• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-Triggered Consensus Filtering over Asynchronous Communication Sensor Networks

    2023-01-24 02:51:36HuiwenXueJiweiWenAkshyaKumarSwainandXiaoliLuan

    Huiwen Xue,Jiwei Wen,★,Akshya Kumar Swain and Xiaoli Luan

    1Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Jiangnan University,Wuxi,214000,China

    2Department of Electrical,Computer and Software Engineering,University of Auckland,Auckland,0632,New Zealand

    ABSTRACT In this paper,a self-triggered consensus filtering is developed for a class of discrete-time distributed filtering systems.Different from existing event-triggered filtering,the self-triggered one does not require to continuously judge the trigger condition at each sampling instant and can save computational burden while achieving good state estimation.The triggering policy is presented for pre-computing the next execution time for measurements according to the filter’s own data and the latest released data of its neighbors at the current time.However,a challenging problem is that data will be asynchronously transmitted within the filtering network because each node self-triggers independently.Therefore,a co-design of the self-triggered policy and asynchronous distributed filter is developed to ensure consensus of the state estimates.Finally,a numerical example is given to illustrate the effectiveness of the consensus filtering approach.

    KEYWORDS Self-triggered policy;sensor networks;distributed consensus filtering

    1 Introduction

    A wireless sensor network (WSN) is composed of a large number of sensor nodes distributed in a specific area.With the development of sensing,cloud computing,and wireless communication technologies,WSN has been successfully applied in a variety of practical environments,such as battlefield monitoring,target tracking,health monitoring,search and rescue operations after disasters,industrial automation,and so on [1,2].However,noise ubiquitously exists in signal transmission and WSN environment,which often results in degradation of the filtering performance.Therefore,distributed filtering obtains an ever-increasing attention when estimating unavailable states through measured outputs and historical data[3–5].Compared with traditional centralized filtering[6],each sensor node finalizes filtering according to its own and neighbors’data under a fixed interconnection topology within a distributed filtering network.Therefore,distributed filtering is robust to sensor failures and transmission constraints.

    Usually,the sensor is powered by a lithium battery and has a limited capacity for memory.Therefore,it is of great significance to reduce communication and computation energy loss.Traditional timetriggered sampling requires signal transmission to be continuous or periodically updated.Although it is conducive to analysis and design,the rate of signal update is constant and quick,and may lead to waste use of limited communication resources.In addition,the narrow network bandwidth may lead to channel congestion,induced delay and data packet drop out[7,8],etc.The key to solving these problems is to reduce the transmission load on the premise of good filtering performance.

    Therefore,event-triggered mechanisms(ETM)[9–11],which can greatly reduce the unnecessary data transmission and resource occupation,are developed with burgeoning research interests.In the past few years,the main progress of ETM for distributed filtering can be generally divided into four categories,i.e.,triggering based on constant threshold [12–14],instantaneous measurement-/estimate-dependent threshold [15–17],released measurement-/estimate-dependent threshold [18–21]and dynamic event-triggering [22,23].The first three categories can be summarized as static eventtriggered mechanisms(SETM),which has a fixed scalar triggering threshold.In contrast,the fourth class is named as dynamic event-triggered mechanisms (DETM),which can adjust the triggering threshold.Aiming at distributed set-membership estimation for time-varying systems,a new DETM designed in[23]leads to larger average inter-event times and thus less totally released data packets.

    It is worth noting that ETM are more effective in reducing transmission frequency compared to traditional time-triggered sampling at the cost of increased computational burden [24].Specifically,in order to check whether the triggering conditions are met,the above ETM strategies embedded in the sensor nodes have to continuously make judgments at each sampling instant.For a large-scale WSN,there is numerous computational burden consumption.In order to overcome this shortcoming,a self-triggered policy was first proposed in [25] to optimize the allocation of computing burden and performance for real-time systems containing multiple control tasks.Since such a scheme precalculates the next update moment through the current samplings,the self-triggering is an active behavior.Up to now,the self-triggering policy is mostly employed in control systems [9,26–32] and it still remains open for solving filtering problems.The main motivation of this study is to shorten the gap between self-triggering theory and its applications to distributed filtering.

    The main contributions of this paper are summarized as follows:

    1.For a filtering network,a self-triggered policy is designed to save transmission energy and computational burden,especially in a large-scale WSN.Unlike the ETM,the self-triggered policy can predict the subsequent execution time in advance without checking the triggering conditions at each sampling time.That is,the next triggering interval is calculated based on the latest transmission data,the latest state estimates of itself and neighboring nodes.

