• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Exact Solutions and Finite Time Stability of Linear Conformable Fractional Systems with Pure Delay

    2023-01-24 02:51:52AhmedElshenhabXingtaoWangFatemahMofarrehandOmarBazighifan

    Ahmed M.Elshenhab,Xingtao Wang,Fatemah Mofarreh and Omar Bazighifan

    1School of Mathematics,Harbin Institute of Technology,Harbin,150001,China

    2Department of Mathematics,Faculty of Science,Mansoura University,Mansoura,35516,Egypt

    3Mathematical Science Department,Faculty of Science,Princess Nourah Bint Abdulrahman University,Riyadh,11546,Saudi Arabia

    4Section of Mathematics,International Telematic University Uninettuno,Roma,00186,Italy

    ABSTRACT We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay.By using new conformable delayed matrix functions and the method of variation,we obtain a representation of their solutions.As an application,we derive a finite time stability result using the representation of solutions and a norm estimation of the conformable delayed matrix functions.The obtained results are new,and they extend and improve some existing ones.Finally,an example is presented to illustrate the validity of our theoretical results.

    KEYWORDS Representation of solutions;conformable fractional derivative;conformable delayed matrix function;conformable fractional delay differential equations;finite time stability

    1 Introduction

    In recent years,particularly in 2014,Khalil et al.[1]introduced a new definition of the fractional derivative called the conformable fractional derivative that extends the classical limit definition of the derivative of a function.The conformable fractional derivative has main advantages compared with other previous definitions.It can,for example,be used to solve the differential equations and systems exactly and numerically easily and efficiently,it satisfies the product rule and quotient rule,it has results similar to known theorems in classical calculus,and applications for conformable differential equations in a variety of fields have been extensively studied,see [2–10] and the references therein.On the other hand,in 2003,Khusainov et al.[11]represented the solutions of linear delay differential equations by constructing a new concept of a delayed exponential matrix function.In 2008,Khusainov et al.[12] adopted this approach to represent the solutions of an oscillating system with pure delay by establishing a delayed matrix sine and a delayed matrix cosine.This pioneering research yielded plenty of novel results on the representation of solutions,which are applied in the stability analysis and control problems of time-delay systems;see for example[13–28]and the references therein.Thereafter,in 2021,Xiao et al.[29]obtained the exact solutions of linear conformable fractional delay differential equations of orderα∈(0,1]by constructing a new conformable delayed exponential matrix function.

    However,to the best of our knowledge,no study exists dealing with the representation and stability of solutions of conformable fractional delay differential systems of orderα∈(1,2].

    Motivated by these papers,we consider the explicit formula of solutions of linear conformable fractional differential equations with pure delay

    by constructing new conformable delayed matrix functions.Moreover,the representation of solutions of Eq.(1) is used to obtain a finite time stability result onW= [0,L],L >0,whereis called the conformable fractional derivative of orderα∈(1,2] with lower index zero,y(x)∈Rn,ψ∈C2([-τ,0],Rn),B∈Rn×nis a constant nonzero matrix andf∈C([0,∞),Rn)is a given function.

    The paper is organized as follows: In Section 2,we present some basic definitions concerning conformable fractional derivative and finite time stability,and construct new conformable delayed matrix functions and derive their properties for use when we discuss the representation of solutions and finite time stability.In Section 3,by using the new conformable delayed matrix functions,we give the explicit formula of solutions of Eq.(1).In Section 4,as an application,we derive a finite time stability result using the representation of solutions.Finally,we give an example to illustrate the main results.

    2 Preliminaries

    Throughout the paper,we denote the vector norm and matrix norm,respectively,as‖y‖=and‖B‖ =yandbare the elements of the vectoryand the matrixB,respectively.iijDenoteC(W,Rn)the Banach space of vector-value continuous function fromW→Rnendowed with the norm ‖y‖C= maxx∈W‖y(x)‖ for a norm ‖·‖ on Rn.We introduce a spaceC1(W,Rn)={y∈C(W,Rn):y′∈C(W,Rn)}.Furthermore,we see‖ψ‖C=maxυ∈[-τ,0]‖ψ(υ)‖.

