• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Multi Moving Target Recognition Algorithm Based on Remote Sensing Video

    2023-01-22 09:01:06HuanhuanZhengYuxiuBaiandYurunTian

    Huanhuan Zheng,Yuxiu Bai and Yurun Tian

    1School of Information Engineering,Yulin University,Yulin,China

    2ZTE Communication Co.,Ltd.,Xi’an,China

    ABSTRACT The Earth observation remote sensing images can display ground activities and status intuitively,which plays an important role in civil and military fields.However, the information obtained from the research only from the perspective of images is limited,so in this paper we conduct research from the perspective of video.At present,the main problems faced when using a computer to identify remote sensing images are:They are difficult to build a fixed regular model of the target due to their weak moving regularity.Additionally,the number of pixels occupied by the target is not enough for accurate detection.However,the number of moving targets is large at the same time.In this case,the main targets cannot be recognized completely.This paper studies from the perspective of Gestalt vision,transforms the problem of moving target detection into the problem of salient region probability,and forms a Saliency map algorithm to extract moving targets.On this basis, a convolutional neural network with global information is constructed to identify and label the target.And the experimental results show that the algorithm can extract moving targets and realize moving target recognition under many complex conditions such as target’s long-term stay and small-amplitude movement.

    KEYWORDS Deep learning;remote sensing images;moving target;recognition;salient

    1 Introduction

    Remote sensing images can intuitively display wide view scene information,and are widely applied in the fields.It can be applied to multi-target recognition and tracking scenes such as battlefield reconnaissance,border patrol,post-disaster rescue,public transportation and more[1].However,it is difficult to obtain spaceborne remote sensing images,which limits the in-depth research[2].In recent years, with the development and popularization of UAV technology, UAV technology presents the characteristics of high efficiency,flexibility and low cost,and the imaging equipment carried tends to be mature.It has been widely used in battlefield reconnaissance, border patrol, post disaster rescue,public transportation,etc.[3,4],which makes the aerial photography data present a blowout situation.In the face of so many aerial remote sensing data,how we can obtain useful information from aerial video is an important direction in the field of computer vision[5].

    Target detection is the basis of tracking,recognition and image interpretation[6].There are multiple moving targets in the video,just because the video field angle captured by UAV monitoring system is large.Thus,it is difficult to detect moving targets quickly and accurately.Xiao et al.[7]proposed a low frame rate aerial video vehicle detection and tracking method based on joint probability relation graph according to probability relation.Andriluka et al.[8] applied UAV technology to rescue and search.Cheng et al.[9]established a dynamic Bayesian network from the perspective of pixels to realize vehicle detection.Gaszczak et al.[10] established a model from the perspective of thermal imaging to detect pedestrians and vehicles in aerial images.Lin et al.[11] improved the traditional Hough transform to realize road detection.Rodríguez-Canosa et al.[12] established a model to solve the problem of aerial image jitter to a certain extent.Zheng et al.[13]established GIS vector map to realize vehicle detection.Liang et al.[14] guided target detection according to background information.Prokaj et al.[15]built a dual tracker to realize the construction of background and prospect.Teutsch et al.[16]established a model under the condition of low contrast to realize vehicle detection in aerial monitoring images.Chen et al.[17]optimized the tracking window to realize multi-target detection.Jiang et al.[18] introduced the prediction module to realize target tracking in order to enhance the stability of tracking.Poostchi et al.[19] established semantic depth map fusion for moving vehicle detection.Tang et al.[20]established single revolutionary neural networks to predict vehicle direction.Aguilar et al.[21] used cascade classifiers with mean shift to realize pedestrian detection.Xu et al.[22]established a prediction and feature point selection model to find moving targets in multi-scale on infrared aerial images.Hamsa et al.[23]established a cascaded support vector machine and Gaussian mixture model to realize vehicle detection (SVM + GMM).Ma et al.[24] established the rotation invariant cascaded forest(RICF)to meet the target detection in complex background.Mandal et al.[25] established simple short and shallow network to realize rapid target detection.Song et al.[26]built a model according to the time and space relationship of the target,and then built the regulated AdaBoost recognition model to realize target recognition.Qiu et al.[27]built a deep learning network to track moving targets.Feng et al.[28]used mean shift algorithm to track high-speed targets.Wan et al.[29]used Keystone Transform and Modified Second-Order Keystone Transform to achieve moving target tracking.Lin et al.[30]used multiple drones to achieve multi-target tracking.