    2.In filtering networks,since each filtering node is triggered independently and has its own triggering interval,this will lead to an asynchronous transmission phenomenon.Through the co-design of self-triggered policy and distributed consensus filtering,even when the WSN encounters asynchronous communication,the filtering system can maintain good state estimation.

    2 Preliminaries and Problem Formulation

    Consider a sensor network withnnodes to monitor the plant and estimate its states.The directed weighted graphG=(V,E,A)is used to model the network topology of interacting sensors,whereV={1,2,...,n}denotes an index set of sensor nodes,E?V×Vrepresents the edge of paired sensor nodes andA=stands for the weighted adjacency matrix.The adjacency elementaij >0 ?(i,j)∈Erepresents a positive weighting of the edge between two adjacent sensors,which implies that sensorireceives data from sensorjor sensorjtransmits data to sensori,otherwise,aij=0 if no data link exists between sensorjto sensori.In addition,we assumeaii= 1 for alli∈Vand(i,i)can be considered as an additional edge.The set of neighbors of nodeiincluding the node itself is denoted byNi= {j∈V:(i,j)∈E}.The Laplace matrix of the graphGis defined asL=D-A,whereD=diagn{di}with the diagonal elementdi=

    Consider the plant described by a discrete-time linear system of the following form:

    wherex(k)∈Rnxis the system state;z(k)∈Rnzis the output to be estimated;ω(k)∈Rnωis the external disturbance belonging tol2[0,∞);A,BandMare known constant matrices with appropriate dimensions.The initial statex(0)is an unknown vector.

    For every sensori(i∈V),the model of sensor nodeiis in the form of

    whereyi(k)∈Rnyis the measured output collected by nodei,vi(k)∈Rnvis measurement noise belonging tol2[0,∞),CiandDiare known constant matrices with appropriate dimensions.

    In sensor networks,the data available for filter on the sensor node comes not only from the sensori,but also from its neighbors.Considering the consensus problem,the whole distributed filtering network can be constructed as follows:

    Assumption 1:We assume that sensors monitor the target plant at every sampling moment.Then we focus on reducing the communication frequency between sensors so as to achieve better resource efficiency.

    The distributed self-triggered filtering system is illustrated in Fig.1.For example,the sensor nodeitransmits the measurementsyi(k)to the corresponding filteri.In the whole sensor network,each filter obtains the latest state estimationfrom its neighbors and transmits its own filtering resultsto other neighbors when meeting a well-defined condition.At each sampling instant,filtericalculates and updates its estimated stateand its time-stampkare integrated into a data packet.Similarly,the data packetis considered as the latest released data when the filteriis triggered.Buffericontaining multiple units is driven by self-triggered policy,and has the capability of checking the time stamps of the newly arrived data packetand discarding old data packets.In brief,the buffer can reserve the latest data packets until new data packets arrive.

    Figure 1:Block diagram of distributed self-triggered system

    The self-triggered policy predicts the subsequent execution time and calculates the triggering interval by the latest data of each filter without a continuous judgment process.Therefore,the strategy proposed in this paper is beneficial to the energy saving of sensor networks with limited resources,as well as scant network channel bandwidth.

    The self-triggered time-sequence diagram is illustrated in Fig.2.The dash lines indicate that data is exchanged between nodes and the arrow points to the object of data transmission.The broadcasting and receiving of the latest released state estimation are determined by the filter node’s own self-triggered policy.It is clear that each filter node has its own triggering time sequence,which causes different triggering intervals between each other.Moreover,for filteri,the time that data packets from neighbors arrive at bufferimay be asynchronous,since it is determined by different triggering conditions.Such an asynchronous transmission brings challenges to the design of consensus distributed filtering.

    Figure 2:Self-triggered sequence diagram

    For filteri,let’s define a state estimation error,an output estimation errorand a state estimation update error.Thencan be expressed as.Combing(1)–(3),the estimation error dynamics can be rewritten as

    The topology of the sensor is determined by a given graphG=(V,E,A).For the sake of brevity,we denote

    Then,the error dynamics governed by(4)can be rewritten in the following compact form:

    Definition 1([27]):Filters (3) are said to be a distributed self-triggeredH∞consensus filtering system(1)if they meet the following conditions:

    1)In the absence of system disturbance and measurement noise,the filtering error system(5)is exponentially stable,i.e.,there exist positive constantsηandα∈(0,1)such that limk→∞||e(k)||2≤ηαk,for allk≥0.

