“本土南粳”;(2)雜交優(yōu)勢(shì)的利用。本研究中摻雜了秈型基因的秈粳雜交稻,其米質(zhì)在南方稻區(qū)雙季晚稻上表現(xiàn)不俗。陳峰等[36]認(rèn)為秈稻等位基因的介入使得秈粳雜交稻控制淀粉合成的相關(guān)基因發(fā)生廣泛重組,從而可能有助于粳稻米質(zhì)的提升,而且呂川根等[37]提出秈稻與食味較好的常規(guī)粳稻配組,有利于優(yōu)質(zhì)秈粳雜交新品種的選育。筆者則認(rèn)為秈粳雜交稻之所以取得較優(yōu)米質(zhì)的關(guān)鍵在于繼承優(yōu)質(zhì)粳稻遺傳背景的同時(shí),在雜交過程中引入秈稻基因,豐富了秈粳雜交水稻品種的遺傳構(gòu)成,使調(diào)控米質(zhì)的遺傳結(jié)構(gòu)更加穩(wěn)定表達(dá),更適應(yīng)于雙季晚稻的生態(tài)因子[38]。
綜上,南方雙季稻區(qū)晚粳稻品種米質(zhì)優(yōu)化,應(yīng)著重于優(yōu)質(zhì)粳稻基因與當(dāng)?shù)剡m應(yīng)性秈稻基因的融合,選擇雜粳稻(秈粳雜交稻和雜交粳稻)相比常規(guī)粳稻更可靠。南方稻區(qū)優(yōu)質(zhì)常規(guī)粳稻仍需育種家結(jié)合南方稻區(qū)實(shí)際氣候條件進(jìn)行選育。
稻米品質(zhì)的形成除了受品種遺傳特性控制外,還與灌漿期氣候條件有著密切的聯(lián)系。早秈晚粳稻模式下不同晚粳品種因栽插日期的差異[20]以及不同晚粳類型品種的選擇[10,24]導(dǎo)致稻米品質(zhì)形成階段(灌漿期)經(jīng)歷的氣候環(huán)境差異,是導(dǎo)致雙季晚稻的品質(zhì)差異的關(guān)鍵因素[39]。
溫度是影響稻米品質(zhì)優(yōu)劣的重要環(huán)境因子[30]。灌漿期內(nèi),稻米品質(zhì)響應(yīng)溫度變化的敏感期已有大量研究[40-43]。羅清等[44]基于不同生態(tài)區(qū)的播期試驗(yàn)通過動(dòng)態(tài)擬合模型的方法確定稻米營(yíng)養(yǎng)品質(zhì)對(duì)溫度的敏感時(shí)期為齊穗后15—25 d,盛婧等[41]基于人工氣候箱控溫試驗(yàn)研究表明齊穗后11—20 d為溫度敏感時(shí)期。本研究中齊穗后10—20 d為溫度敏感期,與前人研究基本一致。日間溫度的升高往往會(huì)降低整精米率、增加堊白粒率、堊白度以及蛋白質(zhì)含量從而降低稻米品質(zhì)[15, 40, 45],且晝夜溫差越小,碳水化合物轉(zhuǎn)運(yùn)越不順暢,淀粉粒排列也就不緊密,堊白及堊白粒率越高[46],稻米綜合食味也就顯著走低。本研究中,晝夜溫差與外觀品質(zhì)以及食味品質(zhì)的表現(xiàn)與前人發(fā)現(xiàn)基本一致,但是本研究中日最高溫度與外觀品質(zhì)無顯著相關(guān),但會(huì)顯著提高食味值(圖6,8)。這可能與雙季晚稻灌漿所處的環(huán)境有關(guān),本研究中南方雙季晚稻灌漿期日最高溫度的變化范圍為17.7—36.7℃,均值為28.7℃,且溫度隨著灌漿進(jìn)程逐漸降低,其溫度敏感期內(nèi)最高溫度遠(yuǎn)遠(yuǎn)沒有達(dá)到高溫脅迫溫度(連續(xù)多天日最高溫度≥35℃)[15,47-48],因此,南方雙季晚粳稻灌漿過程中適宜的高溫和較大的晝夜溫差是提高稻米品質(zhì)的關(guān)鍵。此外,Rehmani等[49]研究增溫對(duì)稻米品質(zhì)的影響,發(fā)現(xiàn)夜溫提高的影響顯著大于日溫的提高。夜間低溫的提高會(huì)增強(qiáng)呼吸作用[50],降低干物質(zhì)積累,導(dǎo)致碳水化合物的凈積累量降低,或可直接降低直鏈淀粉的合成[51],并間接提高蛋白質(zhì)相對(duì)含量[42],這可能是本研究中夜間溫度升高導(dǎo)致水稻食味品質(zhì)降低的原因之一。綜上,溫度對(duì)南方雙季稻區(qū)晚粳稻米質(zhì)的影響主要集中在齊穗后10—20 d,適宜的日高溫和較大的溫差有利于晚粳稻稻米品質(zhì)的提升,而夜間溫度的升高則會(huì)起到抑制作用。
光照和降雨是影響稻米品質(zhì)的重要因子[16, 38, 52-54]。灌漿期日照充足和日照時(shí)數(shù)長(zhǎng),意味著水稻光合作用活躍,源供應(yīng)能力持續(xù)充沛,通常表征著稻米食味品質(zhì)優(yōu)良[43];但灌漿速率過快,極易導(dǎo)致籽粒結(jié)構(gòu)不穩(wěn)[55],糊粉層細(xì)胞數(shù)量增加[56],進(jìn)而導(dǎo)致水稻加工品質(zhì)也隨之降低。這也與本研究結(jié)果一致,灌漿期內(nèi)日均輻射和日照時(shí)數(shù)與稻米食味值呈正相關(guān)關(guān)系(圖8)、與稻米加工品質(zhì)呈負(fù)相關(guān)(圖5)。除此以外,本研究還發(fā)現(xiàn)降雨量及降雨頻次的提高會(huì)顯著提高稻米堊白度及堊白粒率值(圖6),同時(shí)顯著增加籽粒蛋白質(zhì)含量、降低直鏈淀粉含量,最終導(dǎo)致食味品質(zhì)降低,這與楊聯(lián)松等[57]發(fā)現(xiàn)一致;但另一方面,降雨增加會(huì)導(dǎo)致稻米胚乳糊粉層韌性加強(qiáng),收獲干燥后稻米裂紋減少[53],有利于加工品質(zhì)的提高(圖5)。而雙季晚稻灌漿期正處于湖南、江西等地陰雨寡照發(fā)生的高頻時(shí)段(8月下旬—10月中旬)[58]。因此,雙季晚粳稻優(yōu)質(zhì)高產(chǎn)生產(chǎn)中,應(yīng)針對(duì)“陰雨寡照”與“夜溫提升”著重開展區(qū)域布局與栽培措施優(yōu)化。