    The above algorithms have achieved certain results in target detection, but there are still deficiencies:The model considers the limited interference of noise, tree disturbance and other factors,which leads to the inaccurate extraction of moving targets.Insufficient mining target attributes lead to inaccurate recognition.The innovation of our algorithm shown as following aspects:firstly,from the perspective of Gestalt vision,we propose a target motion extraction algorithm based on the saliency graph theory; secondly, in order to achieve fast and accurate target recognition, we constructed the convolutional neural network structure with global information, especially take global information into consideration.

    2 Algorithm

    Gestalt visual school believes that the reason why things are perceived is the result of the public action of eyes and brain.Firstly, the image is obtained through the eyes, and then the objects are combined according to some rules to form an easy to understand unity.If it cannot be combined,it will appear in a disordered state,resulting in incorrect cognition.Based on this principle,a multi-target recognition process in accordance with the Gestalt vision principle is established,as shown in Fig.1.Firstly,the salient graph mechanism is established to extract moving targets,and then the convolution neural network structure based on global information is used to realize target recognition.

    Figure 1:Algorithm pipeline

    2.1 Moving Target Extraction Based on Salient Gragh

    In the video scene, a large amount of short-term motion information is included between consecutive image frames,and ignores the information that does not move temporarily.A video with long time contains a lot of long-time motion information, so the conditional motion salient graph includes the motion saliency of the target and the motion saliency of the background.In addition,the interference of noise makes it difficult to distinguish the significance.

    A time series group containing short-term motion information and long-term motion information is constructed on the time scale.By calculating the motion significance probability,the significance of the moving target is highlighted and the background significance is suppressed,as shown in Fig.2.

    Figure 2:Pipeline of moving target extraction algorithm based on salient graph

    Temporal Fourier transform (TFT) is a motion saliency detection algorithm based on time information which uses pixels at the same position in consecutive frames to integrate in time to form a time series.The waveform is reconstructed by Fourier transform and inverse Fourier transform,and the maximum point is marked on the salient graph.The significant values indicate the probability that the target belongs to the foreground.Let the time series be

    Its corresponding Fourier transform is obtained as

    whereFrepresents Fourier transform andrepresents the phase spectrum of.

    whereF-1represents inverse Fourier transform,andg(t)is Gaussian filter.The larger the amplitude ofchange, the larger the time scale change.Thus, the motion significance of the time series is constructed as

    whereφix,yrepresents the significant value of the pixel (x,y) in thei-th viewing angle sequence,||is F2 norm.

    Conditional motion saliency probability refers to the probability that pixels belong to the foreground in the time series.To unify the scale,is normalized as

    The motion saliency probability represents the probability that the pixel belongs to the foreground by the motion saliency of the pixel.Under the guidance of the full probability formula, it can be calculated as follows:

    The motion saliency probability graph uses the long-term and short-term motion information to enhance the saliency of the moving target in the current frame and suppress the motion saliency of the background and historical frame.Due to the background interference,there is false detection in the detection results,which makes the local significance high and difficult to remove by traditional methods.We use the correlation between adjacent pixels to construct a histogram algorithm to segment the saliency graph,then model the spatial information,and use the spatial information modeling to calculate the displacement probability,which has achieved the purpose of eliminating interference.

    The histogram based threshold method is used to segment the motion saliency probability graph to obtain the candidate pixels,

    whereTis obtained by the traditional Ostu algorithm.WhenS=1,it indicates foreground candidate pixels.WhenS=0,it indicates background candidate pixels.When the background,i.e.,trees,moves,there is a risk of detection as the target.However, its inter frame motion amplitude is limited.We construct the function:

    For the connected component of the real target,the probability of the component displacement from the background is very small,and the thresholdthis set to distinguish:

    whereSc(x,y)=1 represents the foreground andSc(x,y)=0 represents the background.

