• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Volt/Var Control of Distribution Networks Based on PPO Algorithm

    2023-01-22 09:01:08ChaoZhuLeiWangDaiPanZifeiWangTaoWangLichengWangandChengjinYe

    Chao Zhu,Lei Wang,Dai Pan,Zifei Wang,Tao Wang,Licheng Wang,★and Chengjin Ye

    1State Grid Zhejiang Economic and Technological Research Institute,Hangzhou,310008,China

    2College of Information Engineering,Zhejiang University of Technology,Hangzhou,310023,China

    3College of Electrical Engineering,Zhejiang University,Hangzhou,310058,China

    ABSTRACT In this paper,a model free volt/var control(VVC)algorithm is developed by using deep reinforcement learning(DRL).We transform the VVC problem of distribution networks into the network framework of PPO algorithm,in order to avoid directly solving a large-scale nonlinear optimization problem.We select photovoltaic inverters as agents to adjust system voltage in a distribution network,taking the reactive power output of inverters as action variables.An appropriate reward function is designed to guide the interaction between photovoltaic inverters and the distribution network environment.OPENDSS is used to output system node voltage and network loss.This method realizes the goal of optimal VVC in distribution network.The IEEE 13-bus three phase unbalanced distribution system is used to verify the effectiveness of the proposed algorithm.Simulation results demonstrate that the proposed method has excellent performance in voltage and reactive power regulation of a distribution network.

    KEYWORDS Deep reinforcement learning;voltage regulation;unbalance distribution systems;high photovoltaic permeability;photovoltaic inverter;volt/var control

    1 Introduction

    In recent years,with the large consumption of traditional energy,energy crisis and environmental pollution have become increasingly serious.At the same time,in order to fit China’s energy strategy of “carbon peaking”and “carbon neutralization”, the energy structure dominated by fossil energy is gradually transforming to that dominated by renewable energy, and the new energy industry has developed rapidly [1–5].The new energy has the advantages of clean, infinite regeneration, small amount of operation and maintenance,but new requirements are put forward for traditional volt/var control(VVC)[6].For the problem of grid local voltage out of limit caused by the intermittence and fluctuation of photovoltaic output[7],in the traditional VVC,the discrete tap/switch mechanism of onload tap changers(OLTC)and capacitor banks(CBS)is used to control the voltage[8].However,with the continuous increase of photovoltaic permeability in the distribution network,the burden of such voltage regulating equipment increases sharply(such as frequent tap switching[9],repeated charging and discharging of energy storage, etc.), which leads to accelerated aging and even damage of the equipment and is unable to deal with the voltage violation caused by high photovoltaic permeability[10].Because photovoltaic inverter has the advantage of instantaneous response to system voltage changes and can participate in the voltage regulation of distribution network according to the revised IEEE1547 standard [11], photovoltaic inverter is widely used in voltage management under high photovoltaic permeability[12–18].

    At the algorithm design level,the early designed photovoltaic inverter participating in the voltage control strategy of distribution network is mainly centralized solution based on optimal power flow (OPF) algorithm [19,20].However, these methods generally have some problems, such as large amount of calculation, easy to fall into local optimization, heavy dependence on prediction data and difficult to realize on-line control.Considering that photovoltaic inverter has the advantages of flexible regulation of reactive power and deep reinforcement learning model has the ability to process massive and complex data information in real time [21], a real-time voltage regulation method of distribution network based on reinforcement learning is proposed in this paper.The VVC problem is transformed into a Proximal Policy Optimization (PPO) network framework.We take multiple inverters as agents; the action of the agent is determined by the interactive training between the inverter and the environment.This method realizes the voltage management under high photovoltaic permeability.The main contributions of this paper are as follows:

    1) We propose a data-driven real-time voltage control framework, which can quickly deal with the voltage violations caused by high photovoltaic permeability by controlling multiple photovoltaic inverter devices.

    2) We propose a multi-agent deep reinforcement learning (MADRL) algorithm based on photovoltaic inverter.In the off-line training process, the voltage out of limit and the reactive power output of photovoltaic inverter are modeled as penalty terms to ensure the security of power grid.