    We recall some basic definitions of conformable fractional derivative,fractional exponential function,and finite time stability.

    Definition 2.1.([2,Definition 2.2]).Letf:[a,∞)→Rnbe a differentiable function atx.Then the conformable fractional derivative forfof orderα=(1,2]is given by

    if the limit exists.

    Remark 2.1.As a consequence of Definition 2.1,we can show that

    whereα=(1,2],andfis 2-differentiable atx >a.

    Definition 2.2.([2]).We define the fractional exponential function as follows:

    Definition 2.3.([30]).The system in Eq.(1)is finite time stable with respect to{0,W,τ,δ,β},δ <βif and only ifη <δimplies‖y(x)‖<βfor allx∈W,whereη=maxandδ,βare real positive numbers.

    Next,we construct new conformable delayed matrix functions that are the fundamental solution matrices of Eq.(1).

    Definition 2.4.The conformable delayed matrix functionsHτ,α(Bxα)andMτ,α(Bxα)are defined as

    respectively,wherem=0,1,2,...,Iis then×nidentity matrix andΘis then×nnull matrix.

    Lemma 2.1.The following rule is true:

    Proof.First,whenx∈(-∞,-τ),we obtainHτ,α(Bxα)=Hτ,α(B(x-τ)α)=Θ,and we can see that Lemma 2.1 holds.Following that,set(m-1)τ≤x <mτ,m=0,1,2,...,we get

    Applying Remark 2.1,we get

    This completes the proof.

    In the same way that we proved Lemma 2.1,we can derive the next result.

    Lemma 2.2.The following rule is true:

    To conclude this section,we provide a norm estimation of the conformable delayed matrix functions,which is used while discussing finite time stability.

    Lemma 2.3.For anyx∈[(m-1)τ,mτ],m=0,1,2,...,we have

    Proof.Taking the norm of Eq.(2),we get

    This completes the proof.

    Lemma 2.4.For anyx∈[(m-1)τ,mτ],m=0,1,2,...,we have

    This completes the proof.

    3 Exact Solutions for Linear Conformable Fractional Delay Systems

    In this section,we give the exact solutions of Eq.(1)via the conformable delayed matrix functions and the method of variation of constants.To do this,we consider the homogeneous system of linear conformable fractional delay differential equations

    and the linear inhomogeneous conformable fractional delay system

    Theorem 3.1.The solutiony(x)of Eq.(4)has the representation

    Proof.We seek for a solution of Eq.(4)in the form

    or

    wherec1andc2are unknown constants vectors on Rn,andr(x)is an unkown twice continuously differentible vector function.From Lemmas 2.1 and 2.2,we deduce thatHτ,α(Bxα)andMτ,α(Bxα)are solutions of Eq.(4).We notice that Eq.(6)is a solution of Eq.(4)due to the linearity of solutions for arbitraryc1,c2andr(x).Now we find the constantsc1andc2,and the vector functionr(x)so that the initial conditionsy(x)≡ψ(x),y(x)≡ψ′(x)for -τ≤x≤0,are satisfied.That is,the following relations hold for-τ≤x≤0:

    and

    Consider Eq.(8).If-τ≤x <0,then

    and

    which implies that

    and

    Substituting Eq.(11)into Eq.(10),we get

    Differentiating Eq.(12)with respect tox,we have

    As a result,we find that the equalities obtained Eqs.(12)and(13)are true if

    Substituting Eq.(14)into Eq.(7),we obtain Eq.(6).This finishes the proof.

