• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Image Representations of Numerical Simulations for Training Neural Networks

    2023-01-24 02:51:30YimingZhangZhiranGaoXueyaWangandQiLiu

    Yiming Zhang,Zhiran Gao,Xueya Wang and Qi Liu

    1School of Civil and Transportation Engineering,Hebei University of Technology,Tianjin,300401,China

    2School of Computer and Software,Nanjing University of Information Science&Technology,Nanjing,210044,China

    ABSTRACT A large amount of data can partly assure good fitting quality for the trained neural networks.When the quantity of experimental or on-site monitoring data is commonly insufficient and the quality is difficult to control in engineering practice,numerical simulations can provide a large amount of controlled high quality data.Once the neural networks are trained by such data,they can be used for predicting the properties/responses of the engineering objects instantly,saving the further computing efforts of simulation tools.Correspondingly,a strategy for efficiently transferring the input and output data used and obtained in numerical simulations to neural networks is desirable for engineers and programmers.In this work,we proposed a simple image representation strategy of numerical simulations,where the input and output data are all represented by images.The temporal and spatial information is kept and the data are greatly compressed.In addition,the results are readable for not only computers but also human resources.Some examples are given,indicating the effectiveness of the proposed strategy.

    KEYWORDS Numerical simulations;neural network;pre-/post-processing;data compression

    1 Introduction

    With the recent developments of machine learning algorithms,frameworks and systems,numerous Artificial Neural Networks (ANNs) have been proposed,built and adopted rapidly and widely in engineering applications.Neural networks can be driven by mechanisms or data.The first type can be represented by the Physical-Informed Neural Network(PINN)[1,2],which uses control equations(commonly in the form of partial differential equations)for building objective and loss functions[3–5]and then finds the optimal solution in the approximation space[6].They are powerful tools for solving problems that are numerically unstable and time consuming for conventional methods such as finite element and mesh-free methods[7–9].The second type on the contrary are the neural networks driven by labeled data.The data can be obtained by on-site sensors,experiments and numerical simulations.In many cases,the knowledge behind the phenomena described by these data is unclear for the networks.On the one hand,the interpretability of such networks is unsatisfactory.On the other hand,these networks may help to reveal new patterns,rules,and knowledge by“l(fā)earning”[10].Except for tools learning new patterns,data driven neural network can also be considered as a surrogate tool or a hierarchy model[11],as illustrated in Fig.1,taking the engineering design process as an example.In Fig.1,the blue arrows belong to the conventional design process and the red arrows belong to the design process augmented by data driven machine learning models.The green arrows belong to both.Once the machine learning models are trained,the large input-output database from parameter studies is unnecessary when the procedures in the frame can work independently and efficiently.

    Figure 1:Date driven machine learning models in the engineering design process

    Furthermore,engineering structures can be relatively large across space and time and the amount of data from on-site sensors and experiments,especially spatial data,is generally insufficient.In addition,these data can deviate considerably because of errors from monitoring or testing.In contrast,the quantity and quality of data from numerical simulations can be assured.Hence,first validating the numerical model by comparing the results to the experimental and monitored results and then training the neural network with numerically obtained data can be an advantageous procedure.

    Basic data driven neural networks are sequential learning models.There are input and output datasets,between which the structures of the neurons can be assembled and built in the platforms associated with TensorFlow[12]and PyTorch.The lower bound of the number of datasets is problem dependent.Except for the design of neural networks,methods for efficiently transferring the datasets from numerical simulations to neural networks are necessary.In this work,considering the advantages of modern neural networks on graphic processing,we propose an image representation method of numerical simulations for training neural networks.The main features of the proposed method include:

    · The method is easy to follow and can be implemented into the pre-and pro-processing parts of numerical tools such as those built in the finite element method(FEM)framework.

    · The input images naturally take into account the spatial information of the cases,which can be understood by not only neural networks but also human resources.

    · The sizes of the images can be further compressed/decompressed by other models such as autoencoders.