    3) The load and voltage values of all nodes are integrated into OPENDSS, and the MADRL problem is realized by PPO algorithm.Compared with the traditional method, the voltage regulation efficiency of three-phase distribution system is significantly improved.

    2 PPO Algorithm

    PPO algorithm is a deep reinforcement learning algorithm based on actor-critic structure.It obtains the optimal policy based on policy gradient.The critic network in PPO algorithm is used to approximate the state value function, and its network parameters are updated by minimizing the estimation deviation of the estimation function.The calculation formula is shown in Eq.(1).

    whereφis the parameter of critic network andV(st)is the output value of critic network.

    In PPO algorithm,actor network is used for approximation strategy,and the network parameters are updated by introducing the concept of importance sampling and continuously optimizing and improving the objective function.The introduction of importance sampling not only improves the utilization of data samples,but also speeds up the convergence speed of the model.The specific method is realized by Eqs.(2)–(8).Assuming that there is a random variablexand the probability density function isp(x),the expected calculation off (x)is shown in Eq.(2).

    The importance sampling method,i.e.,Eq.(2)is applied to PPO algorithm,the objective function of PPO algorithm can be written as Eq.(3)[22].

    whereA′(st,at)is the advantage function sampled according to the strategy and theT-step return value estimation method,which is equivalent to the advantage function in Eq.(2).rθis the probability ratio of action taken by the new strategy and the old strategy in the current state, which is equivalent tothat in Eq.(2).The premise of applying Eq.(2)to PPO algorithm is that the gap between strategy probability distributionπθandπθ′is within a certain range[23].Therefore,KLdivergence is introduced into PPO algorithm,and the objective function becomes Eq.(6).

    whereβrepresents the penalty for the difference betweenπθandπθ′distribution.BecauseKLdivergence is not easy to calculate,the method of clipping is used to replaceKLdivergence,which can effectively limit the range of update.The objective function of PPO algorithm including clip function is expressed as Eqs.(7)and(8).

    3 Proposed VVC Algorithm

    According to Markov decision theory and PPO algorithm framework, the distribution network environment is modeled.Taking the reactive power output of each inverter in the distribution network as the regulating variable,after off-line centralized training,the goal of not exceeding the voltage limit of the distribution network under high photovoltaic permeability is finally completed.

    3.1 Environmental Modeling

    Markov decision process is composed of a five tuple, expressed as (s,a,P,R,R).Power system environment modeling is mainly set from three aspects:states, actionaand rewardR.Under the framework of this paper,the main task of the agent is to select the appropriate reactive power output and transmit it to OPENDSS to ensure the convergence of power flow calculation and the node voltage does not exceed the limit.

    1) State:

    The state quantity needs to guide the agent to make appropriate actions[24].The setting of state quantity in this paper is shown in Eqs.(9) and (10), which includes the three-phase voltage of each node in the three-phase distribution network:

    whererepresents the voltage magnitude on phaseφat nodek.

    2) Action:

    The action quantity needs to guide the agent from the current state to the next state.In this paper,the reactive power output of the inverter is selected as the action,and because the output of the PPO algorithm used in this paper is the probability distribution of the action value,the action value is fixed in a certain range.Therefore,the action value in this paper is expressed as Eqs.(11)and(12).

    whereairepresents the reactive output of the three-phase inverter, i.e.,aφ i.AiRepresents the action space of the ith agent, whereaminandamaxrepresent the upper and lower limits of the action value space.During the training,the value is mapped to the reactive output space of the inverter.

    3) Reward:

    The setting of reward value needs to guide the agent to move in the right direction,so as to achieve the target value.In order to achieve the goal of non violation of distribution network voltage under high photovoltaic permeability Eq.(13),the rewards used in constructing PPO algorithm in this paper are shown in Eqs.(14)and(15).

    When the node voltage value exceeds the limit after the agent acts,a huge penaltyMwill be given to the out of limit part,the reward function at the current time is expressed as Eq.(14).

    where relu function is a piecewise function,which can change all negative values to 0,while the positive values remain unchanged.Therefore,when the node voltage exceeds the limit,the voltage is moved to the normal range through the reward function Eq.(14)we set.