    Theorem 3.2.The particular solutiony0(x)of Eq.(5)has the representation

    Proof.We try to find a particular solutiony0(x)of Eq.(5)in the form

    by applying the method of variation of constants,whereξ(υ),0<υ≤x,is an unknown function.Taking the conformable derivative of Eq.(16),we get

    Substituting Eqs.(16)and(17)into Eq.(5),and noting that

    We havex2-αξ(x)=f (x).Substitutingξ(x)=xα-2f (x)into Eq.(16),we obtain Eq.(15).This completes the proof.

    Corollary 3.1.The solutiony(x)of Eq.(1)can be represented as

    Remark 3.1.Letα=2 in Eq.(1).Then Corollary 3.1 coincides with Corollary 1 in[13].

    Remark 3.2.Letα= 2,B=B2in Eq.(1)such that the matrixBis a nonsingularn×nmatrix.Then

    where cosτ(Bx)and sinτ(Bx)are called the delayed matrix of cosine and sine type,respectively,defined in[12].Therefore,Corollary 3.1 coincides with Theorems 1 and 2 in[12].

    4 Finite Time Stability of Linear Conformable Fractional Delay Systems

    In this section,we establish some sufficient conditions for the finite time stability results of Eq.(1)by using a norm estimation of the conformable delayed matrix functions and the formula of general solutions of Eq.(1).

    Theorem 4.1.The system Eq.(1)is finite time stable with respect to{0,W,τ,δ,β},δ <βif

    Proof.By using Definition 2.3,and Theorems 3.1 and 3.2,we haveη <δand

    Note thatMτ,α(Bxα)=Θifx∈(-∞,-τ).For-τ≤υ≤0,we get

    Thus

    Therefore,from Lemma 2.4,we have

    for-τ≤υ≤0,x∈W,and sinceEαis increasing function whenx≥υ.From Eq.(21),we get

    From Lemma 2.4,we have

    From Eqs.(20),(22)and(23),we get

    for allx∈W.Combining Eq.(19)with Eq.(24),we obtain‖y(x)‖<βfor allx∈W.This completes the proof.

    Corollary 4.1.Letα=2 in Eq.(1).Then the system

    is finite time stable with respect to{0,W,τ,δ,β},δ <βif

    Remark 4.1.Letα= 2,B=B2in Eq.(1)such that the matrixBis a nonsingularn×nmatrix.Then the representation of solution Eq.(18)coincides with the conclusion of Theorems 1 and 2 in[12],which leads to the same of the finite time stability results in[27].

    5 An Example

    Consider the conformable delay differential equations

    where

    From Theorems 3.1 and 3.2,for all 0 ≤x≤1,and through a basic calculation,we can obtain

    which implies that

    and

    where

    and

    Thus the explicit solutions of Eq.(25)are

    where 0 ≤x≤0.5,which implies that

    and

    where 0.5 ≤x≤1,which implies that

    By calculating we obtainη= max= 0.3,‖B‖ = 2,‖f‖C= 3,Eα=4.0104,= 1.4871,then we setδ= 0.31>0.3 =η.Fig.1 shows the statey(x)and the norm‖y(x)‖of Eq.(25).Now Theorem 4.1 implies that‖y(x)‖ ≤5.930254,we just takeβ=5.9303,which implies that‖y(x)‖<βand Eq.(25)is finite time stable.

    Figure 1:The state y(x)and||y(x)||of Eq.(25)

    6 Conclusion

    In this work,using new conformable delayed matrix functions,we derived explicit solutions of linear conformable fractional delay systems of orderα∈(1,2],which extend and improve the corresponding and existing ones in[12,13]in the case ofα=2 without any restrictions on the matrix coefficient of the linear part,by removing the condition thatBis a nonsingular matrix and replacing the matrix coefficient of the linear partB2in[12]by an arbitrary,not necessarily squared,matrix.In addition,using the formula of general solutions and a norm estimation of the conformable delayed matrix functions,we established some sufficient conditions for the finite time stability results,which extend and improve the existing ones in[27]in the case ofα= 2.Ultimately,an illustrative example was given to show the validity of the proposed results.