    Some examples will be provided to show the flexibility and effectiveness of the method.Moreover,we want to emphasize here that some procedures we proposed in this work could be very basic and natural for researchers working in computational mechanics,who follow similar rules for pre-and proprocessing during programming and computing for a long time.Nevertheless,we believe the method can be inspiring and helpful for researchers and engineers working in other fields such as computer science,and civil and mechanical engineering,which is the main motivation of this work.In the next section,we will provide basic rules and examples together with which the procedures are clarified.

    2 Method and Examples

    2.1 Basics

    We focus on 2D images and 2D simulations(planer or 1D transient cases)in this work,but the ideas can be extended to higher dimensional cases by using a series of continuous images/animations.Considering RGB images,every pixel has channels of three colors: red,green and blueRGB=[Rvalue,Gvalue,Bvalue].The value of each channel is between 0 and 255.A neural network was used for recognizing different compositions of heterogeneous materials represented by RGB images in [13],indicating that the information of RGB images including the RGB values as well as the pixel position can be properly transferred to neural networks.Herein,we take the numerical simulations conducted in the finite element framework as an example.The discretized domain is composed of elements,and each element has its own material and geometric properties.To ensure the performance of the neural network,only testable parameters can be considered as input parameters while the internal variables should not.

    2.2 Mechanical Responses of Matrix-Inclusion Material

    The mechanical responses of matrix-inclusion materials are basic numerical simulations for composites,such as concrete,rocks and polymers.The model and mesh are shown in Fig.2.The model will be loaded considering different boundary conditions including compression and shearing.As mentioned before,after large number of simulation results are obtained and transferred to neural network for training,the trained neural network can play the role of a database,which can provide mechanical responses of similar composites subjected to similar loading conditions.

    Figure 2:The model and mesh of the matrix-inclusion material

    When the matrix and inclusion are isotropic and linear elastic,basic material properties include elastic modulus and Poisson’s ratio,represented by red and green channels as Eq.(1)

    where(·)lwand(·)upare the lower and upper bounds of the corresponding parameters,respectively.The displacements along thexandydirections regarding isotropic and linear elastic conditions can be used for setting loading conditions,represented by red and green channels as Eq.(2)

    Meanwhile,the stress tensorσ=is the output parameter,occupying only three channels as Eq.(3)

    It can be found that transforming the input/output parameters into RGB figures is a normalization step,which shall be done anyway for neural networks.

    Considering the elastic modulus of the matrix and inclusion as 20 and 80 GPa respectively and the Poisson’s ratios of the matrix and inclusion as 0.3 and 0.1,respectively,the input and output images are shown in Fig.3,which includes compression and shearing conditions along thexandydirections.

    Figure 3:The input/output image representations of numerical simulations of mechanical responses of matrix-inclusion material with Elw = 10 GPa,Eup = 100 GPa,ux,lw = uy,lw = -0.05 mm,ux,up = uy,up =0.02 mm,σx,lw =σy,lw =-2.5 MPa,σx,up =σy,up =2 MPa,τxy,lw =-1 MPa,and τxy,up =1 MPa

    2.3 Slope Stability

    The second example refers to limit analysis of slope,which provides a factor of safety of a slope for assessing its stability and safety.Considering upper bound limit analysis,the necessary material parameters are cohesionc[kPa],friction angleφ[-] and weightγ[kPa/m].When slopes have very different sizes and these parameters are length scale dependent,normalizing the size of slopes before creating input images will be more convenient.We use the width of a slopelas the characteristic length and scale the slope into a width equal to 1.The material parameters become(c l)[kN],φ[-],and(γ l2)[kN],represented by three channels as Eq.(4)

    The output results are represented by slip lines or so called failure pattern images,which are obtained by discontinuity layout optimization [14–19] in this example.Other methods such as the strength reduction method or other finite element limit analysis methods are also applicable[20–22].For illustration,the input and output images are shown in Fig.4.