相比晚秈稻,雜粳品種和部分常規(guī)粳稻在南方雙季晚稻應(yīng)用能在保持食味水平的基礎(chǔ)上一定程度提高加工和蒸煮品質(zhì),但無法避免外觀品質(zhì)的劣化。因此,南方雙季稻區(qū)晚粳稻品種米質(zhì)優(yōu)化,應(yīng)著重于優(yōu)質(zhì)粳稻基因與當(dāng)?shù)剡m應(yīng)性秈稻基因的融合,選擇雜粳稻(秈粳雜交稻和雜交粳稻)相比常規(guī)粳稻更可靠,而南方稻區(qū)優(yōu)質(zhì)常規(guī)粳稻仍需育種家結(jié)合南方稻區(qū)實(shí)際氣候條件進(jìn)行選育。
齊穗后10—20 d是氣候因子調(diào)控稻米品質(zhì)的關(guān)鍵時(shí)期,該階段日均輻射增強(qiáng)、晝夜溫差加大除對(duì)稻米加工品質(zhì)不利,對(duì)稻米外觀、蒸煮和食味品質(zhì)均有改善,而陰雨寡照和夜溫提高則會(huì)提高稻米蛋白質(zhì)含量、堊白度及堊白粒率,降低直鏈淀粉含量,進(jìn)而導(dǎo)致食味品質(zhì)降低。
[1] 陳靜, 唐振闖, 程廣燕. 我國(guó)稻谷口糧消費(fèi)特征及其趨勢(shì)預(yù)測(cè). 中國(guó)農(nóng)業(yè)資源與區(qū)劃, 2020, 41(4): 108-116.
CHEN J, TANG Z C, CHENG G Y. Edible rice consumption characteristic and trend production in China.Chinese Journal of Agricultural Resources and Regional Planning, 2020, 41(4): 108-116. (in Chinese)
[2] 馬會(huì)珍, 陳心怡, 王志杰, 朱盈, 蔣偉勤, 任高磊, 馬中濤, 魏海燕, 張洪程, 劉國(guó)棟. 中國(guó)部分優(yōu)質(zhì)粳稻外觀及蒸煮食味品質(zhì)特征比較. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(7): 1338-1353.
MA H Z, CHEN X Y, WANG Z J, ZHU Y, JIANG W Q, REN G L, MA Z T, WEI H Y, ZHANG H C, LIU G D. Analysis on appearance and cooking taste quality characteristics of some high quality japonica rice in China. Scientia Agricultura Sinica, 2021, 54(7): 1338-1353. (in Chinese)
[3] 唐亮, 陳溫福. 東北粳稻發(fā)展趨勢(shì)及展望. 中國(guó)稻米, 2021, 27(5): 1-4.
TANG L, CHEN W F. Development trend and prospect of geng rice in northeast China. China Rice, 2021, 27(5): 1-4. (in Chinese)
[4] 徐春春, 紀(jì)龍, 陳中督, 方福平. 中國(guó)水稻生產(chǎn)發(fā)展的綠色趨勢(shì). 生命科學(xué), 2018, 30(10): 1146-1154.
XU C C, JI L, CHEN Z D, FANG F P. Trends of green development of rice production in China. Chinese Bulletin of Life Sciences, 2018, 30(10): 1146-1154. (in Chinese)
[5] 趙正洪, 戴力, 黃見良, 潘曉華, 游艾青, 趙全志, 陳光輝, 周政, 胡文彬, 紀(jì)龍. 長(zhǎng)江中游稻區(qū)水稻產(chǎn)業(yè)發(fā)展現(xiàn)狀、問題與建議. 中國(guó)水稻科學(xué), 2019, 33(6): 553-564.
ZHAO Z H, DAI L, HUANG J L, PAN X H, YOU A Q, ZHAO Q Z, CHEN G H, ZHOU Z, HU W B, JI L. Status, problems and solutions in rice industry development in the middle reaches of the Yangtze River. Chinese Journal of Rice Science, 2019, 33(6): 553-564. (in Chinese)
[6] 鄭華斌, 李波, 王慰親, 雷恩, 唐啟源. 不同栽培模式對(duì)“早秈晚粳”雙季稻光氮利用效率及產(chǎn)量的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(7): 1565-1578.