    2) Under the condition of the system disturbance and measurement noises,the output filtering errors(k),?i∈Vsatisfy the followingH∞performance:

    whereγ >0 is the attenuation level andRi=0 are some given positive definite matrices.

    3 Main Results

    In this section,we first design a distributed self-triggered policy.Based on such a policy,sufficient conditions are given for theH∞consensus analysis of the filtering error system (4).Furthermore,a co-design method for self-triggered threshold parameters and distributed filter gains is presented.

    3.1 Self-Triggered Policy

    The self-triggered policy predicts that the subsequent execution time depends on the current sampling data and the estimated state updated by its neighbors.Based on this idea,we develop selftriggered distributed filtering.The next triggering instant is considered as follows:

    The key to realizing the self-triggered policy is to obtain the triggering interval functionMki(·).We develop the following error-based self-triggered policy:

    whereδi=εi∈(0,1] is the threshold parameter; Φi∈ Rp×pis the weighting matrix tio be determined.

    Theorem 1:In order to formulate a suitable self-triggered policy for the distributed filtering system(5),the triggering interval function can be expressed as

    Proof:Combining relations(3)and(4),we can obtain

    AssumeYi(k)=Then inequality(10)can be rewritten as

    From(11),we can obtain

    According to self-triggered condition(8),if the filter nodeiis triggered,the following inequality is obtained

    Combining inequality(13)and(14),we have

    Through the simple mathematical manipulation of(15),triggering interval(9)is derived.

    To guarantee the system performance,the current state estimation of the filter nodeishould be broadcasted to other neighbors immediately once the triggering conditions are satisfied.This means that the triggering intervalMkishould be rounded up.The proof is completed.

    3.2 H∞Consensus Performance Analysis

    Lemma 1:Given a positive definite matrix>0(1 ≤i≤n),the filtering error system(4)is exponentially stable and satisfyH∞consensus performance under the self-triggered policy(9)and the initial conditionif there exist a positive scalarγ >0 and real symmetric matricesPi >0,satisfying

    Proof:Consider a Lyapunov function

    The one-step time difference is

    According to the self-triggered policy(9),the following inequality in augmented form is valid for[mki,m(k+1)i)

    where Ψ is a real symmetric matrix,and others are zero matrices.

    Therefore,Eq.(18)can be rewritten into the following inequality

    whereξT=[eT(k),(k),vT(k),wT(k)],ρT=,Π11=and others are zero matrices.

    We assume that

    By applying Schur complement lemma to(20),we obtain

    where?=Pρ=

    First,we prove that the system (4) is exponentially stable when there is no disturbance and measurement noises.Denotingλ1=λmax(Γ),obviouslyλ1is smaller than zero,which indicates that(20)satisfies

    Defineλ2=λmax(P)>0.Then given positive scalarμ,from inequality(23),we obtain

    With some simple mathematical managements,we get

    whereλ3=λmin(P) >0.Whenkapproaches to infinity,we can obtain limk→∞||e(k)||2= 0 which implies estimation error system(4)is exponentially stable.

    Second,it follows from(20)and(21)that

    Summing up both sides of(27)from 0 totwith respect tok

    Therefore,the filtering error system also satisfies theH∞filtering performance condition in Definition 1.The proof is completed.

    3.3 Co-Design of Self-Triggered Policy and Asynchronous Distributed Filter

    The above Theorem and Lemma will be employed to design distributed self-triggered consensus filtering network(3),which leads to the following theorem.

    Theorem 2:Given a positive definite matrixRi=0(1 ≤i≤n),the distributed self-triggered filtering problem is solvable,if there exist a positive scalarγ >0,real symmetric matricesPi=0,,and real matricesXi,Yisatisfying

    initial conditions

    and the following set of linear matrix inequalities

    whereX=

    Moreover,if the set of linear matrix inequalities(31)with(30)is feasible,the filter gains can be computed as

    Proof:DenotingXi=PiHi,Yi=PiGi.Then we have

    Substituting relations(33)into inequality(16),it can be seen that the inequality(16)in Lemma 1 results in inequality(31)with(30).The proof is completed.