    2.2 Convolution Neural Network Based on Global Information

    Convolutional neural network (CNN) is a kind of feedforward neural network, whose neurons carry out corresponding control on the units within the coverage.It has excellent performance in the field of large-scale image processing.Therefore, we process remote sensing images based on traditional CNN.

    The basic structure of CNN includes feature extraction layer and feature mapping layer.Feature extraction layer:The input of each neuron is connected to the local acceptance domain of the previous layer,and the local features are extracted.When the local feature is extracted,the position relationship between it and other features is also determined.Feature mapping layer:Each computing layer of the network is composed of multiple feature maps.Each feature mapping can be regarded as a plane,and the weights of all neurons on the plane are equal.Because the feature detection layer of CNN learns from the training data,it avoids explicit feature extraction and implicitly learns from the training data.Because the weights of neurons on the same feature mapping surface are the same,the network can learn in parallel.Subsequent scholars have carried out a lot of research on the basis of CNN:Bayar et al.[31] constrained the convolution layer to meet the image target detection.Li et al.[32]used a double-layer CNN structure to detect targets.The above algorithms have improved CNN from different aspects and achieved certain results.

    According to the particularity of remote sensing video, traditional CNN cannot be directly applied to multi-target tracking based on remote sensing video,which is not enough to capture global information.Therefore,a new convolution neural network framework based on global information is proposed by effectively combining global average pool and Atrous convolution,as shown in Fig.3.

    The image sequence is convoluted and pooled to reduce the size of the image and increase the receiving domain.The merged image is restored by up sampling to the original size prediction of the image.The information in the original image is lost while zooming out and adjusting.To solve this problem, Atrous Convolution is applied, as shown in Fig.4.Atrus revolution is a convolution idea proposed to solve the problem of image semantic segmentation in which down sampling will reduce image resolution and lose information.The advantages are:on the condition of loss information without pooling and the same calculation conditions, the receptive field is increased so that each convolution output contains a large range.

    Global information plays a key role in image classification or target detection.In order to obtain more global context information,the global average pool is combined with the atrus revolution.Fig.5 shows the main structure of the network.

    Figure 3:Convolutional neural network graph based on global information

    Figure 4:Atrous convolution

    Figure 5:The network structure

    When extracting global features for feature fusion,due to different data scales at different levels,it is necessary to regularize the feature data.

    We use L2-normalize to normalize the input feature x,where y represents the normalized output vector.||·|is L2 norm.

    Because the value distribution of the eigenvector is uneven,the scale parameter is introduced as

    In the training process,L2 norm propagation is used to calculate the scale parameters through the chain method:

    wherelis the objective function.L2 norm normalizes the extracted features and the added global features.

    The median frequency balance strategy is used,and the cross entropy loss function is

    as the objective function in the network training process.It is to determine the distance between the actual output P and the desired output p*,where c is the class of the tag.

    Because the number of pixels in each category in the training data varies greatly,different weights are required according to the actual category.In order to obtain better results,the median frequency balance is proposed,and Eq.(4)is rewritten as follows:

    wherewcis the adjustment weight,f(c)is the proportion of pixel value c to the total number of pixels.Through the different loss weights of real classes in the data to balance the categories,we can achieve better classification results.

    In the process of deep neural network training, dropout is used in the full connection layer of convolutional network to prevent network over fitting[33].However,in FCN,dropout layer cannot improve the network generalization ability.To solve this problem,dropblock is introduced

    whereγis used to control the number of channels removed from each convolution result.bsis used to control the block size to 0.kpis the dropout parameter.fsis the dimension of the characteristic diagram.dropblock makes the training network learn more robust features and greatly improves the generalization ability of the network.

    3 Experiment and Result Analysis

    The algorithm proposed in this paper is programmed and applied in the window system,VS2010 platform.Window 7, Intel?Core i5-6500 CPU, 3.20 GHZ, 16.0 GB and uses the deep network to extract features.We normalized the image to 512×512.At present, the average processing time of a single frame image is 1.2 s, which temporarily cannot meet the needs of real-time computing, and further research will be conducted in the future.