    Following the topic of this paper,we outline some possible next research directions.The first direction will include applying the results of this paper on control problems for conformable fractional delay systems of orderα∈(1,2].The second direction is to consider the explicit solutions of linear conformable fractional delay systems of the form

    which lead to new results on stability and control problems.Depending on these results and delayed arguments,we will try to prove a generalized Lyapunov-type inequality for the conformable and sequential conformable boundary value problems

    and

    which leads to new results on the conformable Sturm-Liouville eigenvalue problem.

    Acknowledgement:The authors would like to thank Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R27),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Funding Statement:Princess Nourah bint Abdulrahman University Researchers Supporting Project No.(PNURSP2022R27),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    女性被躁到高潮视频| 啦啦啦视频在线资源免费观看| 国产一区二区在线观看av| 18禁黄网站禁片午夜丰满| 波多野结衣一区麻豆| 69精品国产乱码久久久| 国产精品成人在线| 久久性视频一级片| 午夜精品久久久久久毛片777| 欧美日韩福利视频一区二区| 成人国产av品久久久| 中文字幕人妻丝袜制服| 肉色欧美久久久久久久蜜桃| 精品福利永久在线观看| 国产精品 国内视频| 在线观看免费日韩欧美大片| 国产黄频视频在线观看| 午夜老司机福利片| 777米奇影视久久| www.熟女人妻精品国产| 亚洲成人免费电影在线观看| 国产一卡二卡三卡精品| 亚洲av欧美aⅴ国产| 各种免费的搞黄视频| 精品久久久精品久久久| 欧美97在线视频| 亚洲欧美精品自产自拍| 亚洲成国产人片在线观看| 成人三级做爰电影| 操美女的视频在线观看| 中国美女看黄片| 99精品久久久久人妻精品| 午夜激情久久久久久久| 两个人看的免费小视频| 一区二区三区乱码不卡18| 久久久久国产精品人妻一区二区| 成年av动漫网址| 国产主播在线观看一区二区| 国产精品九九99| 永久免费av网站大全| 最黄视频免费看| www.精华液| 精品高清国产在线一区| 亚洲精品一卡2卡三卡4卡5卡 | 91av网站免费观看| 汤姆久久久久久久影院中文字幕| 极品人妻少妇av视频| 伦理电影免费视频| 啦啦啦中文免费视频观看日本| 夜夜骑夜夜射夜夜干| 午夜91福利影院| 国产在视频线精品| 亚洲自偷自拍图片 自拍| 色视频在线一区二区三区| 国产人伦9x9x在线观看| 中文字幕最新亚洲高清| 真人做人爱边吃奶动态| 国产精品久久久久久精品电影小说| 国产亚洲一区二区精品| 美女视频免费永久观看网站| 97在线人人人人妻| 国产欧美日韩一区二区三 | 国产欧美日韩一区二区精品| 菩萨蛮人人尽说江南好唐韦庄| 夫妻午夜视频| 搡老熟女国产l中国老女人| 一区二区三区激情视频| 