• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tensor Train Random Projection

    2023-01-25 02:52:46YaniFengKejunTangLianxingHePingqiangZhouandQifengLiao

    Yani Feng,Kejun Tang,Lianxing He,Pingqiang Zhou and Qifeng Liao,★

    1School of Information Science and Technology,ShanghaiTech University,Shanghai,201210,China

    2Peng Cheng Laboratory,Shenzhen,518055,China

    3Innovation Academy for Microsatellites of Chinese Academy of Sciences,Shanghai,201210,China

    ABSTRACT This work proposes a Tensor Train Random Projection(TTRP)method for dimension reduction,where pairwise distances can be approximately preserved.Our TTRP is systematically constructed through a Tensor Train(TT)representation with TT-ranks equal to one.Based on the tensor train format,this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy,compared with existing methods.We provide a theoretical analysis of the bias and the variance of TTRP,which shows that this approach is an expected isometric projection with bounded variance,and we show that the scaling Rademacher variable is an optimal choice for generating the corresponding TT-cores.Detailed numerical experiments with synthetic datasets and the MNIST dataset are conducted to demonstrate the efficiency of TTRP.

    KEYWORDS Tensor Train;random projection;dimension reduction

    1 Introduction

    Dimension reduction is a fundamental concept in science and engineering for feature extraction and data visualization.Exploring the low-dimensional structures of high-dimensional data attracts broad attention.Popular dimension reduction methods include Principal Component Analysis(PCA)[1,2],Non-negative Matrix Factorization(NMF)[3],and t-distributed Stochastic Neighbor Embedding(t-SNE)[4].A main procedure in dimension reduction is to build a linear or nonlinear mapping from a high-dimensional space to a low-dimensional one,which keeps important properties of the high-dimensional space,such as the distance between any two points[5].

    The Random Projection(RP)is a widely used method for dimension reduction.It is well-known that the Johnson-Lindenstrauss(JL)transformation[6,7]can nearly preserve the distance between two points after a random projectionf,which is typically called isometry property.The isometry property can be used to achieve the nearest neighbor search in high-dimensional datasets[8,9].It can also be used to build the Restricted Isometry Property (RIP) in compressed sensing [10,11],where a sparse signal can be reconstructed under a linear random projection[12].The JL lemma[6]tells us that there exists a nearly isometry mappingf,which maps high-dimensional datasets into a lower dimensional space.Typically,a choice for the mappingfis the linear random projection.

    wherex∈RN,andR∈RM×Nis a matrix whose entries are drawn from the mean zero and variance one Gaussian distribution,denoted byN (0,1).We call it Gaussian random projection (Gaussian RP).The storage of matrixRin Eq.(1) isO(MN)and the cost of computingRxin Eq.(1) isO(MN).However,with largeMandN,this construction is computationally infeasible.To alleviate the difficulty,the sparse random projection method[13]and the very sparse random projection method[14]are proposed,where the random projection is constructed by a sparse random matrix.Thus the storage and the computational cost can be reduced.

    To be specific,Achlioptas [13] replaced the dense matrixRby a sparse matrix whose entries follows:

    Recently,using matrix or tensor decomposition to reduce the storage of projection matrices is proposed in [17,18].The main idea of these methods is to split the projection matrix into some small scale matrices or tensors.In this work,we focus on the low rank tensor train representation to construct the random projectionf.Tensor decompositions are widely used for data compression[5,19–24].The Tensor Train (TT) decomposition,also called Matrix Product States (MPS) [25–28],gives the following benefits—low rank TT-formats can provide compact representations of projection matrices and efficient basic linear algebra operations of matrix-by-vector products[29].Based on these benefits,we propose a Tensor Train Random Projection(TTRP)method,which requires significantly smaller storage and computational costs compared with existing methods (e.g.,Gaussian TRP [16],Very Sparse RP [14] and Gaussian RP [30]).We note that constructing projection matrices using Tensor Train(TT)and Canonical Polyadic(CP)decompositions based on Gaussian random variables is proposed in[31].The main contributions of our work are three-fold:first our TTRP is conducted based on a rank-one TT-format,which significantly reduces the storage of projection matrices;second,we provide a novel construction procedure for the rank-one TT-format in our TTRP based on i.i.d.Rademacher random variables; third,we prove that our construction of TTRP is unbiased with bounded variance.

    The rest of the paper is organized as follows.The tensor train format is introduced in Section 2.Details of our TTRP approach are introduced in Section 3,where we prove that the approach is an expected isometric projection with bounded variance.In Section 4,we demonstrate the efficiency of TTRP with datasets including synthetic,MNIST.Finally Section 5 concludes the paper.

    2 Tensor Train Format

    The Kronecker product conforms the following laws[32]:

    2.1 Tensor Train Decomposition

    Tensor Train(TT)decomposition[29]is a generalization of Singular Value Decomposition(SVD)from matrices to tensors.TT decomposition provides a compact representation for tensors,and allows for efficient application of linear algebra operations(discussed in Section 2.2 and Section 2.3).