    3.1 Database

    3 datasets:The UA-DETRAC [34] dataset is a 10 h video shot by Canon EOS 550D camera at 24 different locations with a frame frequency of 25 fps and a resolution of 960×540 pixels.The UAV-DATA[35]dataset contains scenes such as trees and highways,including the characteristics of large-scale and multiple moving targets.The total video is 4.89 GB,and the minimum and maximum image resolution are 1920×1080 and 3840×2160,respectively.The minimum and maximum frame rate is 4 fps and 25 fps,respectively.The campus environment database is the shooting data over the playground,which contains a large number of small targets,as shown in Fig.6.

    Figure 6:Data display

    3.2 Detection Accuracy

    To measure the effectiveness of the algorithm,AOM and ROC curves are introduced

    whereγrepresents the result of manual annotation andνrepresents the detection result of the algorithm.

    Based on the dataset described above,we have divided the data intoData 1:The first frame is a pure background image,and the target is moving all the time.Data 2:Small moving targets.Data 3:It remains stationary for a long time after the target moves.

    As shown in Table 1 and Fig.7,with the complexity of the environment,the performance of the algorithm shows a downward trend.SVM+GMM algorithm uses GMM model to extract motion region,and SVM is used to judge whether the region is foreground.RICF detects the target according to the rotation invariance of the target.Time space[26]extracts the moving region according to the relationship between time and space, and establishes AdaBoost model to realize multi-scale target recognition.Under the guidance of gestalt vision,the proposed algorithm establishes a saliency graph mechanism to extract moving targets, and then realizes target recognition based on the convolution neural network structure of global information.Although the operation speed is slightly lower than SVM+GMM,AOM is the highest.

    Figure 7:Region of interest curves

    Table 1:AOM and operation time

    3.3 Effect of Target Extraction

    In order to intuitively show the effect of our algorithm, some detection results are selected, as shown in Fig.8.The proposed algorithm can effectively detect the target, and has good detection effect in the face of complex background,unstable target motion and small targets.

    Figure 8:Detection results images

    4 Conclusion

    Remote sensing images can obtain ground and target’s information intuitively so as to provide accurate basis for decision-making.To solve the problem that it is difficult to accurately extract moving objects under complex conditions such as long-term stay and small-amplitude motion of moving objects in remote sensing videos,so we proposed a multi-moving object recognition algorithm based on remote sensing videos.Firstly,the problem of moving target detection is transformed into the problem of salient region probability,and the saliency map is constructed to extract moving targets.Secondly,by analyzing the global and local information of multiple targets, a convolutional neural network with global information is constructed to identify the target.Experiments show that the research results have a better effect on multi-target extraction in complex environments, and provide a new method for multi-target tracking in remote sensing images.So, on this basis, follow-up research on ground feature analysis can be carried out accordingly.