ZHENG H B, LI B, WANG W Q, LEI E, TANG Q Y. Effects of different cultivation models on solar radiation-nitrogen use efficiency and yield of “early indica-late japonica” double rice. Scientia Agricultura Sinica, 2021, 54(7): 1565-1578. (in Chinese)
[7] ALI I, TANG L, DAI J, KANG M, MAHMOOD A, WANG W, LIU B, LIU L, CAO W, ZHU Y. Responses of grain yield and yield related parameters to post-heading low-temperature stress in japonica rice. Plants (Basel), 2021, 10(7): 1425.
[8] 馮向前, 殷敏, 王孟佳, 馬橫宇, 劉元輝, 褚光, 徐春梅, 章秀福, 王丹英, 張運(yùn)波, 陳松. 播期對(duì)長(zhǎng)江下游不同類型晚稻品種產(chǎn)量的影響及其與水稻全育期溫光資源配置間關(guān)系. 作物學(xué)報(bào), 2022,48(10): 2597-2613.
FENG X Q, YIN M, WANG M J, MA H Y, LIU Y H, CHU G, XU C M, ZHANG X F, WANG D Y, ZHANG Y B, CHEN S. Effects of sowing date on the yield of different late rice variety types and its relationship with the allocation of temperature and light resources during the whole growth period of rice in the lower reaches of the Yangtze River. Acta Agronomica Sinica, 2022, 48(10): 2597-2613. (in Chinese)
[9] 桂君梅, 王林友, 范小娟, 祁永斌, 張禮霞, 范宏環(huán), 金慶生, 王建軍. 基于InDel分子標(biāo)記的秈粳雜交稻與粳粳雜交稻的雜種優(yōu)勢(shì)比較研究. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(2): 219-231.
GUI J M, WANG L Y, FAN X J, QI Y B, ZHANG L X, FAN H H, JIN Q S, WANG J J. Comparison the heterosis of indica-japonica hybrids and japonica-japonica hybrids using indel markers. Scientia Agricultura Sinica, 2016, 49(2): 219-231. (in Chinese)
[10] 陳波, 李軍, 花勁, 霍中洋, 張洪程, 程飛虎, 黃大山, 陳忠平, 陳恒, 郭保衛(wèi), 周年兵, 舒鵬. 雙季晚稻不同類型品種產(chǎn)量與主要品質(zhì)性狀的差異. 作物學(xué)報(bào), 2017, 43(8): 1216-1225.
CHEN B, LI J, HUA J, HUO Z Y, ZHANG H C, CHENG F H, HUANG D S, CHEN Z P, CHEN H, GUO B W, ZHOU N B, SHU P. Differences in yield and major quality characters between four late double-harvest rice varieties. Acta Agronomica Sinica, 2017, 43(8): 1216-1225. (in Chinese)
[11] 王孟佳, 殷敏, 褚光, 劉元輝, 徐春梅, 章秀福, 王丹英, 陳松. 長(zhǎng)江中下游雙季晚粳稻產(chǎn)量、生育時(shí)期及溫光資源配置的生態(tài)性差異. 中國(guó)水稻科學(xué), 2021, 35(5): 475-486.
WANG M J, YIN M, CHU G, LIU Y H, XU C M, ZHANG X F, WANG D Y, CHEN S. Ecological differences in yield, growth period and the utilization of temperature and light resources of double- cropping late japonica rice in the middle and lower reaches of the Yangtze River. Chinese Journal of Rice Science, 2021, 35(5): 475-486. (in Chinese)
[12] 姜元華, 許軻, 趙可, 孫建軍, 韋還和, 許俊偉, 魏海燕, 郭保衛(wèi), 霍中洋, 戴其根, 張洪程. 甬優(yōu)系列秈粳雜交稻的冠層結(jié)構(gòu)與光合特性. 作物學(xué)報(bào), 2015, 41(2): 286-296.
JIANG Y H, XU K, ZHAO K, SUN J J, WEI H H, XU J W, WEI H Y, GUO B W, HUO Z Y, DAI Q G, ZHANG H C. Canopy structure and photosynthetic characteristics of Yongyou series of indica-japonica hybrid rice under high-yielding cultivation condition. Acta Agronomica Sinica, 2015, 41(2): 286-296. (in Chinese)
[13] YIN M, LIU S W, ZHENG X, CHU G, XU C M, ZHANG X F, WANG D Y, CHEN S. Solar radiation-use characteristics of indica/japonica hybrid rice (L.) in the late season in southeast China. The Crop Journal, 2021, 9(2): 427-439.
[14] 徐春梅, 袁立倫, 陳松, 褚光, 葉為發(fā), 丁玉華, 王丹英, 章秀福. 長(zhǎng)江下游不同生態(tài)區(qū)雙季優(yōu)質(zhì)晚稻生長(zhǎng)特性和溫光利用差異. 中國(guó)水稻科學(xué). 2020, 34(5): 457-469.
XU C M, YUAN L L, CHEN S, CHU G, YE W F, DING Y H, WANG D Y, ZHANG X F. Difference in growth characteristics, utilization of temperature and illumination of double-cropping high quality late rice in different ecological regions of the lower reaches of the Yangtze river. Chinese Journal of Rice Science, 2020, 34(5): 457-469. (in Chinese)
[15] 閆浩亮, 王松, 王雪艷, 黨程成, 周夢(mèng), 郝蓉蓉, 田小海. 不同水稻品種在高溫逼熟下的表現(xiàn)及其與氣象因子的關(guān)系. 中國(guó)水稻科學(xué). 2021,35(6):617-628.