    Given ad-th order tensorG∈Rn1×··×ndand a vectorg(vector format ofG) ,the tensor train decomposition[29]is

    whereν:NNdis a bijection,Gk∈Rrk-1×nk×rkare called TT-cores,Gk(ik)∈Rrk-1×rkis a slice ofGk,fork= 1,2,...,d,ik= 1,...,nk,and the“boundary condition”isr0=rd= 1.The tensorGis said to be in the TT-format if each element ofGcan be represented by Eq.(6).The vector[r0,r1,r2,...,rd]is referred to as TT-ranks.LetGk(αk-1,ik,αk)represent the element ofGk(ik)in the position(αk-1,αk).In the index form,the decomposition(6)is rewritten as the following TT-format:

    To look more closely to Eq.(6),an elementG(i1,i2,...,id)is represented by a sequence of matrixby-vector products.Fig.1 illustrates the tensor train decomposition.It can be seen that the key ingredient in tensor train (TT) decomposition is the TT-ranks.The TT-format only usesO(ndr2)memory toO(nd)elements,wheren= max {n1,...,nd} andr= max {r0,r1,...,rd}.Although the storage reduction is efficient only if the TT-rank is small,tensors in data science and machine learning typically have low TT-ranks.Moreover,one can apply the TT-format to basic linear algebra operations,such as matrix-by-vector products,scalar multiplications,etc.In later section,it is shown that this can reduce the computational cost significantly when the data have low rank structures(see[29]for details).

    Figure 1:Tensor train format(TT-format):extract an element G(i1,i2,...,id)via a sequence of matrixbyvector product

    2.2 Tensorizing Matrix-by-Vector Products

    2.3 Basic Operations in the TT-Format

    In Section 2.2,the product of matrixRand vectorxwhich are both in the TT-format,is conducted efficiently.In the TT-format,many important operations can be readily implemented.For instance,computing the Euclidean distance between two vectors in the TT-format is more efficient with less storage than directly computing the Euclidean distance in standard matrix and vector formats.In the following Eqs.(10)–(15),some important operations in the TT-format are discussed.

    where

    where

    and we obtain

    The Frobenius norm of a tensorYis defined by

    Computing the distance between tensorYand tensorin the TT-format is computationally efficient by applying the dot product Eqs.(11)and(12),

    The complexity of computing the distance is alsoO(dmr3).Algorithm 1 gives more details about computing Eq.(16)based on Frobenius norm‖

    Algorithm 1:Distance based on Frobenius norm W:=‖‖Y - ^Y‖‖F(xiàn) =images/BZ_429_1648_839_1686_885.png〈Y - ^Y,Y - ^Y〉Input:TT-cores Yk of tensor Y and TT-cores ^Yk of tensor ^Y,for k=1,...,d.1: Compute Z:=Y - ^Y.?O(mr)by(10)2: Compute v1:=images/BZ_429_660_1033_708_1079.pngi1 Z1(i1)?Z1(i1).?O(mr2)by Eq.(13)3: for k=2:d-1 do 4: Compute pk(ik)=vk-1(Zk(ik)?Zk(ik)).?O(r3)by Eq.(15)5: Compute vk:=images/BZ_429_730_1230_778_1276.pngik pk(ik).?O(mr3)by Eq.(14)6: end for 7: Compute pd(id)=vd-1(Zd(id)?Zd(id)).?O(r2)by Eq.(15)8: Compute vd:=images/BZ_429_661_1427_709_1473.pngid pd(id).?O(mr2)by Eq.(14)Output:Distance W:=images/BZ_429_768_1522_806_1568.png〈Y - ^Y,Y - ^Y〉=■vd.

    In summary,just merging the cores of two tensors in the TT-format can perform the subtraction of two tensors instead of directly subtraction of two tensors in standard tensor format.A sequence of matrix-by-vector products can achieve the dot product of two tensors in the TT-format.The cost of computing the distance between two tensors in the TT-format,reduces from the original complexity

    3 Tensor Train Random Projection

    Due to the computational efficiency of TT-format discussed above,we consider the TT-format to construct projection matrices.Our tensor train random projection is defined as follows.

    Definition 3.1.(Tensor Train Random Projection).For a data pointx∈ RN,our tensor train random projection(TTRP)is

    Proof.Denotingy=Rxgives

    where Eq.(20) is derived using Eqs.(3) and (19),and then combining Eq.(20) and using the independence of TT-coresR1,...,Rdgive Eq.(21).Thek-th term of the right hand side of Eq.(21),fork=1,...,d,can be computed by

    Substituting Eq.(27)into Eq.(18),it concludes that

    Theorem 3.2.Given a vector,ifRin Eq.(17)is composed ofdindependent TT-coresR1,...,Rd,whose entries are independent and identically random variables with mean zero,variance one,with the same fourth momentΔandM:= maxi=1,...,N|x(i)|,m= max{m1,m2,...,md},n=max{n1,n2,...,nd},then

    Proof.By the property of the variance and using Theorem 3.1,

    where note that E[y2(i)y2(j)]E[y2(i)]E[y2(j)] in general and a simple example can be found in Appendix A.

    We compute the first term of the right hand side of Eq.(29),

    wherey(i)=Y(i1,...,id),applying Eq.(3)to Eq.(30)obtains Eq.(31),and we derive Eq.(32)from Eq.(31)by the independence of TT-cores

    Considering thek-th term of the right hand side of Eq.(32),fork=1,...,d,we obtain that

    where we infer Eq.(34)from Eq.(33)by scalar property ofRk(ik,jk),Eq.(35)is obtained by Eq.(4)and the independence of TT-cores,and denoting the fourth momentΔ: =we deduce Eq.(36)by the assumption=1,fork=1,...,d.

    Substituting Eq.(36)into Eq.(32),it implies that

    where denotingM: = maxi=1,...,N|x(i)|,n= max{n1,n2,...,nd},we derive Eq.(38) from Eq.(37) by Eq.(3).

    Similarly,the second term E[y2(i)y2(j)] of the right hand side of Eq.(29),fori≠j,ν(i)=(i1,i2,...,id)≠ν(j)=,is obtained by

    Ifik≠,fork=1,...,d,then thek-th term of the right hand side of Eq.(40)is computed by E[Yk(ik)?Yk(ik)?Yk()?Yk()]

    Similarly,if fork∈S?{1,...,d},|S|=l,ik≠,and fork∈,ik=,then

    Hence,combining Eqs.(42)and(43)gives

    wherem=max{m1,m2,...,md}.