    Figure 4: The input/output image representations of numerical simulations of slope stability with1,500,000 kN

    2.4 Coupled Thermo-Hydro-Chemical Analysis of Heated Concrete

    When concrete members are subjected to fire loadings,explosive spalling may occur,which is the violent fracturing and splitting of concrete pieces from the heated structures.Spalling greatly jeopardizes the integrity and duratbility of structures[23],such as tunnel linings under fire accidents.Spalling is caused partly by the pore-pressure built up inside concrete,referring to the phase change,permeation and diffusion of liquid water and vapour [24–26] as a strongly coupled thermo-hydrochemical(THC)process.

    The control equations of the THC model of heated concrete are composed of three strongly coupled heat equations,which need to be solved concurrently,as a computing exhausting numerical procedure.Meanwhile,the fire loadings and concrete properties can be complex.Engineers and designers would always like to quickly assess the spalling risk of specific structures considering different conditions,which is a strong motive for developing data driven neural network models.

    In[27],the authors summarized fifteen parameters referring concrete properties,fire loadings and environmental moisture as input parameters.In this work,we use grayscale images to represent these parameters.The output parameters are still represented by RGB images,where the saturation degreeSw,the pore pressurepg,and temperatureToccupy three channels as Eq.(5)

    Considering the 1D case,the horizontal direction of the output image is taken for space distributions and the vertical direction is taken for time evolutions ofSw,pg,andT,see Fig.5.The input and output images are shown in Fig.6.

    Figure 5:Using an RGB image for representing the time-space variations of Sw,pg,and T

    Figure 6: (Continued)

    Figure 6: The input/output image representations of numerical simulations of the coupled thermohydrochemical analysis of heated concrete

    3 Numerical Example for Training a Neural Network by Images

    3.1 The Structure of the Neural Network

    A hybrid neural network composed of an autoencoder(AE)and a fully connected neural network(FNN) was built by the authors for learning the coupled THC example in [27].In this work,we simplify the structure and use a network composed of a convolutional neural network (CNN) and a fully connected neural network (FNN).Three designs are considered,see Figs.7 to 9,which are used for learning the data provided in Subsection 2.4 as examples.CNN can process images efficiently which is composed of convolution and pooling layers,where the convolution layers can extract features and the pooling layers can compress the data.Design 1 has four convolution layers and no pooling layer.Design 2 has three convolution layers and two pooling layers.Design 3 has four convolution layers and three pooling layers.In our example,the CNN is expected to extract and compress features from the input images containing concrete material parameters,environmental humidity and fire load.The FNN is used to build the mapping relation from the features to the output images containing the pore pressure,temperature and saturation information.For both CNN and FNN,the layer plays the role of building the mapping relation from the input vector X to the output vector Y as Eq.(6)

    where W and b are the weights and biases respectively used in this layer.f(·)is the activation function.For the FNN,the input vector and output vector are fully connected.In other words,each element of X influences each element of Y.In contrast,CNN uses a filter in the mapping process that slides at a defined step and outputs the sum of the product[28].

    Taking the structure shown in Fig.9 as an example,the CNN-FNN hybrid neural network is similar to an autoencoder(AE).The CNN plays the role of an encoder when the FNN plays the role of a decoder.There are 6720 sets of input and output images in the example,90%of which were used as training sets and 10%as test sets.The number of convolution kernels of the first three convolution layers is 16,32,64,and the size of the convolution kernels is 3 × 3.A pooling layer is added after each of the first three convolution layers.The size of the feature map after pooling is 128,64,32.The fourth convolution layer contains a convolution kernel with size 1×1,further reducing the dimension of the feature vector.The compression rate of the CNN is 0.13%.The FNN has three hidden layers to amplify the feature vector to the output images,which is similar to the work we presented in[27].The optimizer of the network is the Adam optimizer,and the stochastic gradient descent method is used.The MSE with regularization term is chosen as the loss function as Eq.(7)

    λis the regularization hyper-parameter andλ=10-4used in this work.Piis the real image vector and Siis the predicted image vector.qis the number of output images.