    When the node voltage does not exceed the limit after the agent acts,we set the reward function at the current time as follows[25]:

    whereandrespectively refer to the network loss value of the system when the inverter does not take action and after the action.When the inverter acts,the system network loss decreases,the agent will be given a positive reward,otherwise,the agent will be given a corresponding negative reward.

    3.2 Model Training Process

    The training flow chart of real-time voltage regulation of distribution network based on PPO algorithm is shown in Fig.1.

    Figure 1:Voltage real-time control training framework

    Firstly,the network parameters of actor network and critic network are initialized,and the replay buffer capacity and related training parameters are set;Randomly select a group of initial state Eq.(9)from the environment,select the action Eq.(11)of the inverter according to the strategy of the actor network, input state and action into OPENDSS to obtain the state values′at the next time, obtain the reward valuertaccording to Eqs.(14)and(15),and store(st,at,rt,st+1)in the replay buffer.Takelsample values (sl,al,sl+1,rl+1) from the replay buffer,l= 1,2,...,Linput (sl,sl+1) into the critic network, update the critic network parameters according to Eq.(1), and calculate the advantage function according to the critic network output value and Eq.(4).Input(sl,al)into the actor network,calculate the probability ratio of the old and new strategies to take actionalin the stateslaccording to Eq.(5),and finally calculate the objective function of the actor network through equation Eq.(7),and update its network parameters through Eq.(8),so as to obtain the new strategy.

    4 Case Studies and Analysis

    4.1 Case Design

    In this paper,IEEE 13-bus three phase unbalanced distribution system[26]is used to test whether PPO algorithm can realize voltage management.Four three-phase inverters are placed at nodes 645,671, 652 and 692.In this case, the load in each node fluctuates randomly by 80%~120%, and then 1000 groups of training data with random fluctuation are generated through the comprehensive power simulation tool OPENDSS of power distribution network system.The neural network determines the reactive power output of the inverter according to the node voltage value and network loss provided by the training data.The specific implementation process of the algorithm is shown in Table 1.

    Table 1:Algorithm training process

    Specific description of PPO algorithm neural network:In the neural network model designed in this paper,both actor network and critic network adopt fully connected network.Taking actor network as an example, the specific model is shown in Fig.2.The number of neurons in the input layer is determined by the node voltage in the power system model.In this case,the number of neurons in the input layer is 35,and batch normalization is carried out at the output to enhance the robustness of the model;The number of hidden layers and nodes in actor network and critic network are closely related to the power grid structure.In this case,actor network and critic network adopt the same hidden layer structure, both use two-layer neural networks to construct hidden layers, the number of neurons in each layer is 256,and both use relu function as activation function to enhance the nonlinear mapping ability of the whole neural network;In this case,the number of neurons in the output layer of actor network and critic network is 4 and 1,respectively,and the loss function adopts Adam optimization algorithm.

    The specific algorithm and model training parameters are shown in Table 2.

    Table 2:Algorithm and model training parameters

    Figure 2:The neural network of actor network

    4.2 Result Analysis

    According to the neural network model and algorithm training process designed in the previous section,the training reward function curve in Fig.3 and the number of actions taken by the agent in each episode in Fig.4 are obtained.It can be seen from the reward curve in Fig.3 that at the beginning,due to the limited training times, the agent could not learn effective action strategies, therefore, the node voltage value after the action of the inverter cannot meet the constraint Eq.(13),and a negative reward will be obtained according to Eqs.(14)and(15);With the continuous training,the agent will gradually move in the correct direction, so it will continue to obtain a positive reward; When the number of training times reaches 8000, the algorithm basically converges, and the action strategy selected by the agent can always obtain a positive reward.

    Figure 3:PPO training process in the IEEE 13-bus system

    Figure 4:Number of steps taken for 10000 training episode

    The algorithm in this paper stipulates that the agent in an episode can act up to 10 times.If the voltage exceeds the limit,the episode will end in advance and proceed to the next episode.By observing Fig.4, it can be found that with the progress of training, the action times of agents in each episode gradually increase and finally converge to 10 times.