    Therefore,using Eqs.(39)and(44)deduces

    In summary,substituting Eq.(45)into Eq.(28)implies

    One can see that the bound of the variance Eq.(46)is reduced asMincreases,which is expected.WhenM=mdandN=nd,we have

    Note that asmincreases,the upper bound in Eq.(47)tends to≥0,and this upper bound vanishes asMincreases if and only ifx(1)=x(2)=...=x(N).Also,the upper bound in Eq.(46)is affected by the fourth momentΔ==To keep the expected isometry,we need=1.Note that when the TT-cores follow the Rademacher distribution,i.e.,=0,the fourth momentΔin Eq.(46)achieves the minimum.So,the Rademacher distribution is an optimal choice for generating the TT-cores,and we set the Rademacher distribution to be our default choice for constructing TTRP(Definition 3.1).

    Proposition 3.1.(Hypercontractivity[35])Consider a degreeqpolynomialf(Y)=f (Y1,...,Yn)of independent centered Gaussian or Rademacher random variablesY1,...,Yn.Then for anyλ >0

    where Var([f(Y)])is the variance of the random variablef(Y)andK >0 is an absolute constant.

    Proposition 3.1 extends the Hanson-Wright inequality whose proof can be found in[35].

    Proposition 3.2.LetfTTRP:RNRMbe the tensor train random projection defined by Eq.(17).Suppose that fori= 1,...,d,all entries of TT-coresRiare independent standard Gaussian or Rademacher random variables,with the same fourth momentΔandM: = maxi=1,...,N|x(i)|,m=max{m1,m2,...,md},n= max{n1,n2,...,nd}.For anyx∈ RN,there exist absolute constantsCandK >0 such that the following claim holds

    Proof.According to Theorem 3.1,Sinceis a polynomial of degree 2dof independent standard Gaussian or Radamecher random variables,which are the entries of TTcoresRi,fori=1,...,d,we apply Proposition 3.1 and Theorem 3.2 to obtain

    whereM=maxi=1,...,N|x(i)|and then

    We note that the upper bound in Proposition 3.2 is not tight,as it involves the dimensionality of datasets(N).To give a tight bound independent of the dimensionality of datasets for the corresponding concentration inequality is our future work.

    The procedure of TTRP is summarized in Algorithm 2.For the input of this algorithm,the TTranks ofR(the tensorized version of the projection matrixRin Eq.(17))are set to one,and from our above analysis,we generate entries of the corresponding TT-coresthrough the Rademacher distribution.For a given data pointxin the TT-format,Algorithm 2 gives the TT-cores of the corresponding output,and each element offTTRP(x)in Eq.(17)can be represented as

    whereνis a bijection from N to Nd.

    4 Numerical Experiments

    We demonstrate the efficiency of TTRP using synthetic datasets and the MNIST dataset[36].The quality of isometry is a key factor to assess the performance of random projection methods,which in our numerical studies is estimated by the ratio of the pairwise distance:

    wheren0is the number of data points.Since the output of our TTRP procedure (see Algorithm 2)is in the TT-format,it is efficient to apply TT-format operations to compute the pairwise distance of Eq.(48)through Algorithm 1.In order to obtain the average performance of isometry,we repeat numerical experiments 100 times(different realizations for TT-cores)and estimate the mean and the variance for the ratio of the pairwise distance using these samples.The rest of this section is organized as follows.First,through a synthetic dataset,the effect of different TT-ranks of the tensorized versionRofRin Eq.(17)is shown,which leads to our motivation of setting the TT-ranks to be one.After that,we focus on the situation with TT-ranks equal to one,and test the effect of different distributions of TT-cores.Finally,based on both high-dimensional synthetic and MNIST datasets,our TTRP are compared with related projection methods,including Gaussian TRP [16],Very Sparse RP [14] and Gaussian RP[30].All results reported below are obtained in MATLAB with TT-Toolbox 2.2.2(https://github.com/oseledets/TT-Toolbox).

    Algorithm 2:Tensor train random projection Input:TT-cores Rk(ik,jk)of R,and TT-cores Xk of x,for k=1,...,d.1: for k=1:d do 2: for ik =1:mk do 3: Compute Yk(ik)=nkimages/BZ_437_894_1335_942_1381.pngjk=1(Rk(ik,jk)?Xk(jk)).?O(n?r2)by Eq.(9)4: end for 5: end for Output:TT-cores 1■MY1,Y2,...,Yd.

    4.1 Effect of Different TT-Ranks

    In Definition 3.1,we set the TT-ranks to be one.To explain our motivation of this settting,we investigate the effect of different TT-ranks—we herein consider the situation that the TT-ranks taker0=rd= 1,rk=r,k= 1,...,d-1,where the rankr∈{1,2,...},and we keep other settings in Definition 3.1 unchanged.For comparison,two different distributions are considered to generate the TT-cores in this part—the Rademacher distribution (our default optimal choice) and the Gaussian distribution,and the corresponding tensor train projection is denoted by rank-rTTRP and Gaussian TT,respectively.To keep the expected isometry of rank-rTTRP,the entries of TT-coresR1andRdare drawn from 1/r1/4or -1/r1/4with equal probability,and each element ofRk,k= 2,..,d-1 is uniformly and independently drawn from 1/r1/2or-1/r1/2.For Gaussian TT,Rkfork=2,...,d-1 andk=1,dare drawn fromNandN,respectively.