    Figure 7:The structure of neural network 1

    Figure 8:The structure of neural network 2

    Figure 9:The structure of neural network 3

    To avoid over-fitting,the K-fold cross-validation method is used to verify the generalization capability of the model.The 6048 groups of input and output images of the training set were divided into 10 groups of disjoint subsets and trained 10 times.Each time,one group was selected as the verification set and the other 9 groups were selected as the training set.Ten groups of data were trained and evaluated.The average loss and standard deviation obtained from ten-fold cross validation were 0.002295(±0.000171).Table 1 summarizes the hyperparameters used in the network.It is worth mentioning that numerous designs can be considered.We are still working on improving the designs,which will be presented later.

    Table 1: List of hyperparameter of the hybrid autoencoder neural network

    3.2 Results

    The evolution of the MSE loss with the evolution time(epoch)of all designs considering training and testing are shown in Fig.10.For all designs,the MSE loss drops very fast in training as well as testing.The original,and predicted results and their errors are shown in Figs.11 to 13,where the original images do not belong to the training or testing data.The error images are generated with corresponding pixel values of 255-|P-S|.The results indicate that the shapes are captured and that the colors are very similar.However,some details do not agree very well,especially in regions with high gas pressure.The errors can be further reduced by increasing the amount of data.Generally,design 3 provides the best results.We would like to emphasize that although the results are generally satisfying for the coupled THC example,the design of the network is mostly case dependent.When learning new data sets,the procedure to design,compare,test,and improve the network shall be conducted once more.Some recently proposed networks indicate that it is possible to build some widely applicable networks[29],which uses a similar design for a large number of scenarios.The researchers only need to adjust the hyperparameters.Some research is still ongoing.Except for the design of the network,increasing the number of data sets can effectively improve the prediction accuracy,which can be time consuming.

    Figure 10:The learning and testing results considering different network designs

    Figure 11:The original,predicted and error images of design 1

    Figure 12:The original,predicted and error images of design 2

    Figure 13:The original,predicted and error images of design 3

    4 Conclusions

    In this work,we present a strategy for representing the input parameters and output results of numerical simulations by images.With several examples we show that this strategy is simple and compatible with the pre/post-processing parts of popular numerical tools.The images account for the spatial and temporal information used and obtained in the numerical simulations.In addition,all images can be reprocessed by other algorithms.For one of the examples,we train a hybrid CNN-FNN neural network with the input/output images,indicating the effectiveness of the proposed strategy.