    The voltage fluctuation curve of IEEE 13-bus three phase unbalanced system before reactive power regulation is shown in Fig.5.It can be observed that the voltage fluctuation range is relatively large between 10:00~15:00, and the voltage value is outside the safe operation limit.The voltage fluctuation curve after reactive power regulation of the system using the VVC method proposed in this paper is shown in Fig.6.It is obvious that the agent can make the voltage within 0.95~1.05 after action.Figs.2–5 comprehensively illustrate that the algorithm designed in this paper can achieve the effect of voltage regulation.

    Figure 5:Voltage value before system reactive power regulation

    Figure 6:Voltage value after system reactive power regulation

    5 Conclusion

    In this paper, a voltage regulation method based on PPO is proposed and verified in IEEE 13-bus three-phase unbalanced distribution network.Taking the node load, photovoltaic quantity and inverter in the model as the DRL environment,and through the continuous interaction between the environment and the agent, the model can automatically select the control action, so as to realize the automatic voltage regulation in the distribution network.On the one hand, compared with the traditional voltage regulation using analytical optimization method, PPO algorithm can effectively avoid the inaccurate algorithm performance caused by transforming nonlinear model into linear model,and can quickly adjust the inverter in the face of complex distribution network model,so as to speed up the voltage regulation in distribution network.On the other hand,PPO skillfully removes those parts that make the network parameters change too violently through the clipping operation,so as to realize the screening of data.The filtered data will not produce gradient.Therefore,compared with the strategic gradient algorithm,PPO algorithm has higher stability and data efficiency.