    Funding Statement:This work is supported by Yulin Science and Technology Association Youth Talent Promotion Program(Grant No.20200212).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色噜噜av男人的天堂激情| 国产一区亚洲一区在线观看| 亚洲熟妇中文字幕五十中出| 久久久久久大精品| 听说在线观看完整版免费高清| 亚洲av熟女| 亚洲最大成人av| av视频在线观看入口| 久久精品久久精品一区二区三区| 美女内射精品一级片tv| 亚洲四区av| 干丝袜人妻中文字幕| 毛片女人毛片| 欧美成人免费av一区二区三区| 成人午夜精彩视频在线观看| 夜夜看夜夜爽夜夜摸| 国产真实伦视频高清在线观看| 国产国拍精品亚洲av在线观看| 欧美xxxx黑人xx丫x性爽| 国产视频内射| 成人综合一区亚洲| 国产午夜精品论理片| 亚洲,欧美,日韩| 看片在线看免费视频| 午夜久久久久精精品| 午夜久久久久精精品| 一卡2卡三卡四卡精品乱码亚洲| 日韩一区二区三区影片| 最近2019中文字幕mv第一页| 国产片特级美女逼逼视频| 一本久久精品| 熟女人妻精品中文字幕| 国产黄色视频一区二区在线观看 | 亚洲av中文字字幕乱码综合| 天天一区二区日本电影三级| 黄片wwwwww| 观看美女的网站| 美女高潮的动态| 国产伦理片在线播放av一区| 日韩欧美精品v在线| 91久久精品国产一区二区三区| 精品欧美国产一区二区三| 国产高清三级在线| 亚洲第一区二区三区不卡| 我的女老师完整版在线观看| 精品久久久久久久末码| 国产亚洲av片在线观看秒播厂 | 成人毛片60女人毛片免费| 亚洲国产精品专区欧美| 一级毛片我不卡| 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| 日本色播在线视频| 亚洲国产精品成人综合色| 午夜福利成人在线免费观看| av天堂中文字幕网| 97超视频在线观看视频| 一区二区三区四区激情视频| 蜜桃亚洲精品一区二区三区| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 嘟嘟电影网在线观看| 伊人久久精品亚洲午夜| 日日撸夜夜添| 精品人妻熟女av久视频| 国产精品人妻久久久久久| 久久欧美精品欧美久久欧美| 免费大片18禁| 亚洲国产成人一精品久久久| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 能在线免费看毛片的网站| 久久久久久久久久久丰满| 国产精品1区2区在线观看.| 亚洲伊人久久精品综合 | 日本熟妇午夜| 亚洲综合色惰| 一区二区三区乱码不卡18| 午夜久久久久精精品| 亚洲第一区二区三区不卡| 长腿黑丝高跟| 桃色一区二区三区在线观看| 欧美人与善性xxx| 亚洲精品成人久久久久久| 亚洲欧美日韩卡通动漫| 老女人水多毛片| 人体艺术视频欧美日本| 国产午夜精品久久久久久一区二区三区| 亚洲精品乱码久久久久久按摩| 成人三级黄色视频| 午夜a级毛片| 亚洲欧美成人综合另类久久久 | 国产久久久一区二区三区| 国产激情偷乱视频一区二区| 欧美潮喷喷水| 色5月婷婷丁香| www.av在线官网国产| 久久久久久九九精品二区国产| 村上凉子中文字幕在线| 男女下面进入的视频免费午夜| 久久99热这里只有精品18| 久久久久久久久久黄片| 综合色av麻豆| 亚洲国产欧美人成| ponron亚洲| 色噜噜av男人的天堂激情| 中文精品一卡2卡3卡4更新| 一夜夜www| 国产精品久久久久久av不卡| 亚洲五月天丁香| 99久久精品国产国产毛片| 日本欧美国产在线视频| 免费黄色在线免费观看| 青春草国产在线视频| 91精品国产九色| 亚洲国产精品久久男人天堂| 天堂av国产一区二区熟女人妻| 国内精品一区二区在线观看| 大话2 男鬼变身卡| 国产精品av视频在线免费观看| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 日本wwww免费看| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 成人国产麻豆网| 一级毛片我不卡| 久久精品熟女亚洲av麻豆精品 | 国产毛片a区久久久久| 国内揄拍国产精品人妻在线| 亚洲四区av| 亚洲人成网站高清观看| 成人三级黄色视频| 久久久久网色| 99久久九九国产精品国产免费| 久久久成人免费电影| 99久国产av精品国产电影| 久久这里有精品视频免费| 男的添女的下面高潮视频| 嫩草影院精品99| 亚洲av不卡在线观看| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 综合色丁香网| 韩国av在线不卡| 