啦啦啦 在线观看视频| 久久久国产成人免费| 黄色怎么调成土黄色| 成人av一区二区三区在线看 | 一区二区三区乱码不卡18| 国产野战对白在线观看| 91av网站免费观看| 午夜激情久久久久久久| 啦啦啦啦在线视频资源| 美女高潮到喷水免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 搡老熟女国产l中国老女人| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 最近最新免费中文字幕在线| 50天的宝宝边吃奶边哭怎么回事| 精品福利观看| 男人添女人高潮全过程视频| 精品国产乱码久久久久久男人| 免费不卡黄色视频| 免费日韩欧美在线观看| 精品乱码久久久久久99久播| 亚洲熟女精品中文字幕| 亚洲国产欧美网| 涩涩av久久男人的天堂| 麻豆av在线久日| 多毛熟女@视频| 精品少妇一区二区三区视频日本电影| 亚洲精品粉嫩美女一区| 18禁裸乳无遮挡动漫免费视频| 国产精品熟女久久久久浪| 日本欧美视频一区| 免费高清在线观看视频在线观看| 大片免费播放器 马上看| 欧美+亚洲+日韩+国产| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| 啦啦啦在线免费观看视频4| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| √禁漫天堂资源中文www| 亚洲欧美激情在线| 日韩视频一区二区在线观看| 夫妻午夜视频| 久久人人97超碰香蕉20202| 国产男女超爽视频在线观看| 婷婷丁香在线五月| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 亚洲人成电影免费在线| 久久久久网色| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 国产1区2区3区精品| av天堂在线播放| 在线看a的网站| 精品久久久久久电影网| 777久久人妻少妇嫩草av网站| 18禁国产床啪视频网站| 性少妇av在线| 五月天丁香电影| 考比视频在线观看| 一区二区av电影网| 黄色视频在线播放观看不卡| 欧美激情极品国产一区二区三区| 人妻久久中文字幕网| 亚洲专区国产一区二区| 国产成人精品在线电影| 黑人猛操日本美女一级片| 不卡一级毛片| 满18在线观看网站| 国产日韩一区二区三区精品不卡| 97在线人人人人妻| 久久精品亚洲av国产电影网| 9191精品国产免费久久| 18禁国产床啪视频网站| 三级毛片av免费| netflix在线观看网站| 国产野战对白在线观看| 纵有疾风起免费观看全集完整版| 日日摸夜夜添夜夜添小说| 少妇精品久久久久久久| 欧美精品一区二区免费开放| 一本大道久久a久久精品| 久热这里只有精品99| 一区在线观看完整版| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 中国美女看黄片| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲天堂av无毛| 在线观看舔阴道视频| h视频一区二区三区| 91国产中文字幕| 丝袜美足系列| 巨乳人妻的诱惑在线观看| 18在线观看网站| 国产成人a∨麻豆精品| 天天躁狠狠躁夜夜躁狠狠躁| tocl精华| 人妻人人澡人人爽人人| 蜜桃在线观看..| 人人妻人人澡人人看| 不卡av一区二区三区| 1024香蕉在线观看| 大码成人一级视频| 午夜精品国产一区二区电影| 亚洲一区二区三区欧美精品| av电影中文网址| 国产不卡av网站在线观看| 最黄视频免费看| 欧美精品啪啪一区二区三区 | 欧美在线一区亚洲| 真人做人爱边吃奶动态| 自线自在国产av| 成年人免费黄色播放视频| 少妇的丰满在线观看| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 精品第一国产精品| 亚洲第一av免费看| 久久香蕉激情| 秋霞在线观看毛片| 狠狠婷婷综合久久久久久88av| 丰满迷人的少妇在线观看| 久久精品国产a三级三级三级| 69av精品久久久久久 | 