YAN H L, WANG S, WANG X Y, DANG C C, ZHOU M, HAO R R, TIAN X H. Performance of different rice varieties under high temperature and its relationship with field meteorological factors. Chinese Journal of Rice Science, 2021, 35(6): 617-628. (in Chinese)
[16] Zhou N, Shi Q, Wei H, Zhang H. Effects of main meteorological indicators on eating quality of rice in lower reaches of the Huai River. Agriculture, 2021, 11(7): 618.
[17] 張洪程, 胡雅杰, 楊建昌, 戴其根, 霍中洋, 許軻, 魏海燕, 高輝, 郭保衛(wèi), 邢志鵬, 胡群. 中國(guó)特色水稻栽培學(xué)發(fā)展與展望. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(7): 1301-1321.
ZHANG H C, HU Y J, YANG J C, DAI Q G, HUO Z Y, XU K, WEI H Y, GAO H, GUO B W, XING Z P, HU Q. Development and prospect of rice cultivation in China. Scientia Agricultura Sinica, 2021, 54(7): 1301-1321. (in Chinese)
[18] 李新, 劉春玉, 夏衛(wèi)紅. 伊犁地區(qū)稻米品質(zhì)的主成分聚類分析. 現(xiàn)代農(nóng)業(yè)科技, 2017, 46(18): 236-238.
LI X, LIU C Y, XIA W H. Principal component cluster analysis of rice quality in Yili area. Modern Agricultural Science and Technology, 2017, 46(18): 236-238. (in Chinese)
[19] 唐瑋瑋, 彭國(guó)照, 高陽華, 陳志軍. 重慶氣候與稻米營(yíng)養(yǎng)品質(zhì)的關(guān)系研究. 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2008, 30(12): 65-69.
TANG W W, PENG G Z, GAO Y H, CHEN Z J. A study on the relationship between the nutritional quality of rice and climate in Chongqing. Journal of Southwest University(Natural Science Edition), 2008, 30(12): 65-69. (in Chinese)
[20] 成臣, 黎星, 譚雪明, 商慶銀, 曾研華, 石慶華, 曾勇軍, 呂偉生, 王瑋, 陳蕓. 播期對(duì)南方優(yōu)質(zhì)晚粳稻產(chǎn)量及稻米品質(zhì)的調(diào)控效應(yīng)研究. 中國(guó)稻米, 2018, 24(5): 58-63.
CHENG C, LI X, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H, ZENG Y J, Lü W S, WANG W, CHEN Y. Effects of sowing date on yield and quality of late japonica rice with high quality in southern China. China Rice, 2018, 24(5): 58-63. (in Chinese)
[21] 殷敏, 劉少文, 褚光, 徐春梅, 王丹英, 章秀福, 陳松. 長(zhǎng)江下游稻區(qū)不同類型雙季晚粳稻產(chǎn)量與生育特性差異. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(5): 890-903.
YIN M, LIU S W, CHU G, XU C M, WANG D Y, ZHANG X F, CHEN S. Differences in yield and growth traits of different japonica varieties in the double cropping late season in the lower reaches of the Yangtze River. Scientia Agricultura Sinica, 2020, 53(5): 890-903. (in Chinese)
[22] 花勁, 周年兵, 張軍, 張洪程, 霍中洋, 周培建, 程飛虎, 李國(guó)業(yè), 黃大山, 陳忠平, 陳國(guó)梁, 戴其根, 許軻, 魏海燕, 高輝, 郭保衛(wèi). 雙季稻區(qū)晚稻“秈改粳”品種篩選. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(23): 4582-4594.
HUA J, ZHOU N B, ZHANG J, ZHANG H C, HUO Z Y, ZHOU P J, CHENG F H, LI G Y, HUANG D S, CHEN Z P, CHEN G L, DAI Q G, XU K, WEI H Y, GAO H, GUO B W. Selection of late rice cultivars of japonica rice switched from indica rice in double cropping rice area. Scientia Agricultura Sinica, 2014, 47(23): 4582-4594. (in Chinese)
[23] 柯健, 陳婷婷, 吳周, 朱鐵忠, 孫杰, 何海兵, 尤翠翠, 朱德泉, 武立權(quán). 沿江雙季稻北緣區(qū)晚稻適宜品種類型及高產(chǎn)群體特征. 作物學(xué)報(bào), 2022, 48(4): 1005-1016.
KE J, CHEN T T, WU Z, ZHU T Z, SUN J, HE H B, YOU C C, ZHU D Q, WU L Q. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River. Acta Agronomica Sinica, 2022, 48(4): 1005-1016. (in Chinese)
[24] 唐健, 唐闖, 郭保衛(wèi), 張誠(chéng)信, 衛(wèi)平洋, 張洪程, 陳恒, 李雄, 廖赟華, 李秋保, 余進(jìn), 孫明珠, 邵彩虹. 江西不同生態(tài)區(qū)優(yōu)質(zhì)雙季晚稻產(chǎn)量、品質(zhì)及溫光資源利用差異. 揚(yáng)州大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2019, 40(6): 8-15.
Tang J, Tang C, Guo B W, Zhang C X, Wei P Y, Zhang H C, Chen H, Li X, Liao Y H, Li Q B, Yu J, Sun M Z, Shao C H. Differences in yield, quality and utilization of temperature and illumination of high quality double-season late rice cultivars in different ecological regions of Jiangxi province. Journal of Yangzhou University(Agricultural and Life Science Edition), 2019, 40(6): 8-15. (in Chinese)
[25] 陳京都, 唐建鵬, 張明偉, 姚義, 陸佩玲, 胡雅杰, 謝成林. 不同優(yōu)質(zhì)食味粳稻產(chǎn)量及品質(zhì)差異研究. 中國(guó)農(nóng)學(xué)通報(bào). 2021, 37(3): 7-12.
