• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape Effect of Nanoparticles on Nanofluid Flow Containing Gyrotactic Microorganisms

    2023-01-22 09:00:44UmairRashidAzharIqbalandAbdullahAlsharif

    Umair Rashid,Azhar Iqbaland Abdullah M.Alsharif

    1School of Mathematical Sciences,Jiangsu University,Zhenjiang,212013,China

    2Department of Mathematics and Natural Sciences,Prince Mohammad Bin Fahd University,Al Khobar,31952,Saudi Arabia

    3Department of Mathematics and Statistics,College of Science,Taif University,Taif,21944,Saudi Arabia

    ABSTRACT In this paper,we discussed the effect of nanoparticles shape on bioconvection nanofluid flow over the vertical cone in a permeable medium.The nanofluid contains water, Al2O3 nanoparticles with sphere (spherical) and lamina(non-spherical)shapes and motile microorganisms.The phenomena of heat absorption/generation,Joule heating and thermal radiation with chemical reactions have been incorporated.The similarity transformations technique is used to transform a governing system of partial differential equations into ordinary differential equations.The numerical bvp4c MATLAB program is used to find the solution of ordinary differential equations.The interesting aspects of pertinent parameters on mass transfer,energy,concentration,and density of the motile microorganisms’profiles are computed and discussed.Our analysis depicts that the performance of sphere shape nanoparticles in the form of velocity distribution, temperature distribution, skin friction, Sherwood number and Motile density number is better than lamina(non-spherical)shapes nanoparticles.

    KEYWORDS Nanoparticle shape;nanofluid;numerical technique;gyrotactic microorganisms;magnetohydrodynamics

    Nomenclature

    1 Introduction

    Nanofluid has become an essential topic of research because of its low thermal resistance and effective thermophysical.Furthermore,cooling is required to sustain the performance of a wide range of technologies and industrial items, including power electronics, laptops, computers, high-powered rays, and motor engines.Nanofluid technology is the most exciting development in recent years,with extremely high production and low cost.Nanofluid attribute to nanoparticles suspended in the base fluid.The very first-time idea of nanofluid was introduced by Aman et al.[1–3].Also,the nanofluid in the existence of bioconvection is become the attention of researchers because of its extensive use in biomedical, bio-microsystem, and biotechnology.In several industrial processes,including enzyme biosensors, microbial enhanced crude oil recovery, and chip size microdevices for assessing nanoparticle toxicity, the interaction between convection induces motile microorganisms,and solid particles are also important[4].Geng et al.[5]discussed the impacts of nanoparticles on the growth of bioconvection induced by plums.Uddin et al.[6]discussed the application of bioconvection and nanobiofuel with the inaction of nanoparticles.Kuznetsov[7]used the motile microorganism in nanofluid flow to increase mass transfer, microscale mixing, and the nanofluid’s expected stability.Furthermore, several studies related to the biological nanofluid and motile microorganisms are discussed[8,9].

    Bio-convection is an increasing surprise of liquid mechanics determined by the swimming of microorganisms and was observed a few years ago.Bio-convection designs generally show up because of the upswimming of microorganisms with a denser density than water.The bio-convection has several applications in biotechnology and normal system.Microorganisms particles have been broadly used to make business things and mechanical such as ethanol,composts,and biofuel produced using waste.Microorganisms are also employed in water treatment facilities, biodiesel, and hydrogen gas,a promising sustainable energy source[10].Amirsom et al.[11] presented a mathematical model for three-dimensional bio-convection nanofluid flow along with gyrotactic microorganisms from a biaxial stretching sheet involving the impact of mass slip,thermal jump,and anisotropic slip.Aziz et al.[12]studied the numerical solution of free convection nanofluid flow with gryotatcic microorganisms over a flat plate.The authors conclude that biconvection parameters have significantly impacted the motile microorganisms.Khan et al.[13] investigated a comparison of Williamson and Casson nanofluids flow containing gyrotactic microorganisms.The authors conclude that stratification is dependent on microorganism concentration.