久久久久久伊人网av| 久久精品夜夜夜夜夜久久蜜豆| 天堂√8在线中文| 午夜老司机福利剧场| 久久精品国产亚洲网站| 国产日韩欧美在线精品| 老司机影院毛片| 中文欧美无线码| 亚洲精品国产成人久久av| 99热6这里只有精品| 亚洲不卡免费看| www.av在线官网国产| 只有这里有精品99| 久久综合国产亚洲精品| 简卡轻食公司| 精品久久久久久久久久久久久| 97超碰精品成人国产| 全区人妻精品视频| 久久热精品热| 长腿黑丝高跟| 好男人在线观看高清免费视频| 亚洲人成网站高清观看| 不卡视频在线观看欧美| 久久国产乱子免费精品| 高清av免费在线| 男人和女人高潮做爰伦理| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 美女大奶头视频| 亚洲av一区综合| 99热全是精品| 国产成人一区二区在线| 91久久精品电影网| АⅤ资源中文在线天堂| 老司机影院成人| 又爽又黄a免费视频| 亚洲电影在线观看av| www.色视频.com| 嫩草影院入口| 久久精品国产亚洲av天美| 99久久九九国产精品国产免费| 日本色播在线视频| 久久99热这里只频精品6学生 | 久久人妻av系列| 三级经典国产精品| 少妇被粗大猛烈的视频| 搡老妇女老女人老熟妇| 建设人人有责人人尽责人人享有的 | 国产高清视频在线观看网站| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 熟妇人妻久久中文字幕3abv| 国产三级中文精品| 国产精品,欧美在线| 成人无遮挡网站| 精品人妻一区二区三区麻豆| 国产精品1区2区在线观看.| 搡女人真爽免费视频火全软件| 国产黄a三级三级三级人| 一本一本综合久久| 亚洲在线观看片| 欧美三级亚洲精品| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 级片在线观看| 日本免费在线观看一区| 国产精品国产三级国产av玫瑰| 午夜免费激情av| 精品久久久久久久久久久久久| 成人亚洲欧美一区二区av| 亚洲av男天堂| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全电影3| 熟女电影av网| 亚洲精品乱久久久久久| 最近手机中文字幕大全| 乱码一卡2卡4卡精品| 99视频精品全部免费 在线| 黑人高潮一二区| 1024手机看黄色片| 一级爰片在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品乱久久久久久| 国产亚洲av嫩草精品影院| 国产亚洲av片在线观看秒播厂 | 久久亚洲国产成人精品v| 国产精品国产三级专区第一集| 中国国产av一级| 国产亚洲一区二区精品| 免费看光身美女| 国产不卡一卡二| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| 国产精品久久久久久精品电影| 成人无遮挡网站| 99热精品在线国产| 欧美一区二区精品小视频在线| 麻豆国产97在线/欧美| 国产麻豆成人av免费视频| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 中国国产av一级| 精品酒店卫生间| 国语自产精品视频在线第100页| 婷婷色综合大香蕉| av卡一久久| 天堂影院成人在线观看| 国产精品久久久久久久电影| 国产黄a三级三级三级人| 午夜爱爱视频在线播放| 亚洲国产日韩欧美精品在线观看| 免费看a级黄色片| 亚洲av一区综合| 成人亚洲精品av一区二区| av天堂中文字幕网| 国产成年人精品一区二区| 老司机影院成人| 国产在线男女| 日本与韩国留学比较| 女人十人毛片免费观看3o分钟| 午夜福利成人在线免费观看| 国产精品.久久久| 我的女老师完整版在线观看| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 久久久亚洲精品成人影院| 欧美一区二区国产精品久久精品| 三级毛片av免费| 久久精品国产亚洲av涩爱| 99久久精品热视频| 午夜福利视频1000在线观看| 联通29元200g的流量卡| 久久久午夜欧美精品| 一级毛片久久久久久久久女| 国产91av在线免费观看| 欧美区成人在线视频| 国产国拍精品亚洲av在线观看| 午夜爱爱视频在线播放| 国产在线男女| 哪个播放器可以免费观看大片| 一个人免费在线观看电影| 国产精品久久久久久久久免| 久久久久久久久中文| 婷婷色综合大香蕉| 男女视频在线观看网站免费| 国产在线一区二区三区精 | 波多野结衣高清无吗| 日日摸夜夜添夜夜爱| 99久久成人亚洲精品观看| av.