CHEN J D, TANG J P, ZHANG M W, YAO Y, LU P L, HU Y J, XIE C L. Differences in yield and quality of different japonica rice with good taste. Chinese Agricultural Science Bulletin, 2021, 37(3): 7-12. (in Chinese)
[26] 張洪程, 張軍, 龔金龍, 常勇, 李敏, 高輝, 戴其根, 霍中洋, 許軻, 魏海燕. “秈改粳”的生產(chǎn)優(yōu)勢(shì)及其形成機(jī)理. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(4): 686-704.
ZHANG H C, ZHANG J, GONG J L, CHANG Y, LI M, GAO H, DAI Q G, HUO Z Y, XU K, WEI H Y. The productive advantages and formation mechanisms of “indica rice to japonica rice”.Scientia Agricultura Sinica, 2013, 46(4): 686-704. (in Chinese)
[27] 翟榮榮, 葉勝海, 朱國(guó)富, 葉靖, 陸艷婷, 俞法明, 張小明. 浙江省12個(gè)常規(guī)晚粳稻品種抗稻瘟病基因的分子檢測(cè). 分子植物育種. 2020, 18(11): 3626-3633.
ZHAI R R, YE S H, ZHU G F, YE J, LU Y T, YU F M, ZHANG X M. Molecular detection of rice blast resistance genes in 12 conventional late japonica rice varieties in Zhejiang province. Molecular Plant Breeding, 2020, 18(11): 3626-3633. (in Chinese)
[28] 梁麗梅, 周炎生, 徐永健, 葉靖, 翟榮榮, 葉勝海. 浙江不同地域?qū)φ憔?9等晚粳稻品種生長(zhǎng)和品質(zhì)的影響. 浙江農(nóng)業(yè)科學(xué), 2020, 61(7): 1317-1319, 1379.
LIANG L M, ZHOU Y S, XU Y J, YE J, ZHAI R R, YE S H. Effects of different regions in Zhejiang on growth and quality of late japonica rice varieties. Journal of Zhejiang Agricultural Sciences, 2020, 61(7): 1317-1319, 1379. (in Chinese)
[29] 王曉玲, 周治寶, 余傳元, 雷建國(guó), 王智權(quán), 肖宇龍, 李馬忠. 秈粳稻米食味品質(zhì)差異的相關(guān)研究. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2011,33(4): 643-649.
Wang X L, Zhou Z B, Yu C Y, Lei J G, Wang Z Q, Xiao Y L, Li M Z. A study on eating quality difference between indica and japonica rice. Acta Agriculturae Universitatis Jiangxiensis, 2011,33(4): 643-649. (in Chinese)
[30] 成臣, 曾勇軍, 程慧煌, 譚雪明, 商慶銀, 曾研華, 石慶華. 齊穗至乳熟期不同溫度對(duì)水稻南粳9108籽粒激素含量、淀粉積累及其合成關(guān)鍵酶活性的影響. 中國(guó)水稻科學(xué), 2019, 33(1): 57-67.
CHENG C, ZENG Y J, CHENG H H, TAN X M, SHANG Q Y, ZENG Y H, SHI Q H. Effects of different temperature from full heading to milking on grain filling stage on grain hormones concentrations, activities of enzymes involved in starch synthesis and accumulation in rice Nanjing 9108. Chinese Journal of Rice Science, 2019, 33(1): 57-67. (in Chinese)
[31] 裘實(shí), 衛(wèi)平洋, 魏海燕, 葛佳琳, 韓超, 郭保衛(wèi), 徐棟, 胡蕾, 吳培, 張軍, 賀文暢, 張洪程. 穗發(fā)芽程度對(duì)粳稻稻米品質(zhì)和蛋白質(zhì)組分的影響. 江蘇農(nóng)業(yè)學(xué)報(bào), 2019, 35(3): 523-530.
QIU S, WEI P Y, WEI H Y, GE J L, HAN C, GUO B W, XU D, HU L, WU P, ZHANG J, HE W C, ZHANG H C. Effect of pre-harvest sprouting on quality and protein components of japonica rice. Jiangsu Journal of Agricultural Sciences, 2019, 35(3): 523-530. (in Chinese)
[32] YIN M, MA H Y, WANG M J, CHU G, LIU Y H, XU C M, ZHANG X F, WANG D Y, CHEN S. Transcriptome analysis of flowering regulation by sowing date in japonica rice (L.). Scientific Reports, 2021, 11(1): 15026.
[33] 翁建峰, 萬向元, 郭濤, 江玲, 翟虎渠, 萬建民. 利用CSSL群體研究稻米加工品質(zhì)相關(guān)QTL表達(dá)的穩(wěn)定性. 中國(guó)農(nóng)業(yè)科學(xué), 2007, 40(10): 2128-2135.
Weng J F, Wan X Y, Guo T,JIANG L, ZHAI H Q, WAN J m. Stability stability analysis of QTL for milling quality of rice (L. ) using CSSL population. Scientia Agricultura Sinica, 2007, 40(10): 2128-2135. (in Chinese)
[34] 張昌泉, 趙冬生, 李錢峰, 顧銘洪, 劉巧泉. 稻米品質(zhì)性狀基因的克隆與功能研究進(jìn)展. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(22): 4267-4283.