    Funding Statement:The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(NSFC)(52178324).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产av在哪里看| 欧美精品国产亚洲| 日本与韩国留学比较| 免费看a级黄色片| 国产高清激情床上av| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 国产精品久久久久久精品电影| 免费大片18禁| x7x7x7水蜜桃| 国产av麻豆久久久久久久| 亚洲电影在线观看av| 日韩中字成人| 日日干狠狠操夜夜爽| 桃色一区二区三区在线观看| 好看av亚洲va欧美ⅴa在| 91久久精品电影网| 久久久久久国产a免费观看| 亚洲成av人片免费观看| 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 国产大屁股一区二区在线视频| 欧美精品啪啪一区二区三区| 国内揄拍国产精品人妻在线| 精品久久久久久久末码| 天堂影院成人在线观看| 亚洲中文字幕日韩| 亚洲,欧美精品.| 少妇裸体淫交视频免费看高清| 搡老妇女老女人老熟妇| 亚洲黑人精品在线| 久久久久国内视频| 精品熟女少妇八av免费久了| 国产亚洲欧美98| 中文字幕人妻熟人妻熟丝袜美| 看黄色毛片网站| 特级一级黄色大片| 婷婷精品国产亚洲av| 91久久精品电影网| 亚洲精品成人久久久久久| 美女黄网站色视频| 久久久久久大精品| 欧美zozozo另类| 亚洲最大成人手机在线| 99久久精品国产亚洲精品| 内地一区二区视频在线| 天堂网av新在线| 色5月婷婷丁香| 小说图片视频综合网站| 日本黄色视频三级网站网址| 亚洲真实伦在线观看| 搡女人真爽免费视频火全软件 | 夜夜夜夜夜久久久久| 中文字幕免费在线视频6| 亚洲av成人精品一区久久| 在线播放无遮挡| 欧美日韩综合久久久久久 | 欧美日韩综合久久久久久 | 精品福利观看| 亚洲av免费在线观看| 青草久久国产| 成人精品一区二区免费| 亚洲国产精品999在线| 国产黄色小视频在线观看| 在线看三级毛片| 精品人妻一区二区三区麻豆 | 国产乱人视频| 国产三级在线视频| 国产蜜桃级精品一区二区三区| 日韩中字成人| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 如何舔出高潮| 国产乱人伦免费视频| 男女做爰动态图高潮gif福利片| 中亚洲国语对白在线视频| 亚洲avbb在线观看| 亚洲第一区二区三区不卡| 亚洲av成人av| 欧美3d第一页| .国产精品久久| 久久99热这里只有精品18| 欧美成人一区二区免费高清观看| 国产综合懂色| 精品人妻偷拍中文字幕| 一区二区三区四区激情视频 | 国产国拍精品亚洲av在线观看| 男人和女人高潮做爰伦理| 99精品在免费线老司机午夜| 午夜福利在线在线| 亚洲七黄色美女视频| 校园春色视频在线观看| 永久网站在线| 亚洲精品粉嫩美女一区| 欧美3d第一页| 国模一区二区三区四区视频| 99久久成人亚洲精品观看| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 亚洲av不卡在线观看| 欧美最新免费一区二区三区 | 亚洲avbb在线观看| 人妻夜夜爽99麻豆av| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| 91九色精品人成在线观看| av在线观看视频网站免费| 欧美日韩乱码在线| 国产又黄又爽又无遮挡在线| 人人妻,人人澡人人爽秒播| a级毛片免费高清观看在线播放| 国产欧美日韩一区二区精品| 男人狂女人下面高潮的视频| 窝窝影院91人妻| h日本视频在线播放| 亚洲精品亚洲一区二区| 欧美午夜高清在线| 国产精品女同一区二区软件 | 国内精品久久久久久久电影| av黄色大香蕉| 久久久久久久久久成人| 人妻夜夜爽99麻豆av| 国产免费av片在线观看野外av| 乱人视频在线观看| 麻豆成人午夜福利视频| 级片在线观看| 少妇高潮的动态图| 97碰自拍视频| 欧美黑人欧美精品刺激| 老鸭窝网址在线观看| 国产单亲对白刺激| 国产成人a区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产爱豆传媒在线观看| 我的女老师完整版在线观看| 狠狠狠狠99中文字幕| 少妇人妻精品综合一区二区 | 麻豆一二三区av精品| 国产老妇女一区| 日本与韩国留学比较| 国产一区二区亚洲精品在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品久久国产高清桃花| 麻豆av噜噜一区二区三区| 午夜精品一区二区三区免费看| 欧美最新免费一区二区三区 | 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 