    Two synthetic datasets with dimensionN=1000 are generated(the size of the first one isn0=10 and that of the second one isn0= 50),where each entry of vectors (each vector is a sample in the synthetic dataset)is independently generated throughN (0,1).In this test problem,we set the reduced dimension to beM= 24,and the dimensions of the corresponding tensor representations are set tom1= 4,m2= 3,m3= 2 andn1=n2=n3= 10 (M=m1m2m3andN=n1n2n3).Fig.2 shows the ratio of the pairwise distance of the two projection methods(computed through Eq.(48)).It can be seen that the estimated mean of ratio of the pairwise distance of rank-rTTRP is typically more close to one than that of Gaussian TT,i.e.,rank-rTTRP has advantages for keeping the pairwise distances.Clearly,for a given rank in Fig.2,the estimated variance of the pairwise distance of rank-rTTRP is smaller than that of Gaussian TT.Moreover,focusing on rank-rTTRP,the results of both the mean and the variance are not significantly different for different TT-ranks.In order to reduce the storage,we only focus on the rank-one case(as in Definition 3.1)in the rest of this paper.

    Figure 2:Effect of different ranks based on synthetic data(M =24,N =1000,m1 =4,m2 =3,m3 =2,n1 =n2 =n3 =10)

    4.2 Effect of Different TT-Cores

    Two synthetic datasets are tested to assess the effect of different distributions for TT-cores,whose sizes aren0= 10 andn0= 50,respectively,with dimensionN= 2500,whose elements are sampled from the standard Gaussian distribution.The following three distributions are investigated to construct TTRP(see Definition 3.1),which include the Rademacher distribution(our default choice),the standard Gaussian distribution,and the 1/3-sparse distribution(i.e.,s= 3 in Eq.(2)),while the corresponding projection methods are denoted by TTRP-RD,TTRP-N (0,1),and TTRP-1/3-sparse,respectively.For this test problem,three TT-cores are utilized form1=M/2,m2= 2,m3= 1 andn1= 25,n2= 10,n3= 10.Fig.3 shows that the estimated mean of the ratio of the pairwise distance for TTRP-RD is very close to one,and the estimated variance of TTRP-RD is at least one order of magnitude smaller than that of TTRP-N (0,1)and TTRP-1/3-sparse.These results are consist with Theorem 3.2.In the rest of this paper,we focus on our default choice for TTRP—the TT-ranks are set to one,and each element of TT-cores is independently sampled through the Rademacher distribution.

    Figure 3:Three test distributions for TT-cores based on synthetic data(N=2500)

    4.3 Comparison with Gaussian TRP,Very Sparse RP and Gaussian RP

    The storage of the projection matrix and the cost of computingRx(see Eq.(17))of our TTRP(TTranks equal one),Gaussian TRP[16],Very Sparse RP[14]and Gaussian RP[30],are shown in Table 1,whereR∈RM×N,M=,m= max{m1,m2,...,md}andn= max{n1,n2,...,nd}.Note that the matrixRin Eq.(17)is tensorized in the TT-format,and TTRP is efficiently achieved by the matrix-by-vector products in the TT-format(see Eq.(9)).From Table 1,it is clear that our TTRP has the smallest storage cost and requires the smallest computational cost for computingRx.

    Table 1: The comparison of the storage and the computational costs

    Two synthetic datasets with sizen0= 10 are tested—the dimension of the first one isN= 2500 and that of the second one isN= 104;each entry of the samples is independently generated throughN (0,1).For TTRP and Gaussian TRP,the dimensions of tensor representations are set to: forN= 2500,we setn1= 25,n2= 10,n3= 10,m1=M/2,m2= 2,m3= 1; forN= 104,we setn1=n2= 25,n3=n4= 4,m1=M/2,m2= 2,m3= 1,m4= 1,whereMis the reduced dimension.We again focus on the ratio of the pairwise distance (putting the outputs of different projection methods into Eq.(48)),and estimate the mean and the variance for the ratio of the pairwise distance through repeating numerical experiments 100 times(different realizations for constructing the random projections,e.g.,different realizations of the Rademacher distribution for TTRP).

    Fig.4 shows that the performance of TTRP is very close to that of sparse RP and Gaussian RP,while the variance for Gaussian TRP is larger than that for the other three projection methods.Moreover,the variance for TTRP basically reduces as the dimensionMincreases,which is consistent with Theorem 3.2.To be further,more details are given for the case withM= 24 andN= 104in Tables 2 and 3,where the value of storage is the number of nonzero entries that need to be stored.It turns out that TTRP with fewer storage costs achieves a competitive performance compared with Very Sparse RP and Gaussian RP.In addition,from Table 3,ford >2,the variance of TTRP is clearly smaller than that of Gaussian TRP,and the storage cost of TTRP is much smaller than that of Gaussian TRP.

    Figure 4:Mean and variance for the ratio of the pairwise distance,synthetic data

    Table 2:The comparison of mean and variance for the ratio of the pairwise distance,and storage,for Gaussian RP and Very Sparse RP(M =24 and N =104)

    Table 3:The comparison of mean and variance for the ratio of the pairwise distance,and storage,for Gaussian TRP and TTRP(M =24 and N =104)