ZHANG C Q, ZHAO D S, LI Q F, GU M H, LIU Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283. (in Chinese)
[35] 周立軍, 劉喜, 江玲, 鄭蕾娜, 陳亮明, 劉世家, 翟虎渠, 萬建民. 利用CSSL和BIL群體分析稻米堊白率QTL及互作效應(yīng). 中國(guó)農(nóng)業(yè)科學(xué), 2009, 42(4): 1129-1135.
Zhou L J, Liu X, Jiang L, Zheng L N, Chen L M, Liu S J, Zhai H Q, Wan J M. Analysis of QTL and GE effects on PGWC in rice (L.) using CSSL and BIL populations. Scientia Agricultura Sinica, 2009, 42(4): 1129-1135. (in Chinese)
[36] 陳峰, 張正球, 李華東, 徐建第, 高潔, 劉奇華, 周起先, 朱文銀. 粳稻支鏈淀粉合成相關(guān)基因的遺傳組成及其對(duì)品質(zhì)的影響. 植物遺傳資源學(xué)報(bào), 2013, 14(5): 850-856.
CHEN F, ZHANG Z Q, LI H D, XU J D, GAO J, LIU Q H, ZHOU Q X, ZHU W Y. Genetic composition of amylopectin and its influence on rice qualities in japonica varieties. Journal of Plant Genetic Resources, 2013, 14(5): 850-856. (in Chinese)
[37] 呂川根, 鄒江石. 兩系法雜交稻兩優(yōu)培九育種的理論與實(shí)踐. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(9): 1628-1638.
Lü C G, ZOU J S. Theory and practice on breeding of two-line hybrid rice, Liangyoupeijiu. Scientia Agricultura Sinica, 2016, 49(9): 1628-1638. (in Chinese)
[38] 符冠富, 王丹英, 李華, 陶龍興, 章秀福. 水稻不同生育期溫光條件對(duì)籽粒充實(shí)和米質(zhì)的影響. 中國(guó)農(nóng)業(yè)氣象, 2009, 30(3): 375-382, 387.
Fu G F, Wang D Y, Li H, Tao L X, Zhang X F. Influence of temperature and sunlight conditions on rice grain filling and quality in different growth stages. Chinese Journal of Agrometeorology, 2009, 30(3): 375-382, 387. (in Chinese)
[39] 徐俊豪, 解嘉鑫, 熊若愚, 郭琳, 譚雪明, 曾勇軍, 石慶華, 潘曉華, 曾研華. 播期對(duì)南方雙季晚秈稻溫光資源利用、產(chǎn)量及品質(zhì)形成的影響. 中國(guó)稻米, 2021, 27(5): 115-120.
XU J H, XIE J X, XIONG R Y, GUO L, TAN X M, ZENG Y J, SHI Q H, PAN X H, ZENG Y H. Effects of sowing date on temperature and light resource utilization, yield and quality formation of double-season late indica rice in south China. China Rice, 2021, 27(5): 115-120. (in Chinese)
[40] 孟亞利, 周治國(guó). 結(jié)實(shí)期溫度與稻米品質(zhì)的關(guān)系. 中國(guó)水稻科學(xué), 1997, 11(1): 51-54.
MENG Y L, ZHOU Z G. Relationship between rice grain quality and temperature during seed setting period. Chinese Journal of Rice Science, 1997, 11(1): 51-54. (in Chinese)
[41] 盛婧, 陶紅娟, 陳留根. 灌漿結(jié)實(shí)期不同時(shí)段溫度對(duì)水稻結(jié)實(shí)與稻米品質(zhì)的影響. 中國(guó)水稻科學(xué), 2007, 21(4): 396-402.
SHENG J, TAO H J, CHEN L G. Response of seed-setting and grain quality of rice to temperature at different time during grain filling period. Chinese Journal of Rice Science, 2007, 21(4): 396-402. (in Chinese)
[42] 王軍可, 王亞梁, 陳惠哲, 向鏡, 張義凱, 朱德峰, 張玉屏. 灌漿初期高溫影響水稻籽粒碳氮代謝的機(jī)理. 中國(guó)農(nóng)業(yè)氣象, 2020, 41(12): 774-784.
WANG J K, WANG Y L, CHEN H Z, XIANG J, ZHANG Y K, ZHU D F, ZHANG Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling. Chinese Journal of Agrometeorology, 2020, 41(12): 774-784. (in Chinese)
[43] 張誠(chéng)信, 郭保衛(wèi), 唐健, 許方甫, 許軻, 胡雅杰, 邢志鵬, 張洪程, 戴其根, 霍中洋, 魏海燕, 黃麗芬, 陸陽, 唐闖, 戴琪星, 周苗, 孫君儀. 灌漿結(jié)實(shí)期低溫弱光復(fù)合脅迫對(duì)稻米品質(zhì)的影響. 作物學(xué)報(bào), 2019, 45(8): 1208-1220.
ZHANG C X, GUO B W, TANG J, XU F F, XU K, HU Y J, XING Z P, ZHANG H C, DAI Q G, HUO Z Y, WEI H Y, HUANG L F, LU Y, TANG C, DAI Q X, ZHOU M, SUN J Y. Combined effects of low temperature and weak light at grain-filling stage on rice grain quality. Acta Agronomica Sinica, 2019, 45(8): 1208-1220. (in Chinese)
[44] 羅清, 朱勇, 彭國(guó)照, 王學(xué)峰, 張茂松. 云南氣象對(duì)稻米營(yíng)養(yǎng)品質(zhì)動(dòng)態(tài)影響的試驗(yàn)研究. 西南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2006, 28(5): 771-775.