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看| 亚洲专区字幕在线| 久久亚洲国产成人精品v| 日本撒尿小便嘘嘘汇集6| 九色亚洲精品在线播放| 国产三级黄色录像| 午夜成年电影在线免费观看| 一个人免费看片子| 一进一出抽搐动态| 国产精品一二三区在线看| 成在线人永久免费视频| 黄色怎么调成土黄色| 免费少妇av软件| 久久香蕉激情| 欧美成人午夜精品| 永久免费av网站大全| 日日爽夜夜爽网站| 1024香蕉在线观看| 欧美另类亚洲清纯唯美| 涩涩av久久男人的天堂| 亚洲人成电影免费在线| 天堂俺去俺来也www色官网| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 日韩电影二区| 首页视频小说图片口味搜索| 三上悠亚av全集在线观看| 精品福利永久在线观看| 日日夜夜操网爽| 精品人妻在线不人妻| 亚洲国产av新网站| 久久99热这里只频精品6学生| 午夜福利视频在线观看免费| 香蕉国产在线看| 老司机深夜福利视频在线观看 | 欧美人与性动交α欧美软件| 日本黄色日本黄色录像| 777米奇影视久久| 久久久久久久国产电影| 老鸭窝网址在线观看| 99久久综合免费| 少妇被粗大的猛进出69影院| 日本vs欧美在线观看视频| 午夜两性在线视频| 国产亚洲精品久久久久5区| 亚洲精品久久午夜乱码| h视频一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 91av网站免费观看| 精品国内亚洲2022精品成人 | 亚洲五月色婷婷综合| 国内毛片毛片毛片毛片毛片| 亚洲欧美日韩高清在线视频 | 一级,二级,三级黄色视频| 午夜91福利影院| 国产精品二区激情视频| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区蜜桃| a在线观看视频网站| 欧美国产精品va在线观看不卡| 国产三级黄色录像| 青春草亚洲视频在线观看| 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品99久久99久久久不卡| 99国产综合亚洲精品| 天堂8中文在线网| 青春草视频在线免费观看| 精品久久久久久电影网| 欧美日韩黄片免| 电影成人av| 无限看片的www在线观看| 捣出白浆h1v1| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 成年人黄色毛片网站| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 青青草视频在线视频观看| av欧美777| 欧美黄色淫秽网站| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 成年人午夜在线观看视频| 大陆偷拍与自拍| 国产99久久九九免费精品| 另类亚洲欧美激情| 精品久久蜜臀av无| 亚洲 国产 在线| 亚洲五月婷婷丁香| 97人妻天天添夜夜摸| 久久人妻福利社区极品人妻图片| 免费在线观看日本一区| 国产不卡av网站在线观看| 老司机午夜福利在线观看视频 | 水蜜桃什么品种好| 亚洲精品粉嫩美女一区| 麻豆av在线久日| 99国产精品免费福利视频| 交换朋友夫妻互换小说| 91麻豆av在线| 女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月 | 精品国产超薄肉色丝袜足j| 日韩熟女老妇一区二区性免费视频| 99热网站在线观看| 一级黄色大片毛片| 国产精品九九99| 亚洲精品乱久久久久久| 久久久久国产精品人妻一区二区| 久久久水蜜桃国产精品网| 日本撒尿小便嘘嘘汇集6| 久热爱精品视频在线9| 亚洲精品粉嫩美女一区| 午夜激情久久久久久久| 少妇粗大呻吟视频| 纵有疾风起免费观看全集完整版| 精品高清国产在线一区| 欧美午夜高清在线| 狂野欧美激情性xxxx| 黄色 视频免费看| 日韩欧美免费精品| 久久ye,这里只有精品| 亚洲国产看品久久| 亚洲精品乱久久久久久| 男女午夜视频在线观看| 黄色片一级片一级黄色片| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 国产亚洲欧美在线一区二区| xxxhd国产人妻xxx| 亚洲,欧美精品.