    Next the CPU times for projecting a data point using the four methods(TTRP,Gaussian TRP,Very Sparse RP and Gaussian RP)are assessed.Here,we set the reduced dimensionM= 1000,and test four cases withN=104,N=105,N=2×105andN=106,respectively.The dimensions of the tensorized output is set tom1=m2=m3= 10(such thatM=m1m2m3),and the dimensions of the corresponding tensor representations of the original data points are set to:forN=104,n1=25,n2=25,n3= 16;forN= 105,n1= 50,n2= 50,n3= 40;forN= 2×105,n1= 80,n2= 50,n3= 50;forN= 106,n1=n2=n3= 100.For each case,given a data point of which elements are sampled from the standard Gaussian distribution,the simulation of projecting it to the reduced dimensional space is repeated 100 times(different realizations for constructing the random projections),and the CPU time is defined to be the average time of these 100 simulations.Fig.5 shows the CPU times,where the results are obtained in MATLAB on a workstation with Intel(R) Xeon(R) Gold 6130 CPU.It is clear that the computational cost of our TTRP is much smaller than those of Gaussian TRP and Gaussian RP for different data dimensionN.Note that as the data dimensionNincreases,the computational costs of Gaussian TRP and Gaussian RP grow rapidly,while the computational cost of our TTRP grows slowly.When the data dimension is large(e.g.,N= 106in Fig.5),the CPU time of TTRP becomes smaller than that of Very Sparse RP,which is consistent with the results in Table 1.

    Figure 5:A comparison of CPU time for different random projections(M=1000)

    Finally,we validate the performance of our TTRP approach using the MNIST dataset [36].From MNIST,we randomly taken0= 50 data points,each of which is a vector with dimensionN= 784.We consider two cases for the dimensions of tensor representations: in the first case,we setm1=M/2,m2= 2,n1= 196,n2= 4,and in the second case,we setm1=M/2,m2= 2,m3= 1,n1= 49,n2= 4,n3= 4.Fig.6 shows the properties of isometry and bounded variance of different random projections on MNIST.It can be seen that TTRP satisfies the isometry property with bounded variance.Although Gaussian RP has the smallest variance (note that it is not based on the tensor format),its computational and storage costs are large(see Fig.5).It is clear that as the reduced dimensionMincreases,the variances of the four methods reduce,and the variance of our TTRP is close to that of Very Sparse RP.

    Figure 6:Isometry and variance quality for MNIST data(N=784)

    5 Conclusion

    Random projection plays a fundamental role in conducting dimension reduction for highdimensional datasets,where pairwise distances need to be approximately preserved.With a focus on efficient tensorized computation,this paper develops a tensor train random projection (TTRP)method.Based on our analysis for the bias and the variance,TTRP is proven to be an expected isometric projection with bounded variance.From the analysis in Theorem 3.2,the Rademacher distribution is shown to be an optimal choice to generate the TT-cores of TTRP.For computational convenience,the TT-ranks of TTRP are set to one,while from our numerical results,we show that different TT-ranks do not lead to significant results for the mean and the variance of the ratio of the pairwise distance.Our detailed numerical studies show that,compared with standard projection methods,our TTRP with the default setting(TT-ranks equal one and TT-cores are generated through the Rademacher distribution),requires significantly smaller storage and computational costs to achieve a competitive performance.From numerical results,we also find that our TTRP has smaller variances than tensor train random projection methods based on Gaussian distributions.Even though we have proven the properties of the mean and the variance of TTRP and the numerical results show that TTRP is efficient,the upper bound in Proposition 3.2 involves the dimensionality of datasets(N),and our future work is to give a tight bound independent of the dimensionality of datasets for the concentration inequality.

    Appendix A

    Example forE[y2(i)y2(j)]≠E[y2(i)]E[y2(j)],i≠j.

    If all TT-ranks of tensorized matrixRin Eq.(17) are equal to one,thenRis represented as a Kronecker product ofdmatrices[29],

    whereRi∈Rmi×ni,fori=1,2,..,d,whose entries are i.i.d.mean zero and variance one.

    We setd=2,m1=m2=n1=n2=2 in Eq.(49),then

    where

    Substitutingx:=[x(1)x(2)x(3)x(4)]Tandy:=[y(1)y(2)y(3)y(4)]Tinto Eq.(50),we obtain

    Applying Eq.(51)to cov(y2(1),y2(3))gives

    cov(y2(1),y2(3))

    and then Eq.(52)implies E[y2(1)y2(3)]≠E[y2(1)]E[y2(3)].

    Generally,for somei≠j,E[y2(i)y2(j)]≠E[y2(i)]E[y2(j)].

    Acknowledgement:The authors thank Osman Asif Malik and Stephen Becker for helpful suggestions and discussions.