精品午夜福利在线看| 欧美xxxx性猛交bbbb| 成人永久免费在线观看视频| 精品一区二区免费观看| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 欧美+亚洲+日韩+国产| 丰满的人妻完整版| 亚洲无线在线观看| 国产成人影院久久av| 国产亚洲欧美98| 天堂av国产一区二区熟女人妻| 一区二区三区高清视频在线| 久久6这里有精品| 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 天美传媒精品一区二区| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 亚洲五月天丁香| 啦啦啦观看免费观看视频高清| 日本五十路高清| 国产精品久久视频播放| 欧美日本视频| 亚洲18禁久久av| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 国产三级黄色录像| 色综合欧美亚洲国产小说| 99久久99久久久精品蜜桃| 999久久久精品免费观看国产| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 别揉我奶头~嗯~啊~动态视频| 桃色一区二区三区在线观看| 免费一级毛片在线播放高清视频| 亚洲精品在线美女| 精品国产三级普通话版| av在线天堂中文字幕| 久99久视频精品免费| 日韩 亚洲 欧美在线| 99热这里只有是精品50| 免费人成在线观看视频色| 日本成人三级电影网站| 亚洲美女视频黄频| 夜夜爽天天搞| 亚洲久久久久久中文字幕| 内射极品少妇av片p| 无遮挡黄片免费观看| 嫩草影院精品99| 日韩亚洲欧美综合| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸| www.色视频.com| 性插视频无遮挡在线免费观看| 如何舔出高潮| 又黄又爽又免费观看的视频| 国产真实伦视频高清在线观看 | 亚洲av一区综合| 亚洲国产色片| 欧美潮喷喷水| 亚洲成人久久性| 五月玫瑰六月丁香| 真人一进一出gif抽搐免费| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 久久这里只有精品中国| 欧美成人一区二区免费高清观看| 亚洲国产精品久久男人天堂| 看十八女毛片水多多多| 精品久久久久久,| 亚洲欧美日韩卡通动漫| 日本黄色片子视频| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| or卡值多少钱| 久久99热6这里只有精品| 精品久久久久久久人妻蜜臀av| 一进一出抽搐gif免费好疼| 变态另类丝袜制服| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 一区二区三区高清视频在线| 女生性感内裤真人,穿戴方法视频| 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 九九久久精品国产亚洲av麻豆| 在线观看午夜福利视频| 别揉我奶头 嗯啊视频| 欧美最新免费一区二区三区 | 国产精品久久视频播放| 99久久成人亚洲精品观看| 全区人妻精品视频| 88av欧美| 国产淫片久久久久久久久 | 日韩成人在线观看一区二区三区| 亚洲av一区综合| 国内久久婷婷六月综合欲色啪| 欧美区成人在线视频| 国产欧美日韩一区二区三| www.www免费av| 日韩欧美国产在线观看| 国产精品久久久久久久电影| 亚洲av美国av| 久99久视频精品免费| 久久久久免费精品人妻一区二区| 精华霜和精华液先用哪个| 免费人成视频x8x8入口观看| 一本精品99久久精品77| 悠悠久久av| 国产一区二区三区在线臀色熟女| 麻豆成人午夜福利视频| 午夜日韩欧美国产| 少妇人妻一区二区三区视频| 嫩草影院入口| 国产av一区在线观看免费| 成年女人看的毛片在线观看| АⅤ资源中文在线天堂| 久久九九热精品免费| 丁香六月欧美| 日本五十路高清| 免费观看人在逋| 日韩欧美在线二视频| 久久精品91蜜桃| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 内射极品少妇av片p| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 天堂网av新在线| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 色综合欧美亚洲国产小说| 一级黄色大片毛片| 深夜精品福利| 日韩 亚洲 欧美在线| 91九色精品人成在线观看| 午夜福利欧美成人| www.www免费av| 丁香六月欧美| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 