    Remark 1:The goal of the above co-design is to conquer the asynchronous communication caused by self-triggered policy and achieve good filtering performance.Through Theorem 2,the self-triggered threshold parameters Φiand the filter gain matricesHi,Gicould be successfully solved together.

    4 Numerical Example

    In this section,a numerical example is given to demonstrate effectiveness of the above co-design.

    The network topology is represented by directed weighted graphG=(V,E,A)with five nodesV= {1,2,3,4,5},set of edgesE?{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(3,2),(3,3),(3,4),(4,1),(4,4),(5,3),(5,5)}.The transmission paths between five nodes in Fig.3 and adjacency matrix as follows:

    Figure 3:Schematic of distributed filtering over the WSN

    The simulation is taken as 300-time units and each unit length is taken as 0.1.The system and sensor parameters are given as

    The system noise and measurement noise are taken asω(k)=e-2kandvi(k)=[e-2ksin(k)2e-kcos(2k)],respectively.The initial statex0=The initial estimation of each nodeiare given as

    The self-triggered parameters of each nodeiare taken asε1= 0.7,ε2= 0.2,ε3= 0.6,ε4= 0.4,ε5=0.3.The positive definite matrices are givenR1=R2=R3=R4=R5=diag2{0.7}.

    To further verify the strength of the self-triggered consensus filtering,a rectangular pulseωd(k)as an external disturbance is introduced into the system whenk∈[8,10].The simulation results are shown in Figs.4–6.

    The outputz(k)and its estimation are depicted in Fig.4.The filtering root means square error is given in Fig.5.They show that the designed self-triggered consensus filter performs well in tracking the state of the target plant and the system has good robustness under the self-triggered policy.

    Figure 4:Plant output z(k)and its estimation

    Fig.6 illustrates the self-triggered times of each filter.Under the periodic time-triggered mechanism,data transmits between the sensor and its neighbors at every sampling moment.It is clear that the self-triggered policy developed in this paper can effectively reduce the data transmission frequency within the network.In particular,in the first 6 time steps,filter 1-filter 5 is triggered less than 20 times under the self-triggered policy,while triggered 60 times under the time-triggered strategy.Therefore,the self-triggered policy developed in this paper can greatly save communication resources and computation burden of the filtering network.

    Figure 5:Filtering root mean square error

    Figure 6:The self-triggered times of each filter

    On the other hand,after the system is perturbed,the number of triggers intensively increases,and the triggers become gentle until the estimation becomes consensus during the time intervalk∈[8,14].This also means that filterishould update data released from neighbors frequently when the filtering departs from consistency.

    In summary,the simulation results illustrate that the self-triggered policy can save communication and computation burden while satisfying filtering performance.

    5 Conclusion

    The self-triggering policy is developed for a class of distributed filtering systems in this paper.This policy can actively predict the time when the following exchanged data will be updated.Through such a policy,the frequency of data exchange can be reduced,while communication resources can be saved within the filtering network.Compared with the existing event-triggered communication scheme,this means that it is not necessary to continuously judge trigger conditions,which saves the computing burden.The asynchronous transmission problem caused by each filter node’s independent self-triggering can be solved by co-design.In order to make the research work close to the engineering practice,we will further consider transmission delay,packet loss,data conflicts,and other network induced phenomena.