    Fluid performance has a significant role in daily life,and it is necessary to study fluid flow motion[14].Many authors did work on nanofluid flow containing gyrotactic microorganisms.Khan et al.[15]studied the natural convection nanofluid flow around a cone that contained gyrotactic microorganisms.The authors concluded that the density number of motile microorganisms,Sherwood number,Skin friction,and Nusselt number enhance along the surface.Khan et al.[16]demonstrated the bioconvection Oldroyd-B nanofluid over a stretched sheet with Prandtl number effects.Waqas et al.[4]investigated the results of a modified second-grade nanofluid over a stretched surface using motile microorganisms.The approximate results were compared to those from previous investigations and found to be very similar.Amirsom et al.[11]analyzed magnetohydrodynamic gyrotactic bioconvection in a square cavity filled with nanofluid.Waqas et al.[17] discussed the approximate solution of micropolar nanofluid across a porous stretching sheet with microorganisms, activation energy, and Nied boundary conditions.Sampath Kumar et al.[18] discussed the bioconvection in magnetofluid containing gyrotactic microorganisms across an elongate plate with a second-order velocity slip.They found that motile microorganisms’boundary layer flow decreased for greater bioconvection lewis and bioconvection number.Sohail et al.[19] investigated the entropy generation in Maxwell nanofluid having microorganisms in the existence of heterogeneous-homogenous reactions.For more studies related to the gyrotactic microorganisms,see[20].

    According to the literature,the shape effects of Al2O3on bioconvection nanofluid with gyrotactic microorganisms over the vertical cone in a permeable medium have not yet been reported.The current research aims to examine the shape effect of nanoparticles on bioconvection nanofluid with gyrotactic microorganisms over the vertical cone in a permeable medium.The partial differential equations are converted into ordinary differential equations to find the numerical solutions of the mathematical problem.The results are discussed with graphical illustrations.

    The following is the paper’s structure.Section 1 introduces the background and importance of the effect of nanoparticles shape on nanofluid flow.The methodology used in the paper is described in Section 2.The results and discussions are presented in Section 3.The figs are plotted for several values of the parameters.Finally,the study’s conclusion is written in Section 4.

    2 Governing Equation

    Consider the bio convection Al2O3-water nanofluid flow containing with sphere (spherical)and lamina (non-spherical) shapes nanoparticles and motile microorganisms over the vertical cone in a permeable medium.Furthermore, solutal stratification, heat generation/absorption, chemical reaction, and Joule heating are all phenomena that come with the model.The magnetic field is generated along the y-axis,while the flow is produced parallel to the x-axis,as shown in Fig.1.The equations of the problem are the model as[21]

    Figure 1:The geometry of the problem

    The boundary conditions subjected to the problems are

    Hereρnf,μnf,β,β*,B0,γ1,αnf,qr,(ρCp)nf,Dm,Q0,Wc,kr,(e,d),Dn,V0andhfare density,dynamic viscosity, thermal coefficient, solute expansion coefficient, magnetic field strength, cone halfangle, thermal radiation coefficient, modified thermal diffusivity, heat capacity, Brownian diffusion coefficient, heat generation/absorption parameter, maximum cell swimming speed, rate of chemical reaction,reference temperature and concentration dimensionless constants,diffusivity of microorganisms,suction/injection parameter and convective parameter,respectively.

    We introduced the similarity transformation variables to non-dimensionalize the above governing equations

    Substituting Eq.(7)into(Eqs.(1)–(5)),we get the following form:

    The relevant boundary conditions are described as

    whereK1,M,Rb,Pr,Nr,Rd,Lb,Sc,δ,Cr,Bi,nandPeare present the porous parameter, magnetic parameter, bioconvection Rayleigh number, Prandtl number, buoyancy ratio parameter, Radiation parameter, Lewis number, Schmidt number, Bio convection constant, Chemical reaction parameter,Boit number,solutal stratification,bio convection Lewis number,respectively.In Eqs.(8)–(11),

    The evaluated physical quantities are

    The dimensionless form of evaluated physical quantities is

    The numerical values of the nanoparticles shape factors (m) are given in Table 1, while the thermophysical properties are tabulated in Table 2.