99精品在免费线老司机午夜| av中文乱码字幕在线| 两个人视频免费观看高清| 一本精品99久久精品77| 日韩免费av在线播放| 免费看美女性在线毛片视频| 欧美高清性xxxxhd video| 变态另类成人亚洲欧美熟女| 黄片小视频在线播放| 一本一本综合久久| 成人欧美大片| 色在线成人网| 男插女下体视频免费在线播放| 国产探花在线观看一区二区| 波多野结衣高清无吗| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 一进一出抽搐gif免费好疼| 国产精品女同一区二区软件 | 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 国产久久久一区二区三区| 欧美日韩黄片免| 亚洲狠狠婷婷综合久久图片| 国产v大片淫在线免费观看| 精品国产亚洲在线| 欧美日韩中文字幕国产精品一区二区三区| 国产精品永久免费网站| www.色视频.com| aaaaa片日本免费| 激情在线观看视频在线高清| 日本免费a在线| 成人一区二区视频在线观看| av欧美777| 国产美女午夜福利| 嫩草影视91久久| 欧美日韩福利视频一区二区| 国产免费一级a男人的天堂| 亚洲精品久久国产高清桃花| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 国产亚洲精品久久久久久毛片| 夜夜爽天天搞| netflix在线观看网站| 国内揄拍国产精品人妻在线| 久久久色成人| 真人做人爱边吃奶动态| 亚洲成人中文字幕在线播放| 男插女下体视频免费在线播放| 中文字幕av在线有码专区| 欧美在线黄色| 精品99又大又爽又粗少妇毛片 | 亚洲av熟女| 亚洲欧美日韩东京热| 听说在线观看完整版免费高清| 99久久精品一区二区三区| 亚洲自偷自拍三级| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 夜夜躁狠狠躁天天躁| 精品午夜福利在线看| 亚洲人成网站高清观看| 变态另类丝袜制服| 国产激情偷乱视频一区二区| 亚洲狠狠婷婷综合久久图片| 特级一级黄色大片| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 亚洲精华国产精华精| 婷婷精品国产亚洲av| 日本 欧美在线| 欧美不卡视频在线免费观看| .国产精品久久| 日韩av在线大香蕉| av天堂中文字幕网| 国产成人影院久久av| 熟女电影av网| 欧美色视频一区免费| 永久网站在线| 午夜免费激情av| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频| 亚洲电影在线观看av| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 亚洲欧美日韩高清专用| 又粗又爽又猛毛片免费看| 日韩亚洲欧美综合| 黄色一级大片看看| or卡值多少钱| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 简卡轻食公司| 看十八女毛片水多多多| or卡值多少钱| 精品久久久久久久久久免费视频| 国产午夜精品久久久久久一区二区三区 | 69av精品久久久久久| 国产伦精品一区二区三区四那| 国产蜜桃级精品一区二区三区| 两人在一起打扑克的视频| 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 成人鲁丝片一二三区免费| 不卡一级毛片| 啪啪无遮挡十八禁网站| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 日本撒尿小便嘘嘘汇集6| 不卡一级毛片| 色精品久久人妻99蜜桃| 人人妻人人看人人澡| 久久精品国产清高在天天线| 午夜激情福利司机影院| 精品国产亚洲在线| 色播亚洲综合网| 91九色精品人成在线观看| АⅤ资源中文在线天堂| 国内久久婷婷六月综合欲色啪| 自拍偷自拍亚洲精品老妇| 一级作爱视频免费观看| 久久香蕉精品热| 欧美zozozo另类| 91狼人影院| 舔av片在线| 日韩大尺度精品在线看网址| 婷婷六月久久综合丁香| 成熟少妇高潮喷水视频| 日韩欧美 国产精品| 中国美女看黄片| 欧美乱色亚洲激情| 精品久久国产蜜桃| 又黄又爽又刺激的免费视频.| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 高清毛片免费观看视频网站| 国产毛片a区久久久久| 超碰av人人做人人爽久久| 国产免费男女视频| 久久久久国内视频| 大型黄色视频在线免费观看| 中出人妻视频一区二区| www.