    Funding Statement:This work is supported by the Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.under Grant B311JY21000A.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲,一卡二卡三卡| 亚洲天堂av无毛| 考比视频在线观看| 最近的中文字幕免费完整| 青春草亚洲视频在线观看| 亚洲色图 男人天堂 中文字幕 | 精品少妇内射三级| 桃花免费在线播放| 男女免费视频国产| 久热这里只有精品99| 亚洲av综合色区一区| 91精品伊人久久大香线蕉| 亚洲一级一片aⅴ在线观看| 免费观看在线日韩| 男人添女人高潮全过程视频| 麻豆乱淫一区二区| 免费观看无遮挡的男女| 爱豆传媒免费全集在线观看| 男女边摸边吃奶| 黄色配什么色好看| 精品亚洲成国产av| 少妇 在线观看| 国产免费视频播放在线视频| 丝袜脚勾引网站| 日本wwww免费看| 国产女主播在线喷水免费视频网站| 少妇的逼水好多| 亚洲精品国产av蜜桃| 2021少妇久久久久久久久久久| 91久久精品国产一区二区三区| 国产又色又爽无遮挡免| 国产探花极品一区二区| 91成人精品电影| 秋霞在线观看毛片| 日日摸夜夜添夜夜爱| 国产精品国产三级国产av玫瑰| 亚洲精品乱码久久久久久按摩| 久久久久久久久久成人| av在线app专区| 国产精品嫩草影院av在线观看| 久久影院123| 亚洲欧洲国产日韩| 纵有疾风起免费观看全集完整版| 国产精品不卡视频一区二区| 亚洲不卡免费看| a 毛片基地| 国产成人免费无遮挡视频| 九色成人免费人妻av| 日本色播在线视频| 免费观看av网站的网址| 欧美激情 高清一区二区三区| 久久久久久久国产电影| 一边亲一边摸免费视频| 精品国产一区二区三区久久久樱花| 国产亚洲av片在线观看秒播厂| a级毛片黄视频| 免费观看无遮挡的男女| 免费久久久久久久精品成人欧美视频 | 精品国产一区二区久久| 久久免费观看电影| 亚洲人成77777在线视频| 久热这里只有精品99| av线在线观看网站| 国产精品熟女久久久久浪| 亚洲av电影在线观看一区二区三区| 日本wwww免费看| 大香蕉久久成人网| 免费观看av网站的网址| 精品少妇黑人巨大在线播放| 一级爰片在线观看| 亚洲av综合色区一区| 美女国产高潮福利片在线看| 中文字幕av电影在线播放| 有码 亚洲区| 日韩不卡一区二区三区视频在线| 男女啪啪激烈高潮av片| 黑丝袜美女国产一区| 日韩成人伦理影院| tube8黄色片| 三上悠亚av全集在线观看| 狂野欧美激情性bbbbbb| 精品卡一卡二卡四卡免费| 一级毛片电影观看| 日日撸夜夜添| 国产精品一国产av| 欧美精品一区二区大全| 国产成人精品在线电影| 欧美激情 高清一区二区三区| 久久久久久久亚洲中文字幕| 999精品在线视频| 水蜜桃什么品种好| 精品久久久精品久久久| 久久人人爽av亚洲精品天堂| 国产成人免费观看mmmm| 国产精品一国产av| 亚洲精品视频女| 亚洲欧美精品自产自拍| videosex国产| 国产毛片在线视频| 久热这里只有精品99| tube8黄色片| 99久久人妻综合| 久热久热在线精品观看| 99热全是精品| 老司机亚洲免费影院| 丝袜美足系列| 在线观看美女被高潮喷水网站| 日本猛色少妇xxxxx猛交久久| 亚洲国产av新网站| 欧美日韩在线观看h| 久久久久久久久久久久大奶| 一级毛片黄色毛片免费观看视频| 久久精品国产亚洲av涩爱| 亚洲经典国产精华液单| 精品一品国产午夜福利视频| 亚洲精品一区蜜桃| 美女视频免费永久观看网站| 少妇熟女欧美另类| 精品人妻熟女av久视频| 美女cb高潮喷水在线观看| 国产免费视频播放在线视频| 欧美日韩视频高清一区二区三区二| 有码 亚洲区| 777米奇影视久久| 久久久久久伊人网av| av福利片在线| 日本与韩国留学比较| 日韩av不卡免费在线播放| 免费观看在线日韩| 大陆偷拍与自拍| 女性生殖器流出的白浆| 91精品三级在线观看| 欧美老熟妇乱子伦牲交| 日韩一区二区视频免费看| 日本欧美视频一区| 国产色爽女视频免费观看| 国产爽快片一区二区三区| 蜜桃国产av成人99| 啦啦啦啦在线视频资源| 在线免费观看不下载黄p国产| 成年人午夜在线观看视频| 亚洲精品国产av成人精品| 99九九在线精品视频| 午夜福利视频精品| 久久97久久精品| 久久99热这里只频精品6学生| 一级二级三级毛片免费看| 狂野欧美激情性xxxx在线观看| 有码 亚洲区| 国产精品三级大全| 国产精品99久久久久久久久| 国产淫语在线视频| 丝袜喷水一区| av黄色大香蕉| 