LUO Q, ZHU Y, PENG G Z, WANG X F, ZHANG M S. A study of the dynamic effects of meteorological factors on nutrition quality of rice in Yunnan province.Journal of Southwest Agricultural University (Natural Science Edition), 2006, 28(5): 771-775. (in Chinese)
[45] 楊陶陶, 解嘉鑫, 黃山, 譚雪明, 潘曉華, 曾勇軍, 石慶華, 張俊, 曾研華. 花后增溫對(duì)雙季晚粳稻產(chǎn)量和稻米品質(zhì)的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(7): 1338-1347.
YANG T T, XIE J X, HUANG S, TAN X M, PAN X H, ZENG Y J, SHI Q H, ZHANG J, ZENG Y H. The impacts of post-anthesis warming on grain yield and quality of late japonica rice in a double rice cropping system. Scientia Agricultura Sinica, 2020, 53(7): 1338-1347. (in Chinese)
[46] 陶士博, 李鳴曉, 徐銓. 環(huán)境因素對(duì)水稻淀粉特性的影響. 北方水稻, 2020, 50(1): 1-7.
TAO S B, LI M X, XU Q. Deciphering the environmental impacts on the starch characteristics in rice. North Rice, 2020,50(1):1-7. (in Chinese)
[47] 段驊, 傅亮, 劇成欣, 劉立軍, 楊建昌. 氮素穗肥對(duì)高溫脅迫下水稻結(jié)實(shí)和稻米品質(zhì)的影響. 中國(guó)水稻科學(xué). 2013, 27(6): 591-602.
DUAN H, FU L, JU C X, LIU L J, YANG J C. Effects of application of nitrogen as panicle promoting fertilizer on seed setting and grain quality of rice under high temperature stress. Chinese Journal of Rice Science, 2013, 27(6): 591-602. (in Chinese)
[48] 李友發(fā), 富昊偉, 馬興華, 張馨月. 施鉀對(duì)抽穗揚(yáng)花期自然高溫下水稻結(jié)實(shí)率的影響. 浙江農(nóng)業(yè)科學(xué), 2022, 63(1): 39-41.
LI Y F, FU H W, MA X H, ZHANG X Y. Effect of potassium application on seed setting percentage of rice under high temperature in flowering stage. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 39-41. (in Chinese)
[49] Rehmani M, Wei G, Hussain N, Ding C, Li G, Liu Z, Wang S, Ding Y. Yield and quality responses of two indica rice hybrids to post-anthesis asymmetric day and night open-field warming in lower reaches of Yangtze River delta. Field Crops Research, 2014,156: 231-241.
[50] 楊蕙琳, 婁運(yùn)生, 劉燕, 周東雪. 夜間增溫品種混栽對(duì)稻田土壤CH4和N2O排放的影響. 生態(tài)學(xué)報(bào), 2021,41(2): 553-564.
Yang H L, Lou Y S, Liu Y, Zhou D X. Effect of rice intercropping on CH4and N2O emissions in a subtropical paddy field under nighttime warming. Acta Ecologica Sinica, 2021, 41(2): 553-564. (in Chinese)
[51] 劉燕. 夜間增溫下施硅對(duì)稻麥生長(zhǎng)、品質(zhì)及土壤CH4和N2O排放的影響[D]. 南京: 南京信息工程大學(xué), 2020.
LIU Y. Effects of silicon application on growth and quality of rice and wheat and CH4and N2O emissions from soil under nighttime warming[D]. Nanjing: Nanjing University of Information Science & Technology, 2020. (in Chinese)
[52] 曠娜, 唐啟源, 鄭華斌, 王慰親, 鄒丹, 羅友誼. 不同地區(qū)再生季稻米蒸煮食味品質(zhì)及淀粉結(jié)構(gòu)與性能差異研究. 核農(nóng)學(xué)報(bào), 2021, 35(7): 1678-1686.
KUANG N, TANG Q Y, ZHENG H B, WANG W Q, ZOU D, LUO Y Y. Difference of cooking and eating quality, starch structure and properties of ratoon rice in different regions. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1678-86. (in Chinese)
[53] 王嬌, 王潔, 強(qiáng)愛玲, 官景得, 孫國(guó)才, 孫建昌, 齊國(guó)鋒, 王興盛, 韓龍植. 北方不同氣候條件對(duì)稻米品質(zhì)性狀的影響. 中國(guó)稻米, 2015, 21(6): 13-18.
WANG J, WANG J, QIANG A L, GUAN J D, SUN G C, SUN J C, QI G F, WANG X S, HAN L Z. The influence of different climatic ecological conditions on rice quality traits in northern China. China Rice, 2015, 21(6): 13-18. (in Chinese)
[54] 吳海兵, 劉道紅, 鐘鳴, 汪友元. 氣候因子對(duì)稻米品質(zhì)形成及其影響機(jī)制的研究進(jìn)展. 湖北農(nóng)業(yè)科學(xué), 2019, 58(2): 13-18.
WU H B, LIU D H, ZHONG M, WANG Y Y. Research progress of climate factor on quality formation and influence mechanism in rice. Hubei Agricultural Sciences, 2019, 58(2): 13-18. (in Chinese)
[55] 段驊, 佟卉, 劉燕清, 許慶芬, 馬駿, 王春敏. 高溫和干旱對(duì)水稻的影響及其機(jī)制的研究進(jìn)展. 中國(guó)水稻科學(xué), 2019, 33(3): 206-218.
Duan H, Tong H, Liu Y Q, Xu Q F, Ma J, Wang C M. Research advances in the effect of heat and drought on rice and its mechanism. Chinese Journal of Rice Science, 2019, 33(3): 206-218. (in Chinese)
[56] 程方民, 朱碧巖. 氣象生態(tài)因子對(duì)稻米品質(zhì)影響的研究進(jìn)展. 中國(guó)農(nóng)業(yè)氣象, 1998,19(5): 40-46.