在线天堂| 亚洲国产欧美人成| 久久精品国产99精品国产亚洲性色| 黄色一级大片看看| 日韩欧美三级三区| 成人性生交大片免费视频hd| 午夜免费男女啪啪视频观看| 美女大奶头视频| 亚洲国产最新在线播放| 亚洲丝袜综合中文字幕| 神马国产精品三级电影在线观看| 免费观看人在逋| 国产一区有黄有色的免费视频 | av天堂中文字幕网| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 久久鲁丝午夜福利片| 国产精品一及| 热99re8久久精品国产| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 1024手机看黄色片| 日韩国内少妇激情av| 日韩三级伦理在线观看| 日韩一区二区三区影片| 伦理电影大哥的女人| 美女黄网站色视频| 国产人妻一区二区三区在| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 久久久国产成人免费| 中文资源天堂在线| 国产精品久久久久久精品电影| 水蜜桃什么品种好| 黄色一级大片看看| 长腿黑丝高跟| 免费看日本二区| 成年女人看的毛片在线观看| 97在线视频观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av日韩在线播放| 一个人免费在线观看电影| 观看免费一级毛片| 只有这里有精品99| 一本久久精品| 看片在线看免费视频| 色噜噜av男人的天堂激情| 在现免费观看毛片| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 一级黄色大片毛片| 国产视频首页在线观看| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 秋霞伦理黄片| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 免费看光身美女| 国产av不卡久久| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 亚洲aⅴ乱码一区二区在线播放| 免费观看精品视频网站| 亚洲自拍偷在线| 久久国内精品自在自线图片| 尾随美女入室| 久久久久久久久大av| 精品无人区乱码1区二区| 亚洲成色77777| 久久精品综合一区二区三区| 久久久久久久国产电影| 欧美一区二区精品小视频在线| 欧美zozozo另类| 日韩一区二区视频免费看| 亚洲美女视频黄频| 国产人妻一区二区三区在| h日本视频在线播放| 国产亚洲午夜精品一区二区久久 | 亚洲av电影在线观看一区二区三区 | av免费观看日本| 乱系列少妇在线播放| 岛国毛片在线播放| 国产精品三级大全| 国产在线一区二区三区精 | 少妇猛男粗大的猛烈进出视频 | 插阴视频在线观看视频| 亚洲在久久综合| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| 国产精品福利在线免费观看| 一本久久精品| 国产av一区在线观看免费| 天天躁夜夜躁狠狠久久av| 国产黄色小视频在线观看| 亚洲三级黄色毛片| 午夜a级毛片| 熟女人妻精品中文字幕| 在线a可以看的网站| 舔av片在线| 精品久久久噜噜| 国产一区二区在线观看日韩| 三级毛片av免费| 精品熟女少妇av免费看| av视频在线观看入口| 日本一本二区三区精品| 在线观看av片永久免费下载| 欧美激情在线99| 亚洲人成网站在线观看播放| av免费在线看不卡| 亚洲精品456在线播放app| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 人人妻人人看人人澡| 日韩欧美三级三区| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 亚洲婷婷狠狠爱综合网| 免费av观看视频| 爱豆传媒免费全集在线观看| 嘟嘟电影网在线观看| 久久热精品热| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 国产精品av视频在线免费观看| 麻豆精品久久久久久蜜桃| 精品一区二区三区人妻视频| 两个人视频免费观看高清| 18+在线观看网站| 国产亚洲91精品色在线| 久久精品国产鲁丝片午夜精品| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 一个人看的www免费观看视频| 欧美一区二区国产精品久久精品| 国产高清三级在线| 色综合亚洲欧美另类图片| 嘟嘟电影网在线观看| 久久精品人妻少妇| 最后的刺客免费高清国语| 看免费成人av毛片| 九九热线精品视视频播放| videos熟女内射| 亚洲欧美成人综合另类久久久 | 深夜a级毛片| 精品欧美国产一区二区三| 网址你懂的国产日韩在线| 嫩草影院精品99| 国产探花在线观看一区二区| 亚洲欧洲国产日韩| 色视频www国产| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 精品无人区乱码1区二区| 