色视频.com| 日韩大尺度精品在线看网址| 俄罗斯特黄特色一大片| 婷婷亚洲欧美| 在现免费观看毛片| 国产av在哪里看| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 脱女人内裤的视频| 欧美日韩乱码在线| 午夜两性在线视频| 三级毛片av免费| 久久国产乱子免费精品| 老女人水多毛片| 九色成人免费人妻av| 亚洲无线观看免费| 在线观看午夜福利视频| 好男人电影高清在线观看| 麻豆av噜噜一区二区三区| 热99在线观看视频| 国产探花在线观看一区二区| 亚洲av一区综合| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 老女人水多毛片| www.色视频.com| 人妻久久中文字幕网| 亚洲,欧美精品.| 午夜精品一区二区三区免费看| 一个人免费在线观看的高清视频| 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频| 久久精品人妻少妇| 精品99又大又爽又粗少妇毛片 | 毛片女人毛片| 久久人人精品亚洲av| 久久精品国产亚洲av天美| 国产高清视频在线观看网站| 国产精品亚洲美女久久久| 午夜福利在线观看吧| 三级国产精品欧美在线观看| 成人鲁丝片一二三区免费| 一进一出好大好爽视频| 久久久久久久久中文| 免费人成视频x8x8入口观看| 日韩欧美 国产精品| 亚洲精品456在线播放app | 一本一本综合久久| 久久人人精品亚洲av| 国产av一区在线观看免费| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 成人av在线播放网站| 搡老岳熟女国产| 男女那种视频在线观看| 极品教师在线免费播放| 久久国产精品影院| 亚洲人成伊人成综合网2020| 99久久精品热视频| 美女被艹到高潮喷水动态| 51午夜福利影视在线观看| 久久香蕉精品热| 很黄的视频免费| 99久久精品热视频| 久久久久久久久中文| 一个人观看的视频www高清免费观看| 动漫黄色视频在线观看| 免费在线观看成人毛片| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 亚洲av熟女| 悠悠久久av| 特大巨黑吊av在线直播| 十八禁网站免费在线| 久久精品国产亚洲av涩爱 | 婷婷精品国产亚洲av在线| 国产成人啪精品午夜网站| 国产黄a三级三级三级人| 亚洲国产精品合色在线| 国产真实乱freesex| 日韩成人在线观看一区二区三区| 精品久久久久久久久久免费视频| 国产伦人伦偷精品视频| 麻豆久久精品国产亚洲av| 少妇人妻精品综合一区二区 | 国产av在哪里看| 一级av片app| 色噜噜av男人的天堂激情| 久久久久精品国产欧美久久久| 亚洲综合色惰| www.熟女人妻精品国产| 国产精品免费一区二区三区在线| 国产在视频线在精品| 国产欧美日韩一区二区三| 真实男女啪啪啪动态图| 男女床上黄色一级片免费看| 亚洲三级黄色毛片| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 深爱激情五月婷婷| 两性午夜刺激爽爽歪歪视频在线观看| 狠狠狠狠99中文字幕| 国产精品一区二区三区四区免费观看 | 精品午夜福利在线看| 国产精品野战在线观看| 久久久久久久午夜电影| 国产乱人伦免费视频| 在线免费观看不下载黄p国产 | 性色avwww在线观看| 最好的美女福利视频网| 精品一区二区三区av网在线观看| 制服丝袜大香蕉在线| 亚洲一区二区三区色噜噜| 亚洲av不卡在线观看| 国产三级黄色录像| 三级男女做爰猛烈吃奶摸视频| 无人区码免费观看不卡| 我的女老师完整版在线观看| 欧美绝顶高潮抽搐喷水| 久9热在线精品视频| 国内揄拍国产精品人妻在线| 看黄色毛片网站| 一本久久中文字幕| 丁香欧美五月| 免费一级毛片在线播放高清视频| 久久午夜福利片| 欧美日本亚洲视频在线播放| 国内精品久久久久精免费| 亚洲国产精品成人综合色| 嫩草影视91久久| 国产aⅴ精品一区二区三区波| 制服丝袜大香蕉在线| 国产高潮美女av| www.熟女人妻精品国产| 亚洲av一区综合| 日韩欧美 国产精品| 日本在线视频免费播放| 一个人免费在线观看的高清视频| 成人特级黄色片久久久久久久| 亚洲第一欧美日韩一区二区三区| 精品久久国产蜜桃| 国产精品亚洲一级av第二区| 成年女人毛片免费观看观看9| 天堂√8在线中文| 婷婷精品国产亚洲av| 美女高潮的动态| 国产精品一区二区三区四区久久| 激情在线观看视频在线高清| 亚洲欧美激情综合另类| 欧美黑人欧美精品刺激| 国产精品亚洲美女久久久| 99riav亚洲国产免费| 国产爱豆传媒在线观看| 男人狂女人下面高潮的视频| 久久精品久久久久久噜噜老黄 | 很黄的视频免费| 婷婷色综合大香蕉| 国产综合懂色| 丰满乱子伦码专区| 人妻制服诱惑在线中文字幕| 高清毛片免费观看视频网站| av在线观看视频网站免费| 日韩欧美国产在线观看| 国产精品爽爽va在线观看网站| 伦理电影大哥的女人| 欧美成狂野欧美在线观看| 嫩草影视91久久| 中文字幕免费在线视频6| 精品午夜福利在线看| 中文资源天堂在线| 最近最新免费中文字幕在线|