极品少妇高潮喷水抽搐| 亚洲不卡免费看| 欧美成人午夜免费资源| 中文字幕免费在线视频6| 飞空精品影院首页| 91精品国产九色| 亚洲成人一二三区av| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区国产| 欧美精品亚洲一区二区| 午夜激情av网站| 下体分泌物呈黄色| 曰老女人黄片| 午夜激情av网站| 97精品久久久久久久久久精品| 熟女人妻精品中文字幕| 亚洲国产精品成人久久小说| 精品一区二区三区视频在线| 日韩亚洲欧美综合| 男人爽女人下面视频在线观看| 女性被躁到高潮视频| 久久久久精品性色| 欧美精品亚洲一区二区| 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 亚洲欧美日韩另类电影网站| 日韩一区二区三区影片| 99热这里只有是精品在线观看| 久久精品国产亚洲网站| 青春草国产在线视频| 国产视频内射| 亚洲av综合色区一区| 中文字幕制服av| 久久久久久人妻| 伊人久久国产一区二区| 亚洲人成网站在线播| 九九爱精品视频在线观看| av线在线观看网站| av在线老鸭窝| 午夜影院在线不卡| 99久久精品一区二区三区| 国产成人午夜福利电影在线观看| 熟女av电影| 国产在线视频一区二区| 国产精品一区二区三区四区免费观看| 波野结衣二区三区在线| 久久精品久久久久久噜噜老黄| 我的女老师完整版在线观看| 成年人免费黄色播放视频| 久久免费观看电影| 9色porny在线观看| 飞空精品影院首页| av有码第一页| 久久久久视频综合| a级毛片黄视频| 亚洲精华国产精华液的使用体验| 亚洲美女黄色视频免费看| 国产高清有码在线观看视频| 久久久久久久大尺度免费视频| 免费大片黄手机在线观看| 最黄视频免费看| 国产成人91sexporn| 国产免费一级a男人的天堂| 在线天堂最新版资源| 交换朋友夫妻互换小说| 午夜日本视频在线| av免费观看日本| 色婷婷av一区二区三区视频| 国产亚洲欧美精品永久| 成人漫画全彩无遮挡| 午夜福利视频精品| 国产精品嫩草影院av在线观看| 午夜激情福利司机影院| 国产精品蜜桃在线观看| 久久久国产欧美日韩av| 午夜视频国产福利| 97超碰精品成人国产| 大香蕉久久网| 在线看a的网站| 中文欧美无线码| 国产一区二区在线观看av| 九色成人免费人妻av| 在线观看美女被高潮喷水网站| videossex国产| 国产 精品1| 国产视频内射| 久久久久久久久久久丰满| 欧美一级a爱片免费观看看| 亚洲精品一二三| .国产精品久久| 国产精品 国内视频| 观看av在线不卡| 777米奇影视久久| 天堂8中文在线网| 亚洲欧美清纯卡通| 国产日韩欧美视频二区| 丝瓜视频免费看黄片| 久久精品熟女亚洲av麻豆精品| 精品少妇黑人巨大在线播放| 日本免费在线观看一区| 亚洲精品,欧美精品| 久久久久久伊人网av| 日韩强制内射视频| av国产久精品久网站免费入址| 狂野欧美白嫩少妇大欣赏| 欧美精品人与动牲交sv欧美| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| 国产精品一区二区在线不卡| 18禁在线无遮挡免费观看视频| 黄色视频在线播放观看不卡| 欧美成人精品欧美一级黄| 精品一区二区三卡| 黄色配什么色好看| 边亲边吃奶的免费视频| 26uuu在线亚洲综合色| 久久久国产一区二区| 中文字幕av电影在线播放| 丝袜脚勾引网站| 内地一区二区视频在线| 人妻 亚洲 视频| 夫妻性生交免费视频一级片| 亚洲av国产av综合av卡| 九九久久精品国产亚洲av麻豆| 精品久久国产蜜桃| 久久韩国三级中文字幕| 久久久久久久国产电影| 人妻 亚洲 视频| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 亚洲国产精品专区欧美| 丰满迷人的少妇在线观看| 久久国内精品自在自线图片| 美女视频免费永久观看网站| 日韩电影二区| 波野结衣二区三区在线| 欧美日韩成人在线一区二区| 我的女老师完整版在线观看| 青青草视频在线视频观看| 在现免费观看毛片| 18禁观看日本| 日韩成人伦理影院| 三级国产精品欧美在线观看| 久久精品国产自在天天线| 男女国产视频网站| 最后的刺客免费高清国语| 成年女人在线观看亚洲视频| 制服诱惑二区| 精品国产国语对白av| 在线观看一区二区三区激情| 欧美精品人与动牲交sv欧美| 国产精品一区二区在线不卡| 婷婷色av中文字幕| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 精品国产国语对白av| 在线观看人妻少妇| 成人毛片60女人毛片免费| 