Cheng F M, Zhu B Y. Present research on the effect of meteoroecological factors on rice quality. Chinese Journal of Agrometeorology, 1998,19(5): 40-46. (in Chinese)
[57] 楊聯(lián)松, 白一松, 李少恒, 葛偉強(qiáng). 氣候條件對(duì)稻米品質(zhì)性狀的影響. 安徽農(nóng)業(yè)科學(xué), 2003,31(3): 341-342, 344.
YANG L S, BAI Y S, LI S H, GE W Q. Effect of climatic factors on rice grain quality. Journal of Anhui Agricultural Sciences, 2003, 31(3): 341-342, 344. (in Chinese)
[58] 吳晨陽, 周兵, 呂和平, 吳小文, 潘志軍, 宮傳英, 張曉紅, 尹玲, 何海兵. 高溫與寡照陰雨復(fù)合災(zāi)害性天氣對(duì)沿江平原晚稻生產(chǎn)的影響與啟示. 湖北農(nóng)業(yè)科學(xué), 2019, 58(21): 30-34.
WU C Y, ZHOU B, Lü H P, WU X W, PAN Z J, GONG C Y, ZHANG X H, YIN L, HE H B. Effect and enlightenment of high temperature and oligarine rainy composite catastrophic weather on late rice production in plain region along the Yangtze river. Hubei Agricultural Sciences, 2019, 58(21): 30-34. (in Chinese)
Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘early indica and late japonica’ Cultivation Pattern in Southern China
1China national rice research institute, Hangzhou 311400;2College of Agriculture, Yangtze University, Jingzhou 434025, Hubei;3Xinyang Agricultural Experiment Station of Yancheng City, Yancheng 224049, Jiangsu
【】The responses of the rice grain qualities to the climate factors during the grain filling period were studied to facilitate the variety screening and the agronomic practices optimization for japonica rice during the late rice season in southern rice region in China. 【】To evaluate the effects of different climate factors during the grain filling period on the qualities of late japonica rice, the field experiment was conducted in Fuyang and Wenzhou, Zhejiang province, in 2018, using three late indica rice as control varieties and 20 japonica rice (including 10 inbred japonica rice, 3 japonica hybrids and 7 indica-japonica hybrids) as evaluating varieties. 【】(1) Based on the results of clustering with grain qualities, the late indica rice varieties were classified as an unique category due to its highest aspect ratio (3.18) and high amylose content (19.40%). Compared with the late indica rice, the most of hybrid varieties had greater brown rice rate (4.31%?5.28%), milled rice rate (6.51%?9.33%), head rice rate (25.83%? 28.34%), gel consistency (1.81%?4.27%), alkali spreading value (11.62%?50.85%), and tasted value (2.31%?2.85%), with lower amylose content (20.98%?28.14%) and protein content (1.16%?14.85%), showing obvious improvement of rice quality. Whereas, the rice quality performance response to late season were differentiated within inbred japonica varieties, and some inbred japonica rice varieties originating from southern Jiangsu and Jiaxing (4 varieties) were similar to the those in the hybrid-japonica category, while the rest inbred japonica varieties from Jiangsu and Shanghai (6 varieties) belonged to another category due to their relatively poor rice quality performances (high chalkiness, chalky grain rate and protein content) in the late season. (2) The rice grain qualities were closely related to climate factors during grain filling period of late rice season. The stage of 10-20 days after full heading was identified as the sensitive period of climate factors on rice qualities. The brown rice rate was negatively correlated with daily solar radiation (: -0.40?-0.19,<0.05) and daily temperature difference (: -0.45?-0.28,<0.05), and positively correlated with daily minimum temperature (: 0.24?0.53,<0.05) and precipitation (: 0.38?0.45,<0.05). The chalkiness rate and chalkiness grain rate were significantly increased with the rainfall and night temperature (: -0.37?-0.16,<0.05;: -0.43?-0.12,<0.05), resulting in reducing rice appearance quality. Meanwhile, the rainfall and night temperature were negatively correlated with rice tasted value (: -0.37?-0.16,<0.05;: -0.43?-0.12,<0.05). The daily maximum temperature at grain filling stage was positively correlated with rice tasted value (=0.37,<0.05), while the daily minimum temperature was positively correlated with rice protein content (=0.19,<0.05), chalkiness (=0.16,<0.05), and chalkiness grain percentage (=0.12,<0.05). 【】The stage of 10-20 days after full heading was the key period for affecting rice grain quality by climate factor, and the improvement of rice qualities for late japonica varieties in southern rice region should focus on the integration of high-quality japonica genes with an indica gene of local adaptation, and the choice of hybrid rice (including indica-japonica hybrids and japonica hybrids) was more reliable and convenient than inbred japonica rice. The breeding of inbred japonica varieties should consider their ecological adaptability in combined with local climatic conditions.
double-cropping late rice; rice type; grain filling; rice quality; meteorological factors
2022-03-19;
2022-06-02
國(guó)家十四五重點(diǎn)研發(fā)項(xiàng)目(2022YFD230070)、浙江省自然科學(xué)基金(LY22C130001)、國(guó)家自然科學(xué)基金(31671638)、國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-01)、中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程重大科研任務(wù)(CAAS-ZDRW202001)
馮向前,E-mail:201604651@yangtzeu.edu.cn。通信作者王丹英,E-mail:wangdanying@caas.cn。通信作者陳松,E-mail:chensong02@caas.cn
(責(zé)任編輯 楊鑫浩)