| 久久久精品94久久精品| 一区福利在线观看| 91麻豆av在线| 天天影视国产精品| 国产区一区二久久| 精品亚洲乱码少妇综合久久| 18禁黄网站禁片午夜丰满| 欧美日韩亚洲高清精品| 亚洲天堂av无毛| 久久久精品免费免费高清| 999久久久国产精品视频| 一级片免费观看大全| av不卡在线播放| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 国产av精品麻豆| 黄色怎么调成土黄色| 日本精品一区二区三区蜜桃| 91大片在线观看| 少妇被粗大的猛进出69影院| 欧美另类一区| 久久亚洲精品不卡| 午夜激情久久久久久久| 欧美97在线视频| 777米奇影视久久| 国产又爽黄色视频| 欧美一级毛片孕妇| 免费少妇av软件| 亚洲国产欧美在线一区| 天天影视国产精品| 91麻豆av在线| 美女中出高潮动态图| 亚洲综合色网址| 男人添女人高潮全过程视频| 老司机福利观看| 男女无遮挡免费网站观看| av网站在线播放免费| 在线观看一区二区三区激情| 久久久久国产一级毛片高清牌| 丝袜喷水一区| 久久久久国产一级毛片高清牌| 搡老岳熟女国产| 久久久久视频综合| 国产一区有黄有色的免费视频| 99久久精品国产亚洲精品| 极品少妇高潮喷水抽搐| 少妇人妻久久综合中文| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 国产亚洲av高清不卡| 国产成人影院久久av| 一区二区三区激情视频| tocl精华| 在线亚洲精品国产二区图片欧美| tocl精华| 老熟妇仑乱视频hdxx| 欧美日韩一级在线毛片| 久久久久久人人人人人| 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 性少妇av在线| 国产精品一二三区在线看| 岛国毛片在线播放| 亚洲精品美女久久久久99蜜臀| 桃花免费在线播放| 国产无遮挡羞羞视频在线观看| 久久精品国产亚洲av高清一级| 热re99久久国产66热| 欧美激情 高清一区二区三区| 国产区一区二久久| 又紧又爽又黄一区二区| 欧美激情高清一区二区三区| 久久 成人 亚洲| 国产不卡av网站在线观看| 成年女人毛片免费观看观看9 | 国产亚洲欧美在线一区二区| av一本久久久久| 精品亚洲乱码少妇综合久久| 亚洲五月婷婷丁香| 欧美激情久久久久久爽电影 | 男女午夜视频在线观看| 中文欧美无线码| 丝袜脚勾引网站| videosex国产| 青青草视频在线视频观看| 欧美黑人精品巨大| av又黄又爽大尺度在线免费看| av线在线观看网站| 成年人黄色毛片网站| 亚洲欧美精品综合一区二区三区| 丝袜美腿诱惑在线| 啦啦啦在线免费观看视频4| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| videos熟女内射| 免费高清在线观看视频在线观看| 啦啦啦啦在线视频资源| 日韩有码中文字幕| 日本五十路高清| 亚洲国产欧美在线一区| 国产精品久久久人人做人人爽| 9色porny在线观看| 五月开心婷婷网| 亚洲专区字幕在线| 国产精品 国内视频| 激情视频va一区二区三区| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 大码成人一级视频| 久久久欧美国产精品| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 夜夜骑夜夜射夜夜干| 美女大奶头黄色视频| 日韩一区二区三区影片| 中文字幕人妻熟女乱码| 91成人精品电影| 法律面前人人平等表现在哪些方面 | 亚洲男人天堂网一区| 69精品国产乱码久久久| 在线亚洲精品国产二区图片欧美| 亚洲成国产人片在线观看| 午夜福利一区二区在线看| 国产一区二区 视频在线| 五月开心婷婷网| 免费在线观看视频国产中文字幕亚洲 | 亚洲 欧美一区二区三区| 午夜福利在线免费观看网站| 欧美日韩精品网址| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 中文字幕最新亚洲高清| 成人亚洲精品一区在线观看| 男人爽女人下面视频在线观看| 在线观看免费日韩欧美大片| 亚洲伊人色综图| 久久久国产一区二区| 亚洲男人天堂网一区| 大片免费播放器 马上看| 国产成人精品久久二区二区91| 建设人人有责人人尽责人人享有的| 久9热在线精品视频| 精品人妻1区二区| 亚洲欧洲日产国产| 久久久久精品人妻al黑| 高清欧美精品videossex| 丝袜人妻中文字幕| 国产深夜福利视频在线观看| 国产激情久久老熟女| 91精品三级在线观看| 一本综合久久免费| 国产成人影院久久av| www.