    Funding Statement:This work was jointly supported by the National Natural Science Foundation of China(Nos.61991402,62073154),the 111 Project(B12018),the Scientific Research Cooperation and High-Level Personnel Training Programs with New Zealand(1252011004200040).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线精品无人区一区二区三| 爱豆传媒免费全集在线观看| 又大又爽又粗| 国产成人欧美在线观看 | 亚洲精品粉嫩美女一区| 男女免费视频国产| 一本色道久久久久久精品综合| 我的亚洲天堂| 日韩一区二区三区影片| 丝袜喷水一区| 国产av精品麻豆| 成人黄色视频免费在线看| 男女高潮啪啪啪动态图| av免费在线观看网站| 女人高潮潮喷娇喘18禁视频| 啦啦啦 在线观看视频| 亚洲精品日韩在线中文字幕| av一本久久久久| 高清欧美精品videossex| 亚洲专区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 一区二区三区精品91| 国产亚洲午夜精品一区二区久久| 一本久久精品| 新久久久久国产一级毛片| 女性生殖器流出的白浆| 亚洲欧美成人综合另类久久久| 精品一区二区三区av网在线观看 | 亚洲精品中文字幕在线视频| kizo精华| 一区二区三区精品91| 欧美少妇被猛烈插入视频| 国产老妇伦熟女老妇高清| 精品亚洲成a人片在线观看| 亚洲精品美女久久久久99蜜臀| 高清黄色对白视频在线免费看| av片东京热男人的天堂| 国产亚洲精品一区二区www | 12—13女人毛片做爰片一| 热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 天堂8中文在线网| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| 黑丝袜美女国产一区| 中文字幕人妻熟女乱码| 99国产精品99久久久久| 丝瓜视频免费看黄片| www.999成人在线观看| 久久精品成人免费网站| 制服人妻中文乱码| 激情视频va一区二区三区| 在线永久观看黄色视频| 国产成人影院久久av| 国产男女内射视频| 侵犯人妻中文字幕一二三四区| 男人添女人高潮全过程视频| 久久中文字幕一级| 老司机福利观看| 国产在视频线精品| 亚洲第一av免费看| 美女大奶头黄色视频| 婷婷丁香在线五月| 欧美日韩精品网址| 国产欧美日韩一区二区三 | 亚洲av片天天在线观看| 91成人精品电影| 国产亚洲欧美在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 精品人妻1区二区| 五月开心婷婷网| 亚洲天堂av无毛| 黄色a级毛片大全视频| 亚洲精品在线美女| av有码第一页| 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| 免费一级毛片在线播放高清视频 | 女人久久www免费人成看片| 免费观看a级毛片全部| 91老司机精品| 久久人人97超碰香蕉20202| 岛国毛片在线播放| 国产区一区二久久| 久久久久视频综合| 久久 成人 亚洲| 国产精品免费视频内射| www.999成人在线观看| 亚洲色图 男人天堂 中文字幕| 欧美中文综合在线视频| 亚洲精品在线美女| 午夜福利在线免费观看网站| 亚洲第一欧美日韩一区二区三区 | 久久人人爽人人片av| 国产又色又爽无遮挡免| 久9热在线精品视频| 一级毛片女人18水好多| 飞空精品影院首页| 黄色视频,在线免费观看| 精品久久久久久电影网| 国产老妇伦熟女老妇高清| avwww免费| 亚洲av欧美aⅴ国产| www.精华液| 侵犯人妻中文字幕一二三四区| 国产一卡二卡三卡精品| 一进一出抽搐动态| 我要看黄色一级片免费的| 午夜免费成人在线视频| 纵有疾风起免费观看全集完整版| 久久影院123| 亚洲成人免费电影在线观看| 女人久久www免费人成看片| 一区二区av电影网| 9191精品国产免费久久| 国产日韩欧美在线精品| 大香蕉久久成人网| 亚洲成人手机| 青春草视频在线免费观看| 亚洲黑人精品在线| 精品第一国产精品| 亚洲 国产 在线| 久久国产精品大桥未久av| 亚洲精品乱久久久久久| 亚洲五月色婷婷综合| 午夜福利,免费看| 午夜精品久久久久久毛片777| 啦啦啦中文免费视频观看日本| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 女警被强在线播放| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 国产成人免费观看mmmm| 国产精品国产三级国产专区5o| 捣出白浆h1v1| 欧美一级毛片孕妇| 