人人妻人人澡人人爽人人夜夜 | 成人av在线播放网站| 成人毛片60女人毛片免费| 日韩亚洲欧美综合| 中文欧美无线码| av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 欧美变态另类bdsm刘玥| 精品免费久久久久久久清纯| 精品不卡国产一区二区三区| 国产人妻一区二区三区在| 国产av在哪里看| 晚上一个人看的免费电影| 美女国产视频在线观看| 赤兔流量卡办理| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 能在线免费观看的黄片| 亚洲欧美日韩无卡精品| 99热这里只有精品一区| 在线观看一区二区三区| 99久国产av精品| 国产av在哪里看| 三级毛片av免费| 永久网站在线| 最后的刺客免费高清国语| 三级经典国产精品| av在线播放精品| 日本熟妇午夜| 日韩成人av中文字幕在线观看| 伦精品一区二区三区| 嫩草影院精品99| 国产精品人妻久久久久久| 欧美性猛交黑人性爽| 99热精品在线国产| 亚洲熟妇中文字幕五十中出| 真实男女啪啪啪动态图| 亚洲av男天堂| 国产亚洲av片在线观看秒播厂 | av在线观看视频网站免费| 三级毛片av免费| 蜜臀久久99精品久久宅男| 九九爱精品视频在线观看| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲av涩爱| 久久久久九九精品影院| av在线观看视频网站免费| 免费黄网站久久成人精品| 国产成人精品婷婷| 国产探花极品一区二区| 亚洲四区av| 欧美日韩在线观看h| 久久人妻av系列| 欧美性猛交╳xxx乱大交人| 亚洲经典国产精华液单| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 91久久精品电影网| 亚洲av电影不卡..在线观看| 国产男人的电影天堂91| 两性午夜刺激爽爽歪歪视频在线观看| 99久久精品国产国产毛片| 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 狂野欧美激情性xxxx在线观看| 国产毛片a区久久久久| 国产老妇伦熟女老妇高清| 亚洲成人中文字幕在线播放| 亚洲三级黄色毛片| 女人十人毛片免费观看3o分钟| 国产午夜福利久久久久久| 三级国产精品片| 精品久久久久久电影网 | 免费搜索国产男女视频| 天天躁夜夜躁狠狠久久av| 九九爱精品视频在线观看| 久久久久久久午夜电影| 夫妻性生交免费视频一级片| 99热6这里只有精品| 美女国产视频在线观看| 久久久久免费精品人妻一区二区| 春色校园在线视频观看| 成人三级黄色视频| 国产淫语在线视频| 男女视频在线观看网站免费| 男人舔奶头视频| 精品人妻一区二区三区麻豆| 九九热线精品视视频播放| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女人妻精品中文字幕| 亚洲美女视频黄频| 亚洲欧美成人精品一区二区| 男插女下体视频免费在线播放| 婷婷色麻豆天堂久久 | 26uuu在线亚洲综合色| 国产乱人偷精品视频| 在线观看一区二区三区| 国产久久久一区二区三区| 黑人高潮一二区| 一级毛片aaaaaa免费看小| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| av在线天堂中文字幕| 亚洲在久久综合| 性插视频无遮挡在线免费观看| 全区人妻精品视频| 成人av在线播放网站| 国产三级在线视频| 国产爱豆传媒在线观看| 午夜福利在线观看吧| 大话2 男鬼变身卡| av女优亚洲男人天堂| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 中文亚洲av片在线观看爽| 亚洲欧美中文字幕日韩二区| 日本五十路高清| 久久99热6这里只有精品| 亚洲精品日韩av片在线观看| 中文字幕亚洲精品专区| 国产私拍福利视频在线观看| 青春草视频在线免费观看| 男女国产视频网站| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 国产免费一级a男人的天堂| 午夜激情欧美在线| 精品久久久久久久久亚洲| 中文字幕人妻熟人妻熟丝袜美| 欧美精品国产亚洲| 尾随美女入室| 嫩草影院入口| 日韩欧美 国产精品| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| 中文字幕熟女人妻在线| 大香蕉久久网| 国内精品宾馆在线| 日产精品乱码卡一卡2卡三| 免费黄网站久久成人精品| 欧美精品国产亚洲| 国产伦在线观看视频一区| 一边摸一边抽搐一进一小说| 亚洲精品aⅴ在线观看| 免费观看的影片在线观看| 亚洲激情五月婷婷啪啪| 男人狂女人下面高潮的视频| 日本wwww免费看| 大又大粗又爽又黄少妇毛片口| av在线天堂中文字幕|