    Table 1:Values of the nanoparticles shape factor(m)as[22]

    Table 2:Thermophysical properties of water(H2O)and nanoparticles(Al2O3)as[23]

    3 Method

    First step of bvp4c converts the higher-order non-linear ODE’s into first order(ordinary differential equations)ODEs,the procedure of bvp4c is following as

    We have introduced(f,f′,θ,θ′,g,h)into(y1,y2,y4,y5,y6,y8)residual form of related boundary value condition as the requirement of MATLAB function.

    The arguments of MATLAB function are as under.

    solinit=bvp4c(linespace(0,infinity,500),Zeros);

    options=bvpset(stats,on,RelTol,1e-6);

    sol=bvp4c(@ex8ode,@ex8bc,solinit,options).

    4 Results and Discussions

    The shape effects of nanoparticles are graphically presented in this section.The expressions for velocity and the temperature profiles are calculated numerically by using the bvp4c program.The effects of various physical parameters values on velocity are shown in Figs.2–3.The impact of the magnetic parameter(M)on the velocity profile is depicted in Fig.2.Fig.2 illustrates that the velocity of nanofluid has an inverse relation with magnetic parameter (M).It is also examined that the velocity of sphere(spherical)shape nanoparticles is greater than that of lamina(non-spherical)shape nanoparticles.Fig.3 illustrates the expression of velocity with the effect of the porous parameter(K1).Fig.3 expresses that the velocity of sphere(spherical)shape nanoparticles is greater in a flow system;also,it is noted from Fig.3 that velocity decrease with intensifying the value of the porous parameter(K1).Fig.4 demonstrates the velocity profile with the influence of bio convection Lewis number(Pe).The velocity is shown to decrease as the bio convection Lewis number (Pe) rises, and the velocity of sphere(spherical)shape nanoparticles is higher as compared to the lamina(non-spherical)shape nanoparticles.

    Figure 2:f ′(η)for dissimilar values of M

    Figure 3:f ′(η)for dissimilar values of K1

    Figure 4:f ′(η)for dissimilar values of Pe

    Figure 5:θ(η)for dissimilar values of Bi

    The impacts of parameters on temperature profiles are plotted in Figs.5–6.The variation on the nanofluid temperature with the influence of Boit number (Bi)is presented in Fig.5.Fig.5 depicts that the temperature is directly proportional to the Boit number (Bi).The effect of bioconvection Lewis number(Pe)on temperature is plotted in Fig.6.It is witnessed that bioconvection Lewis number(Pe)is an increasing function of temperature.From Figs.5–6, it is noticed the temperature of sphere(spherical)shape nanoparticles is higher as compared to the lamina(non-spherical)shape nanoparticles.The relationship between the Chemical reaction parameter(Cr)and the concentration profile is shown in Fig.7.Fig.7 illustrates that the concentration profile decreases the Chemical reaction parameter (Cr).The impact of solutal stratification(n)on concentration distribution is displayed in Fig.8.It is determined that the concentration distribution decelerates by raising the value of solutal stratification(n).It is found in Figs.7–8 the temperature of lamina(non-spherical)shape nanoparticles is higher as compared to the sphere (spherical) shape nanoparticles.Fig.9 portrays the impact of Lewis number(Lb)on microorganisms’ profiles.Fig.9 shows that the density of microorganisms decreases as the Lewis number(Lb)is increased.Fig.10 displays the effect of bio convection Lewis number(Pe)on the density of microorganisms.It is found that the density of motile microorganisms is reduced when bio convection Lewis number(Pe)is increased.