999久久久精品免费观看国产| 亚洲精品美女久久av网站| 日本一区二区免费在线视频| 成年人午夜在线观看视频| 国产欧美日韩一区二区三 | 精品少妇一区二区三区视频日本电影| 国产三级黄色录像| 国产亚洲欧美精品永久| 亚洲国产欧美日韩在线播放| 成年美女黄网站色视频大全免费| 国产一区二区 视频在线| 亚洲专区中文字幕在线| 电影成人av| 久久国产精品人妻蜜桃| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 啦啦啦视频在线资源免费观看| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 免费在线观看日本一区| 欧美在线黄色| 欧美人与性动交α欧美精品济南到| 99久久99久久久精品蜜桃| 午夜影院在线不卡| 中文字幕人妻熟女乱码| 国产精品1区2区在线观看. | 极品少妇高潮喷水抽搐| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 欧美成狂野欧美在线观看| netflix在线观看网站| 日韩视频在线欧美| 99热国产这里只有精品6| 国产成+人综合+亚洲专区| 人妻 亚洲 视频| tocl精华| 美女国产高潮福利片在线看| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 午夜激情av网站| 99国产精品免费福利视频| 老司机午夜十八禁免费视频| 国产精品国产三级国产专区5o| 女性生殖器流出的白浆| 91大片在线观看| 好男人电影高清在线观看| 高清黄色对白视频在线免费看| 久久热在线av| 国产真人三级小视频在线观看| 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 久久狼人影院| 人人妻人人澡人人看| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 久久久久久亚洲精品国产蜜桃av| 精品国产超薄肉色丝袜足j| 免费高清在线观看日韩| 久久国产精品人妻蜜桃| 天天影视国产精品| 国产欧美日韩综合在线一区二区| 欧美激情久久久久久爽电影 | av福利片在线| 久久国产精品影院| 香蕉丝袜av| 欧美大码av| 欧美+亚洲+日韩+国产| 天天操日日干夜夜撸| 50天的宝宝边吃奶边哭怎么回事| 男女无遮挡免费网站观看| tocl精华| 一级黄色大片毛片| 亚洲精品中文字幕一二三四区 | 亚洲精品国产区一区二| 日韩人妻精品一区2区三区| 国产av国产精品国产| 国产真人三级小视频在线观看| 国产一区二区三区av在线| 亚洲自偷自拍图片 自拍| 国产伦理片在线播放av一区| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 亚洲精品自拍成人| 欧美人与性动交α欧美软件| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 成年av动漫网址| 精品福利永久在线观看| 丰满少妇做爰视频| 啦啦啦 在线观看视频| 亚洲国产中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 一级片'在线观看视频| 免费在线观看影片大全网站| 1024视频免费在线观看| 亚洲精品国产av成人精品| 99精品欧美一区二区三区四区| 桃花免费在线播放| 久久久久久久国产电影| 桃红色精品国产亚洲av| a 毛片基地| 国产亚洲欧美在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 另类亚洲欧美激情| 大码成人一级视频| 精品人妻一区二区三区麻豆| 精品熟女少妇八av免费久了| 亚洲三区欧美一区| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 在线永久观看黄色视频| av网站在线播放免费| 久久久久久久国产电影| 日韩人妻精品一区2区三区| 午夜福利视频精品| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区 | av天堂在线播放| 亚洲精品自拍成人| 下体分泌物呈黄色| 亚洲七黄色美女视频| 脱女人内裤的视频| 深夜精品福利| 正在播放国产对白刺激| 欧美黑人精品巨大| 老司机午夜福利在线观看视频 | 午夜福利视频在线观看免费| 99久久国产精品久久久| 老司机靠b影院| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 岛国毛片在线播放| 久久99热这里只频精品6学生| 久热这里只有精品99| 女人精品久久久久毛片| 韩国精品一区二区三区| 免费观看a级毛片全部| 国产精品1区2区在线观看. | 蜜桃在线观看..