    Funding Statement:This work is supported by the National Natural Science Foundation of China(No.12071291),the Science and Technology Commission of Shanghai Municipality (No.20JC1414300)and the Natural Science Foundation of Shanghai(No.20ZR1436200).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    男女下面进入的视频免费午夜| 午夜久久久久精精品| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲美女久久久| 国产高清视频在线播放一区| 人人妻人人澡欧美一区二区| 中国美女看黄片| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 国产99久久九九免费精品| 神马国产精品三级电影在线观看 | www日本在线高清视频| 一进一出抽搐动态| 久久精品影院6| 首页视频小说图片口味搜索| 日本黄色视频三级网站网址| 欧美日韩中文字幕国产精品一区二区三区| xxxwww97欧美| 黑人巨大精品欧美一区二区mp4| 日韩欧美三级三区| 1024手机看黄色片| videosex国产| 18禁观看日本| netflix在线观看网站| 国产单亲对白刺激| 一本久久中文字幕| 51午夜福利影视在线观看| 欧美日本视频| 日本一二三区视频观看| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 好看av亚洲va欧美ⅴa在| 五月玫瑰六月丁香| 国产视频内射| 亚洲精品一卡2卡三卡4卡5卡| 1024香蕉在线观看| 桃色一区二区三区在线观看| 性欧美人与动物交配| 99精品在免费线老司机午夜| 又粗又爽又猛毛片免费看| 精品久久久久久久末码| 午夜激情福利司机影院| 精品无人区乱码1区二区| 黄色毛片三级朝国网站| 男人舔女人的私密视频| 亚洲av电影在线进入| 日本在线视频免费播放| 精品福利观看| 国产三级黄色录像| 欧美黄色片欧美黄色片| 日本一区二区免费在线视频| 又黄又粗又硬又大视频| 美女黄网站色视频| 性欧美人与动物交配| 黄色a级毛片大全视频| 日本三级黄在线观看| 亚洲国产欧美一区二区综合| 好男人电影高清在线观看| 最新美女视频免费是黄的| 日韩av在线大香蕉| 无限看片的www在线观看| 变态另类丝袜制服| 久久人妻av系列| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 日本黄色视频三级网站网址| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 国产亚洲精品第一综合不卡| 99久久综合精品五月天人人| 最近最新免费中文字幕在线| 婷婷六月久久综合丁香| 好看av亚洲va欧美ⅴa在| 夜夜夜夜夜久久久久| 黄频高清免费视频| 久久精品国产综合久久久| 人人妻,人人澡人人爽秒播| 久久香蕉国产精品| 国产精品野战在线观看| 午夜a级毛片| 亚洲国产欧洲综合997久久,| 一进一出抽搐动态| 啦啦啦观看免费观看视频高清| 少妇熟女aⅴ在线视频| 波多野结衣高清无吗| 日本一区二区免费在线视频| 国内精品一区二区在线观看| 亚洲精品在线美女| 亚洲国产精品成人综合色| 757午夜福利合集在线观看| 99热只有精品国产| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 日本免费a在线| 久久久久久久久中文| 淫秽高清视频在线观看| 中文在线观看免费www的网站 | 午夜影院日韩av| 小说图片视频综合网站| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲成人久久爱视频| 悠悠久久av| 午夜激情福利司机影院| av欧美777| 狂野欧美激情性xxxx| 国产91精品成人一区二区三区| 日韩免费av在线播放| 色av中文字幕| 窝窝影院91人妻| 五月玫瑰六月丁香| 一区二区三区国产精品乱码| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 亚洲va日本ⅴa欧美va伊人久久| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 大型av网站在线播放| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 免费看日本二区| 国产精品久久久av美女十八| 成人三级做爰电影| 丁香欧美五月| 性欧美人与动物交配| 我的老师免费观看完整版| 久久精品国产亚洲av香蕉五月| 精品第一国产精品| 精品电影一区二区在线| 精品一区二区三区四区五区乱码| 欧美又色又爽又黄视频| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 日本熟妇午夜| 欧美国产日韩亚洲一区| 一本一本综合久久| 免费观看人在逋| 全区人妻精品视频| 亚洲一码二码三码区别大吗| 国产乱人伦免费视频| 最近在线观看免费完整版| 亚洲美女黄片视频| 黄色丝袜av网址大全| 国产私拍福利视频在线观看| 成熟少妇高潮喷水视频| 男女床上黄色一级片免费看| 国产真人三级小视频在线观看| 一区二区三区激情视频| 国产精品一区二区精品视频观看| 国产精品野战在线观看| 午夜精品在线福利| 亚洲性夜色夜夜综合| 1024香蕉在线观看| 国产成人精品久久二区二区免费| 国产成人精品无人区| 色哟哟哟哟哟哟| 首页视频小说图片口味搜索| 久久精品国产亚洲av香蕉五月| 国产探花在线观看一区二区| 长腿黑丝高跟| 亚洲国产精品合色在线| 99riav亚洲国产免费| 精品电影一区二区在线| 人妻久久中文字幕网| 岛国视频午夜一区免费看| 日韩大尺度精品在线看网址| 成在线人永久免费视频| 久久国产乱子伦精品免费另类| 亚洲人与动物交配视频| 国产精品av视频在线免费观看| 免费在线观看日本一区| 国内毛片毛片毛片毛片毛片| 久久国产精品影院| 久久这里只有精品19| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 国产黄a三级三级三级人| 日本熟妇午夜| 午夜精品在线福利| 在线视频色国产色| 欧美一级a爱片免费观看看 | 亚洲在线自拍视频| 欧美色视频一区免费| a级毛片a级免费在线| 