久久久国产一区二区| 熟女人妻精品中文字幕| 亚洲精华国产精华液的使用体验| 国产精品偷伦视频观看了| 天堂8中文在线网| 丝袜在线中文字幕| 久久久久国产网址| 亚洲国产av影院在线观看| 少妇熟女欧美另类| 人体艺术视频欧美日本| 亚洲精品久久午夜乱码| 亚洲丝袜综合中文字幕| 最黄视频免费看| 人妻少妇偷人精品九色| 久久久欧美国产精品| 亚洲美女视频黄频| 一本久久精品| 一区二区日韩欧美中文字幕 | 欧美97在线视频| 国产午夜精品久久久久久一区二区三区| 久久午夜福利片| 赤兔流量卡办理| 这个男人来自地球电影免费观看 | 高清欧美精品videossex| 在线播放无遮挡| 十分钟在线观看高清视频www| 麻豆精品久久久久久蜜桃| 午夜福利影视在线免费观看| 性色av一级| 国产精品久久久久久久电影| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 亚洲第一区二区三区不卡| 国产精品女同一区二区软件| 欧美97在线视频| 国产伦精品一区二区三区视频9| 韩国av在线不卡| 免费观看av网站的网址| 免费观看性生交大片5| 男人添女人高潮全过程视频| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| av国产精品久久久久影院| 欧美一级a爱片免费观看看| 边亲边吃奶的免费视频| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 少妇丰满av| 最近的中文字幕免费完整| 国产免费现黄频在线看| 视频中文字幕在线观看| 精品一区二区三卡| 人人妻人人澡人人看| 午夜激情av网站| 免费高清在线观看日韩| 一级二级三级毛片免费看| 夜夜爽夜夜爽视频| 五月伊人婷婷丁香| 熟女人妻精品中文字幕| 国产男女超爽视频在线观看| 国产综合精华液| 青春草视频在线免费观看| 午夜av观看不卡| 亚洲精品国产av成人精品| 国产成人freesex在线| 夫妻午夜视频| 久久久久久久久久久丰满| 日产精品乱码卡一卡2卡三| 一本大道久久a久久精品| 一级毛片aaaaaa免费看小| 午夜福利网站1000一区二区三区| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 国产不卡av网站在线观看| 日韩精品有码人妻一区| 妹子高潮喷水视频| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| 精品一区二区三卡| 日韩精品有码人妻一区| 不卡视频在线观看欧美| 一级毛片 在线播放| 国产乱来视频区| 国产成人精品在线电影| 精品久久久久久久久av| 99久久人妻综合| 如日韩欧美国产精品一区二区三区 | 亚洲欧洲精品一区二区精品久久久 | 人人妻人人添人人爽欧美一区卜| 国产色爽女视频免费观看| 一区二区三区精品91| 日日爽夜夜爽网站| 亚洲在久久综合| 久久久国产一区二区| 中文字幕免费在线视频6| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 免费看光身美女| 桃花免费在线播放| 久久久久久人妻| 欧美精品一区二区大全| 精品卡一卡二卡四卡免费| 97超碰精品成人国产| 午夜激情久久久久久久| 91精品国产九色| 男女边摸边吃奶| 毛片一级片免费看久久久久| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 伊人久久国产一区二区| 午夜av观看不卡| 国内精品宾馆在线| 国产精品一区二区三区四区免费观看| 国产男女内射视频| 成年av动漫网址| 久久精品国产自在天天线| 亚洲成人一二三区av| 成人毛片60女人毛片免费| 精品久久久精品久久久| 亚洲精品美女久久av网站| 黑人猛操日本美女一级片| 国产色婷婷99| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 一区在线观看完整版| 国产亚洲一区二区精品| 精品人妻偷拍中文字幕| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| xxxhd国产人妻xxx| 在线播放无遮挡| 国产亚洲午夜精品一区二区久久| 免费黄频网站在线观看国产| 日本av免费视频播放| 九色亚洲精品在线播放| 日本黄大片高清| 我要看黄色一级片免费的| 久久鲁丝午夜福利片| 狂野欧美激情性xxxx在线观看| 国产色婷婷99| 少妇人妻 视频| 香蕉精品网在线| 欧美亚洲 丝袜 人妻 在线| 成年人午夜在线观看视频| 肉色欧美久久久久久久蜜桃| 日本爱情动作片www.