自偷自拍.com| 亚洲avbb在线观看| 久久久水蜜桃国产精品网| 高清欧美精品videossex| 国产黄色免费在线视频| 男人舔女人的私密视频| 国产男人的电影天堂91| www.999成人在线观看| 国产成+人综合+亚洲专区| 色精品久久人妻99蜜桃| 伊人久久大香线蕉亚洲五| 自拍欧美九色日韩亚洲蝌蚪91| 国产伦理片在线播放av一区| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 丝瓜视频免费看黄片| 法律面前人人平等表现在哪些方面 | √禁漫天堂资源中文www| 啦啦啦 在线观看视频| 99国产精品一区二区三区| 成人手机av| 日本五十路高清| 中文字幕高清在线视频| 满18在线观看网站| 飞空精品影院首页| 色综合欧美亚洲国产小说| 十八禁网站免费在线| 国产精品久久久久成人av| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 国产激情久久老熟女| 欧美激情极品国产一区二区三区| 男人爽女人下面视频在线观看| 免费观看a级毛片全部| 久久久国产欧美日韩av| 天堂8中文在线网| 肉色欧美久久久久久久蜜桃| 999久久久精品免费观看国产| 国产精品亚洲av一区麻豆| 亚洲av美国av| 欧美 亚洲 国产 日韩一| 日韩大码丰满熟妇| 男女午夜视频在线观看| 9色porny在线观看| 国产伦人伦偷精品视频| 超碰97精品在线观看| 各种免费的搞黄视频| 亚洲成av片中文字幕在线观看| 我要看黄色一级片免费的| 国产精品成人在线| 在线观看一区二区三区激情| 久久久久久久精品精品| 大型av网站在线播放| 国产成人欧美| av片东京热男人的天堂| 欧美黄色片欧美黄色片| 99国产精品一区二区三区| 成人黄色视频免费在线看| 国产真人三级小视频在线观看| 精品国产乱子伦一区二区三区 | 精品国产超薄肉色丝袜足j| 亚洲成国产人片在线观看| 精品少妇黑人巨大在线播放| 久久久久网色| 人人妻人人澡人人看| 他把我摸到了高潮在线观看 | 无遮挡黄片免费观看| 国产一区二区 视频在线| 性色av乱码一区二区三区2| 亚洲国产欧美日韩在线播放| 熟女少妇亚洲综合色aaa.| 视频区欧美日本亚洲| 亚洲精品成人av观看孕妇| 亚洲免费av在线视频| 中文字幕人妻丝袜一区二区| 夜夜骑夜夜射夜夜干| 欧美日韩视频精品一区| 久久精品熟女亚洲av麻豆精品| 91精品伊人久久大香线蕉| 又大又爽又粗| 欧美精品高潮呻吟av久久| 午夜免费鲁丝| 伊人亚洲综合成人网| 国产精品影院久久| 久久久久久久久免费视频了| 亚洲一码二码三码区别大吗| 91字幕亚洲| 制服人妻中文乱码| 精品免费久久久久久久清纯 | 秋霞在线观看毛片| 国产成人欧美在线观看 | 亚洲成人国产一区在线观看| 中文字幕精品免费在线观看视频| 久久久国产成人免费| 80岁老熟妇乱子伦牲交| 午夜福利影视在线免费观看| 国产欧美日韩一区二区精品| 久热这里只有精品99| 搡老熟女国产l中国老女人| 后天国语完整版免费观看| av欧美777| 欧美日韩国产mv在线观看视频| 久久九九热精品免费| 一区福利在线观看| 91九色精品人成在线观看| 久久九九热精品免费| h视频一区二区三区| 搡老熟女国产l中国老女人| 亚洲天堂av无毛| 两个人免费观看高清视频| 国产在视频线精品| 中文字幕人妻熟女乱码| 亚洲视频免费观看视频| 在线十欧美十亚洲十日本专区| 午夜老司机福利片| 人人妻人人爽人人添夜夜欢视频| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| 18禁国产床啪视频网站| 女性被躁到高潮视频| 极品人妻少妇av视频| 捣出白浆h1v1|