    Figure 6:θ(η)for dissimilar values of Pe

    Figure 7:g(η)for dissimilar values of Cr

    Figure 8:g(η)for dissimilar values of n

    Figure 9:h(η)for dissimilar values of Lb

    Figs.11–14 are plotted to explore the behaviors particles shape on skin frictionNusselt number(Nu),Sherwood number(Sh), and Motile density number(Nn)under the influence of bio convection Lewis number(Pe).It is also noticed from Figs.11–12, skin frictionand Nusselt number(Nu)are reduced with intensifying the bio convection Lewis number(Pe), while in Figs.13 and 14,an opposite trend has been found on Sherwood number(Sh)and Motile density numberprofiles.Fig.12 shows that lamina(non-spherical)shape has higher performance in skin frictionprofile.It is also noticed from Figs.11,13 and 14 sphere(spherical)shape nanoparticles have higher performance than the sphere(non-spherical)shape nanoparticles.

    Figure 10:h(η)for dissimilar values of Pe

    Figure 11:Cf for dissimilar values of Pe

    Figure 12:Nu for dissimilar values of Pe

    Figure 13:Sh for dissimilar values of Pe

    Figure 14:Nn for dissimilar values of Pe

    5 Conclusion

    This paper studies the effects of nanoparticle shape on nanofluid flow, including gyrotactic microorganisms.The impacts of various parameters on the profiles of motile microorganisms’velocity,temperature,concentration,density,Nusselt number,concentration,Skin friction,and density number of microorganisms are investigated.The points listed below are summarized as follows:

    · Velocity profiles of nanofluid decrease for both sphere(spherical)and lamina(non-spherical)shapes nanoparticles.

    · Temperature profiles of nanofluid increase for both sphere (spherical) and lamina (nonspherical)shapes nanoparticles.

    · Concentration profile and motile microorganisms’ profile are decreased for both sphere(spherical)and lamina(non-spherical)shapes nanoparticles.

    · Skin friction and Nusselt number are decreased for both sphere(spherical)and lamina(nonspherical)shapes nanoparticles.

    · Sherwood number and Motile density number are increased for both sphere (spherical) and lamina(non-spherical)shapes nanoparticles.

    · Sphere(spherical)shapes nanoparticles play a dominant role in the velocity and temperature distribution.

    · Lamina (non-spherical) shapes nanoparticles have poor performance in the distribution of velocity and temperature.

    · Lamina(non-spherical)shapes nanoparticles play a dominant role on concentration distribution,density of motile microorganisms and Nusselt number.

    · Sphere(spherical)shapes nanoparticles have poor performance on concentration distribution,density of motile microorganisms and Nusselt number.