在线观看| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 午夜福利视频在线观看免费| 日韩制服骚丝袜av| 成年av动漫网址| 3wmmmm亚洲av在线观看| 婷婷色av中文字幕| 超色免费av| 99热6这里只有精品| 日韩av不卡免费在线播放| 熟女人妻精品中文字幕| 午夜福利网站1000一区二区三区| 丰满少妇做爰视频| av有码第一页| 毛片一级片免费看久久久久| 亚洲在久久综合| 天美传媒精品一区二区| 麻豆成人av视频| 青春草亚洲视频在线观看| kizo精华| av天堂久久9| 国产精品国产av在线观看| 一级毛片电影观看| 日韩欧美一区视频在线观看| 国产成人精品婷婷| 精品久久久噜噜| 中文精品一卡2卡3卡4更新| 亚洲第一av免费看| 国产精品人妻久久久影院| 天天影视国产精品| 国产男人的电影天堂91| 青春草视频在线免费观看| 少妇的逼好多水| 99久久精品一区二区三区| 免费观看的影片在线观看| 久久久精品免费免费高清| 亚洲精品色激情综合| 极品少妇高潮喷水抽搐| 成人国语在线视频| 少妇精品久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 日韩电影二区| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 欧美精品一区二区免费开放| 丰满饥渴人妻一区二区三| 天天操日日干夜夜撸| 国产 精品1| 欧美最新免费一区二区三区| 久久97久久精品| 亚洲人成网站在线观看播放| 高清av免费在线| 欧美一级a爱片免费观看看| 国产伦精品一区二区三区视频9| 999精品在线视频| 国产午夜精品久久久久久一区二区三区| 国产黄色视频一区二区在线观看| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 欧美最新免费一区二区三区| 亚洲色图综合在线观看| 久久久久久久久久成人| 国产日韩一区二区三区精品不卡 | 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| 国产免费一区二区三区四区乱码| 亚洲在久久综合| 亚洲欧洲日产国产| 国产色爽女视频免费观看| 国产成人91sexporn| 晚上一个人看的免费电影| 成人手机av| 999精品在线视频| 大香蕉久久成人网| 亚洲精品成人av观看孕妇| 精品人妻偷拍中文字幕| av在线播放精品| 国产成人午夜福利电影在线观看| 欧美另类一区| 亚洲国产成人一精品久久久| 久久免费观看电影| 成年人午夜在线观看视频| 国产免费福利视频在线观看| 一本一本综合久久| 肉色欧美久久久久久久蜜桃| 久久 成人 亚洲| 五月开心婷婷网| videossex国产| 欧美日本中文国产一区发布| 亚洲精品av麻豆狂野| 人妻一区二区av| 国产成人精品婷婷| 欧美97在线视频| 国产精品欧美亚洲77777| av视频免费观看在线观看| 久久综合国产亚洲精品| 欧美人与善性xxx| 91精品国产国语对白视频| 大陆偷拍与自拍| 我要看黄色一级片免费的| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 在线观看免费日韩欧美大片 | 午夜福利在线观看免费完整高清在| 在现免费观看毛片| 国产女主播在线喷水免费视频网站| 2021少妇久久久久久久久久久| 满18在线观看网站| 国产精品99久久99久久久不卡 | 夫妻午夜视频| 在线播放无遮挡| 免费观看性生交大片5| 亚洲成色77777| 中文字幕精品免费在线观看视频 | 日本与韩国留学比较| 中文字幕制服av| 色婷婷av一区二区三区视频| 久久国产精品男人的天堂亚洲 | 免费观看性生交大片5| 夫妻性生交免费视频一级片| 欧美精品亚洲一区二区| 久久久久久伊人网av| 亚洲久久久国产精品| 亚洲欧美中文字幕日韩二区| 精品一区二区免费观看| 国产毛片在线视频| 成年人午夜在线观看视频| 精品国产一区二区久久| 色5月婷婷丁香| 女性被躁到高潮视频| 国产伦精品一区二区三区视频9| 亚洲国产精品999| 亚洲av免费高清在线观看| 国产国语露脸激情在线看| a级片在线免费高清观看视频| 欧美 亚洲 国产 日韩一| 少妇被粗大猛烈的视频| 国产不卡av网站在线观看| 亚洲四区av| 精品国产一区二区久久| 伦精品一区二区三区| 水蜜桃什么品种好| 亚洲av.av天堂| 日本黄色日本黄色录像| 欧美精品亚洲一区二区| 成人国产av品久久久| a级毛片免费高清观看在线播放| 你懂的网址亚洲精品在线观看| 亚洲av不卡在线观看| 亚洲欧洲精品一区二区精品久久久 | 3wmmmm亚洲av在线观看| 午夜福利视频在线观看免费| 一级毛片电影观看|