| 爱豆传媒免费全集在线观看| 成年av动漫网址| 欧美精品一区二区免费开放| 国产日韩欧美视频二区| a级毛片在线看网站| av电影中文网址| 国产在线免费精品| 窝窝影院91人妻| 久久中文看片网| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 日韩一卡2卡3卡4卡2021年| 老汉色∧v一级毛片| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 欧美日本中文国产一区发布| 久久综合国产亚洲精品| 亚洲成人国产一区在线观看| 中文字幕最新亚洲高清| 国产又色又爽无遮挡免| 国产高清videossex| 日本欧美视频一区| 大码成人一级视频| 免费少妇av软件| 国产一区二区在线观看av| 999精品在线视频| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合一区二区三区| 亚洲av欧美aⅴ国产| 又黄又粗又硬又大视频| 欧美日韩亚洲综合一区二区三区_| 亚洲色图综合在线观看| 91精品三级在线观看| av天堂久久9| 久久狼人影院| 午夜久久久在线观看| 亚洲欧美色中文字幕在线| 少妇人妻久久综合中文| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 天天躁夜夜躁狠狠躁躁| 99久久国产精品久久久| 日韩欧美国产一区二区入口| 精品久久久久久电影网| 97在线人人人人妻| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 亚洲国产毛片av蜜桃av| 在线av久久热| 天天躁狠狠躁夜夜躁狠狠躁| 成人国语在线视频| tube8黄色片| 精品一区二区三区四区五区乱码| 亚洲精品一区蜜桃| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 久久久国产成人免费| 999久久久精品免费观看国产| 国产成人影院久久av| 久热爱精品视频在线9| 美女大奶头黄色视频| 亚洲一区中文字幕在线| 啪啪无遮挡十八禁网站| 男人爽女人下面视频在线观看| 狠狠婷婷综合久久久久久88av| 丝袜美足系列| 亚洲性夜色夜夜综合| 美女福利国产在线| 一个人免费在线观看的高清视频 | 男女床上黄色一级片免费看| 日本av手机在线免费观看| 美女高潮喷水抽搐中文字幕| 淫妇啪啪啪对白视频 | 国产激情久久老熟女| 国产xxxxx性猛交| 亚洲成国产人片在线观看| 精品亚洲成国产av| 爱豆传媒免费全集在线观看| 美女中出高潮动态图| 老司机午夜福利在线观看视频 | 午夜福利,免费看| 亚洲国产精品一区三区| 国产欧美日韩精品亚洲av| 91老司机精品| 国产一区二区激情短视频 | 国产成人精品无人区| 欧美精品啪啪一区二区三区 | 大片免费播放器 马上看| 国产免费现黄频在线看| 午夜福利影视在线免费观看| 国产免费福利视频在线观看| 午夜激情av网站| 日韩人妻精品一区2区三区| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 激情视频va一区二区三区| 青草久久国产| 老司机靠b影院| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区 | 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 啦啦啦 在线观看视频| 久久 成人 亚洲| 成人亚洲精品一区在线观看| 夜夜骑夜夜射夜夜干| 欧美xxⅹ黑人| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看| 99精品久久久久人妻精品| 成人av一区二区三区在线看 | 男人添女人高潮全过程视频| 国产片内射在线| 久久天堂一区二区三区四区| 久久久久久久精品精品| 久久久国产精品麻豆| 亚洲成人手机| 欧美xxⅹ黑人| 久久国产精品影院| 国产av又大| 欧美 日韩 精品 国产| 欧美日韩一级在线毛片| 人人妻,人人澡人人爽秒播| 亚洲伊人久久精品综合| 少妇精品久久久久久久| 人妻久久中文字幕网| 亚洲精品久久成人aⅴ小说| 亚洲精品国产色婷婷电影| 免费在线观看完整版高清| 免费在线观看日本一区| 大陆偷拍与自拍| 日韩免费高清中文字幕av| 91字幕亚洲| 亚洲国产av影院在线观看| 新久久久久国产一级毛片| 久久久久国产一级毛片高清牌| 美女午夜性视频免费| 久久久精品94久久精品| 99精品欧美一区二区三区四区| 黄色怎么调成土黄色| 日韩三级视频一区二区三区| 人妻人人澡人人爽人人| 香蕉丝袜av| 国产精品久久久久久精品电影小说| 1024视频免费在线观看| 欧美 日韩 精品 国产| 亚洲国产av新网站| 巨乳人妻的诱惑在线观看| 熟女少妇亚洲综合色aaa.