久久中文字幕人妻熟女| 国产精品av久久久久免费| 我要搜黄色片| 黄频高清免费视频| 99国产精品一区二区蜜桃av| 中文字幕人妻丝袜一区二区| 男人舔奶头视频| 无限看片的www在线观看| 老司机福利观看| 国产精品自产拍在线观看55亚洲| 国产亚洲av高清不卡| 久久久久国产一级毛片高清牌| 国产精品一区二区三区四区久久| 国产精品一区二区三区四区免费观看 | 法律面前人人平等表现在哪些方面| 国产v大片淫在线免费观看| 亚洲欧洲精品一区二区精品久久久| 免费在线观看成人毛片| 一夜夜www| 午夜福利免费观看在线| 精品国产美女av久久久久小说| 麻豆久久精品国产亚洲av| 91大片在线观看| 久久精品国产亚洲av高清一级| 黄色 视频免费看| 18禁黄网站禁片午夜丰满| 国内揄拍国产精品人妻在线| 欧美 亚洲 国产 日韩一| 一进一出抽搐动态| www.999成人在线观看| 777久久人妻少妇嫩草av网站| 国产精品亚洲av一区麻豆| 两个人免费观看高清视频| 成人国产综合亚洲| 老司机午夜十八禁免费视频| 国产午夜精品久久久久久| 国产一级毛片七仙女欲春2| 法律面前人人平等表现在哪些方面| 九九热线精品视视频播放| 人妻夜夜爽99麻豆av| 观看免费一级毛片| www.www免费av| 亚洲国产看品久久| 男男h啪啪无遮挡| 免费在线观看黄色视频的| 免费在线观看完整版高清| 老司机在亚洲福利影院| 色av中文字幕| 99国产精品一区二区蜜桃av| 午夜影院日韩av| 国产成人精品久久二区二区免费| 欧美成狂野欧美在线观看| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 中文字幕久久专区| 九色国产91popny在线| 久久久久精品国产欧美久久久| 婷婷丁香在线五月| 亚洲精品美女久久久久99蜜臀| 精品不卡国产一区二区三区| 黑人欧美特级aaaaaa片| 亚洲成av人片免费观看| 亚洲18禁久久av| 亚洲成人久久性| 国产av麻豆久久久久久久| 日韩高清综合在线| 天天躁夜夜躁狠狠躁躁| 精品久久久久久成人av| 琪琪午夜伦伦电影理论片6080| 91九色精品人成在线观看| 国产精品乱码一区二三区的特点| 成人高潮视频无遮挡免费网站| 久久久久久人人人人人| 国产一区在线观看成人免费| 99热只有精品国产| 搡老妇女老女人老熟妇| 亚洲黑人精品在线| 国产成人av教育| 成人国语在线视频| 欧美国产日韩亚洲一区| 国产1区2区3区精品| 在线国产一区二区在线| 亚洲自偷自拍图片 自拍| 午夜激情av网站| 成人三级黄色视频| 国产精品av视频在线免费观看| 国内毛片毛片毛片毛片毛片| 国产精品久久电影中文字幕| 黄色视频不卡| 免费人成视频x8x8入口观看| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 两个人免费观看高清视频| 18禁裸乳无遮挡免费网站照片| 色综合欧美亚洲国产小说| 久久精品亚洲精品国产色婷小说| av国产免费在线观看| 日韩av在线大香蕉| 高清在线国产一区| 变态另类成人亚洲欧美熟女| 国产精品久久久久久精品电影| 最近最新中文字幕大全免费视频| 日本 欧美在线| 亚洲第一电影网av| 色哟哟哟哟哟哟| 香蕉丝袜av| 蜜桃久久精品国产亚洲av| 三级国产精品欧美在线观看 | 亚洲电影在线观看av| 90打野战视频偷拍视频| 美女扒开内裤让男人捅视频| 悠悠久久av| 母亲3免费完整高清在线观看| 夜夜躁狠狠躁天天躁| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 这个男人来自地球电影免费观看| 人人妻人人看人人澡| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 国产成人av教育| 国产熟女xx| 久久天堂一区二区三区四区| 久9热在线精品视频| 一本综合久久免费| 男女午夜视频在线观看| 51午夜福利影视在线观看| 日本三级黄在线观看| 国产视频一区二区在线看| 女生性感内裤真人,穿戴方法视频| 国产成人一区二区三区免费视频网站| 亚洲精品av麻豆狂野| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 国产aⅴ精品一区二区三区波| 精品电影一区二区在线| 黄频高清免费视频| 夜夜躁狠狠躁天天躁| av中文乱码字幕在线| 欧美黑人巨大hd| 最近最新中文字幕大全电影3| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 国产av麻豆久久久久久久| 久久精品国产亚洲av香蕉五月| 国产熟女午夜一区二区三区| 特级一级黄色大片| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 国产免费男女视频| 久久久久久久久久黄片| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 香蕉国产在线看| 高清在线国产一区| 亚洲va日本ⅴa欧美va伊人久久| 小说图片视频综合网站| 少妇粗大呻吟视频| 搡老岳熟女国产| 国产精品一及| 国产精品av久久久久免费| 午夜福利在线观看吧| 老司机午夜十八禁免费视频| 久久久久国产一级毛片高清牌| 亚洲欧美精品综合久久99| 久久久久久久久中文| 麻豆成人av在线观看| 亚洲专区国产一区二区| 亚洲自拍偷在线| 免费高清视频大片| 午夜亚洲福利在线播放| 好男人在线观看高清免费视频| 欧美中文综合在线视频| 国产精品久久久久久亚洲av鲁大| 毛片女人毛片| 天天一区二区日本电影三级| 19禁男女啪啪无遮挡网站| 校园春色视频在线观看| 精品国产亚洲在线| 久久久久久大精品| 性欧美人与动物交配| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 欧美另类亚洲清纯唯美| 色哟哟哟哟哟哟| 亚洲七黄色美女视频| 国产精品一区二区免费欧美| 最好的美女福利视频网| a在线观看视频网站| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 午夜免费激情av| 国产成+人综合+亚洲专区| 丁香欧美五月| 两性夫妻黄色片| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 性欧美人与动物交配| 亚洲一区二区三区色噜噜| 欧美在线一区亚洲| 中文资源天堂在线| 久久精品aⅴ一区二区三区四区| 日韩av在线大香蕉| 在线国产一区二区在线| 亚洲国产欧洲综合997久久,| 91麻豆av在线| 国产一区二区三区视频了| 黄频高清免费视频| 人妻丰满熟妇av一区二区三区| 国产又色又爽无遮挡免费看| 成人手机av| 超碰成人久久| 亚洲18禁久久av| www国产在线视频色| 欧美+亚洲+日韩+国产| 十八禁人妻一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 最好的美女福利视频网| 男插女下体视频免费在线播放| 国产99久久九九免费精品| 美女大奶头视频| 欧美日韩一级在线毛片| 亚洲午夜精品一区,二区,三区| 欧美性猛交黑人性爽| 丰满人妻熟妇乱又伦精品不卡| 波多野结衣高清无吗| 一级片免费观看大全| 久久久久久久久中文| 亚洲成人精品中文字幕电影| 亚洲成av人片免费观看| 午夜激情av网站| 国产亚洲精品久久久久5区| 国产精华一区二区三区| 在线观看免费日韩欧美大片| 欧美激情久久久久久爽电影| 国产精品精品国产色婷婷| 看黄色毛片网站| 久久精品综合一区二区三区| www.