| 久久久精品免费免费高清| 久久热在线av| 久久女婷五月综合色啪小说| 岛国在线观看网站| 久久精品成人免费网站| 久久久久久久大尺度免费视频| 老司机午夜十八禁免费视频| 成年动漫av网址| 亚洲国产精品一区三区| 久久久国产精品麻豆| 高清欧美精品videossex| 亚洲av欧美aⅴ国产| 国产精品一二三区在线看| 久久香蕉激情| 无遮挡黄片免费观看| 欧美中文综合在线视频| 十八禁网站网址无遮挡| 美国免费a级毛片| 亚洲国产精品一区二区三区在线| 亚洲精品第二区| 欧美精品一区二区免费开放| 午夜免费成人在线视频| √禁漫天堂资源中文www| 欧美日韩av久久| 中国美女看黄片| 免费在线观看影片大全网站| 久久久久久亚洲精品国产蜜桃av| 两个人免费观看高清视频| 精品第一国产精品| 国产一区二区三区在线臀色熟女 | 中文欧美无线码| 老熟妇仑乱视频hdxx| 女人精品久久久久毛片| 国产精品久久久人人做人人爽| 久久久久久久精品精品| 久久人妻福利社区极品人妻图片| 亚洲精品一卡2卡三卡4卡5卡 | 又紧又爽又黄一区二区| 久久精品久久久久久噜噜老黄| 国产日韩欧美亚洲二区| 欧美另类一区| 黄色视频不卡| 亚洲va日本ⅴa欧美va伊人久久 | 老熟妇乱子伦视频在线观看 | 亚洲专区国产一区二区| 在线观看免费午夜福利视频| 日韩视频在线欧美| 天堂8中文在线网| 成在线人永久免费视频| 亚洲专区国产一区二区| 一进一出抽搐动态| 亚洲国产看品久久| 久久久久久久久免费视频了| 美女脱内裤让男人舔精品视频| 国产精品99久久99久久久不卡| 91国产中文字幕| www.自偷自拍.com| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看 | 国产深夜福利视频在线观看| 国产男人的电影天堂91| 一二三四社区在线视频社区8| 女人爽到高潮嗷嗷叫在线视频| 久久免费观看电影| 在线亚洲精品国产二区图片欧美| 婷婷丁香在线五月| www.999成人在线观看| 一本综合久久免费| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 久久久国产精品麻豆| 手机成人av网站| 日本av免费视频播放| 极品少妇高潮喷水抽搐| 中文字幕最新亚洲高清| 成在线人永久免费视频| 一边摸一边做爽爽视频免费| 热99re8久久精品国产| 精品国产一区二区三区四区第35| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃| 性色av一级| 极品人妻少妇av视频| 欧美变态另类bdsm刘玥| 丝袜美足系列| 男女边摸边吃奶| 嫩草影视91久久| 欧美国产精品一级二级三级| 90打野战视频偷拍视频| 午夜激情av网站| 国产极品粉嫩免费观看在线| 欧美在线黄色| av国产精品久久久久影院| 在线看a的网站| 悠悠久久av| 老司机午夜福利在线观看视频 | 国产亚洲精品久久久久5区| 一区二区三区激情视频| 少妇人妻久久综合中文| 宅男免费午夜| 咕卡用的链子| 欧美日韩成人在线一区二区| 免费黄频网站在线观看国产| 精品一区二区三区av网在线观看 | 久久精品亚洲av国产电影网| av在线老鸭窝| 日本av手机在线免费观看| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 色综合欧美亚洲国产小说| 日韩,欧美,国产一区二区三区| 中文字幕精品免费在线观看视频| 欧美成狂野欧美在线观看| 免费少妇av软件| 国产av国产精品国产| 亚洲av欧美aⅴ国产| 自线自在国产av| 精品一区在线观看国产| 叶爱在线成人免费视频播放| 国产精品一二三区在线看| 亚洲精品乱久久久久久| 国产一区二区三区综合在线观看| 手机成人av网站| 国产成人一区二区三区免费视频网站| 久久毛片免费看一区二区三区| 亚洲成人手机| 欧美亚洲 丝袜 人妻 在线| 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区 | 激情视频va一区二区三区| 狂野欧美激情性xxxx| 日韩,欧美,国产一区二区三区| 曰老女人黄片| 99久久国产精品久久久| 91麻豆精品激情在线观看国产 | 成人手机av| 天天躁狠狠躁夜夜躁狠狠躁| 久久青草综合色| 老鸭窝网址在线观看| 人人妻,人人澡人人爽秒播| 9色porny在线观看| 国产福利在线免费观看视频| 天天躁夜夜躁狠狠躁躁| 伦理电影免费视频| 91av网站免费观看| 成人av一区二区三区在线看 | 亚洲中文av在线| 国产精品一区二区精品视频观看| 99久久精品国产亚洲精品| 中文字幕人妻丝袜一区二区| 手机成人av网站| 极品人妻少妇av视频| 一本一本久久a久久精品综合妖精| 国产精品久久久久成人av| 最黄视频免费看| 午夜福利一区二区在线看| 国产在视频线精品| 亚洲一卡2卡3卡4卡5卡精品中文| 一区福利在线观看| 午夜91福利影院| 亚洲熟女精品中文字幕| 欧美黑人精品巨大| 精品久久久精品久久久| 成年人黄色毛片网站| 国产主播在线观看一区二区| 王馨瑶露胸无遮挡在线观看| 日本av免费视频播放| 午夜福利乱码中文字幕| 在线观看舔阴道视频| 亚洲熟女精品中文字幕| 午夜福利一区二区在线看| 又黄又粗又硬又大视频| 99热国产这里只有精品6| 亚洲成人国产一区在线观看| 女性被躁到高潮视频| 国产精品秋霞免费鲁丝片| 日本精品一区二区三区蜜桃| 97人妻天天添夜夜摸| 操美女的视频在线观看| 在线天堂中文资源库|