精华液| 亚洲专区中文字幕在线| 一级片免费观看大全| 亚洲午夜精品一区,二区,三区| 99在线人妻在线中文字幕| www.熟女人妻精品国产| 亚洲天堂国产精品一区在线| www.精华液| 亚洲自拍偷在线| 美女 人体艺术 gogo| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 国产熟女xx| 色综合站精品国产| 精品第一国产精品| 国产不卡一卡二| 91麻豆av在线| 最好的美女福利视频网| 好男人在线观看高清免费视频| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 大型黄色视频在线免费观看| 成年人黄色毛片网站| 欧美精品亚洲一区二区| 黄频高清免费视频| 免费一级毛片在线播放高清视频| 精品乱码久久久久久99久播| 精品久久久久久成人av| 少妇人妻一区二区三区视频| av福利片在线| 全区人妻精品视频| 国产精品久久久久久人妻精品电影| 一级毛片高清免费大全| 久久精品国产清高在天天线| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 麻豆av在线久日| 中文资源天堂在线| 免费在线观看完整版高清| 女人被狂操c到高潮| 国产三级中文精品| 后天国语完整版免费观看| 亚洲专区国产一区二区| 国产亚洲精品久久久久5区| 9191精品国产免费久久| 欧美日韩中文字幕国产精品一区二区三区| 伦理电影免费视频| 男女下面进入的视频免费午夜| 91麻豆av在线| 日韩中文字幕欧美一区二区| 国产av不卡久久| 亚洲欧洲精品一区二区精品久久久| 国产爱豆传媒在线观看 | 国产精品一区二区免费欧美| 亚洲激情在线av| 国产精品久久电影中文字幕| 精华霜和精华液先用哪个| www国产在线视频色| 国产精品久久久av美女十八| 在线观看免费午夜福利视频| 欧美色视频一区免费| 中文资源天堂在线| av在线天堂中文字幕| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品 | 久久精品91蜜桃| 麻豆国产av国片精品| 久久婷婷成人综合色麻豆| av超薄肉色丝袜交足视频| 国产黄片美女视频| 亚洲精华国产精华精| 午夜激情av网站| 老鸭窝网址在线观看| 色老头精品视频在线观看| 日日干狠狠操夜夜爽| 日韩国内少妇激情av| 亚洲一码二码三码区别大吗| 少妇熟女aⅴ在线视频| 99国产精品一区二区蜜桃av| 亚洲av五月六月丁香网| 久久亚洲真实| 白带黄色成豆腐渣| 欧美zozozo另类| 午夜激情av网站| 久久久久九九精品影院| 国产99白浆流出| 嫁个100分男人电影在线观看| 白带黄色成豆腐渣| 夜夜爽天天搞| 欧美日韩精品网址| 69av精品久久久久久| 日韩精品中文字幕看吧| 国产成人精品久久二区二区91| 亚洲国产精品合色在线| cao死你这个sao货| 日韩精品中文字幕看吧| cao死你这个sao货| 手机成人av网站| 男女视频在线观看网站免费 | 极品教师在线免费播放| 国产熟女xx| 最近视频中文字幕2019在线8| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| videosex国产| 看片在线看免费视频| 国产亚洲欧美在线一区二区| 日韩欧美在线乱码| 国产一区二区在线av高清观看| 九色国产91popny在线| 亚洲精品久久成人aⅴ小说| 国产精品永久免费网站| 91麻豆精品激情在线观看国产| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 高清在线国产一区| 亚洲激情在线av| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 久久久精品大字幕| av有码第一页| 国产精品野战在线观看| 亚洲人成77777在线视频| 色综合婷婷激情| 欧美性猛交╳xxx乱大交人| 国产精品亚洲美女久久久| 欧美zozozo另类| 欧美成人午夜精品| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 一进一出抽搐gif免费好疼| 在线看三级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 他把我摸到了高潮在线观看| 亚洲人成网站高清观看| 国产成年人精品一区二区| 成人精品一区二区免费| 精品国产乱码久久久久久男人| 国产精品一区二区三区四区免费观看 | 波多野结衣高清作品| 啦啦啦韩国在线观看视频| 亚洲狠狠婷婷综合久久图片| 成人高潮视频无遮挡免费网站| 狠狠狠狠99中文字幕| 在线a可以看的网站| 毛片女人毛片| 日韩精品青青久久久久久| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| 国产av一区在线观看免费| 亚洲精品美女久久av网站| 欧美高清成人免费视频www| 亚洲一码二码三码区别大吗| 欧美成人午夜精品| 日韩有码中文字幕| 无遮挡黄片免费观看| 成人18禁在线播放| 波多野结衣高清作品| 国产精品亚洲美女久久久| 欧美成人一区二区免费高清观看 | 悠悠久久av| 国产成人av教育| 亚洲欧美日韩无卡精品| 亚洲av电影不卡..在线观看| 亚洲激情在线av| 亚洲精品av麻豆狂野| 黄频高清免费视频| 在线a可以看的网站| 一进一出抽搐动态| 一级a爱片免费观看的视频| 黄色丝袜av网址大全| 老汉色av国产亚洲站长工具| 亚洲国产日韩欧美精品在线观看 | 亚洲 国产 在线| 亚洲av电影不卡..在线观看| 亚洲男人天堂网一区| 国产午夜精品论理片|