    Funding Statement:The authors would like to thank Taif University Researches Supporting Project(TURSP–2020/96),Taif University,Taif,Saudi Arabia,for their financial assistance.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    99九九在线精品视频| 美国免费a级毛片| 国产精品一区二区精品视频观看| 搡老岳熟女国产| 在线天堂中文资源库| 大话2 男鬼变身卡| 精品久久蜜臀av无| 无限看片的www在线观看| 国产亚洲一区二区精品| 国产主播在线观看一区二区 | 久久热在线av| 亚洲欧美一区二区三区国产| 久久精品熟女亚洲av麻豆精品| 精品久久久久久久毛片微露脸 | 国产一区二区在线观看av| 国产精品一区二区在线不卡| 国产精品久久久久久精品电影小说| 99久久人妻综合| 亚洲男人天堂网一区| 男女边摸边吃奶| 一本—道久久a久久精品蜜桃钙片| 日本av手机在线免费观看| 日本欧美国产在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 女人久久www免费人成看片| 久久99精品国语久久久| 一本—道久久a久久精品蜜桃钙片| 亚洲 欧美一区二区三区| 亚洲三区欧美一区| av在线老鸭窝| 一级毛片黄色毛片免费观看视频| 欧美日韩一级在线毛片| 99国产精品99久久久久| 狠狠精品人妻久久久久久综合| 亚洲精品一二三| 欧美精品一区二区大全| 少妇的丰满在线观看| 国产免费一区二区三区四区乱码| 精品亚洲乱码少妇综合久久| 少妇裸体淫交视频免费看高清 | 亚洲第一av免费看| 国产精品国产av在线观看| 五月开心婷婷网| 免费观看av网站的网址| 亚洲一码二码三码区别大吗| 久久性视频一级片| 免费不卡黄色视频| 99久久精品国产亚洲精品| 黑人猛操日本美女一级片| 国产免费视频播放在线视频| 9热在线视频观看99| 欧美 日韩 精品 国产| 国产一区有黄有色的免费视频| 涩涩av久久男人的天堂| 国产高清视频在线播放一区 | 你懂的网址亚洲精品在线观看| 亚洲午夜精品一区,二区,三区| 99久久99久久久精品蜜桃| 亚洲中文日韩欧美视频| 高清欧美精品videossex| 亚洲国产精品成人久久小说| 麻豆乱淫一区二区| 亚洲图色成人| 免费少妇av软件| 午夜福利乱码中文字幕| 欧美人与善性xxx| 最近中文字幕2019免费版| 捣出白浆h1v1| 中文字幕另类日韩欧美亚洲嫩草| 视频区欧美日本亚洲| 肉色欧美久久久久久久蜜桃| 极品人妻少妇av视频| 啦啦啦在线免费观看视频4| 热re99久久精品国产66热6| 蜜桃在线观看..| 天天躁夜夜躁狠狠久久av| av网站在线播放免费| 老司机深夜福利视频在线观看 | 亚洲,欧美,日韩| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 脱女人内裤的视频| www.自偷自拍.com| 最近中文字幕2019免费版| 亚洲国产av新网站| 老司机深夜福利视频在线观看 | 成人亚洲欧美一区二区av| 操出白浆在线播放| 少妇猛男粗大的猛烈进出视频| 丝袜在线中文字幕| 九草在线视频观看| 国产精品秋霞免费鲁丝片| 男男h啪啪无遮挡| 欧美成人精品欧美一级黄| 在线精品无人区一区二区三| 制服诱惑二区| 亚洲欧美日韩高清在线视频 | 老司机深夜福利视频在线观看 | 国产伦人伦偷精品视频| 欧美中文综合在线视频| 男人爽女人下面视频在线观看| 精品国产一区二区三区四区第35| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 美女视频免费永久观看网站| 国产亚洲欧美在线一区二区| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 十八禁高潮呻吟视频| 免费高清在线观看日韩| 首页视频小说图片口味搜索 | 十八禁人妻一区二区| 国产日韩一区二区三区精品不卡| 少妇粗大呻吟视频| 99国产综合亚洲精品| e午夜精品久久久久久久| 老司机深夜福利视频在线观看 | 黄片小视频在线播放| 国产精品成人在线| 50天的宝宝边吃奶边哭怎么回事| 好男人电影高清在线观看| 亚洲中文av在线| 国产极品粉嫩免费观看在线| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 电影成人av| 成人18禁高潮啪啪吃奶动态图| 婷婷色综合www| 国产成人欧美| 久久国产精品男人的天堂亚洲| 亚洲精品美女久久久久99蜜臀 | 9色porny在线观看| 男男h啪啪无遮挡| 麻豆乱淫一区二区| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 人成视频在线观看免费观看| 观看av在线不卡| 国产亚洲欧美精品永久| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| videos熟女内射| 捣出白浆h1v1| 久久久亚洲精品成人影院| 免费不卡黄色视频| 丁香六月欧美| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 91精品伊人久久大香线蕉| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 首页视频小说图片口味搜索 | 色94色欧美一区二区| 超色免费av| 日韩制服骚丝袜av| 日韩制服骚丝袜av| 黑人猛操日本美女一级片| 最近手机中文字幕大全| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 久久久国产精品麻豆| 超色免费av| 婷婷丁香在线五月| 男男h啪啪无遮挡| 亚洲av综合色区一区| 久久久精品免费免费高清| 国产免费福利视频在线观看| 少妇人妻久久综合中文| 一本大道久久a久久精品| 久久精品熟女亚洲av麻豆精品| 亚洲av国产av综合av卡| 亚洲av片天天在线观看| 国产主播在线观看一区二区 | 亚洲少妇的诱惑av| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 免费看十八禁软件| 看免费av毛片| 亚洲国产毛片av蜜桃av| 欧美精品一区二区免费开放| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 伊人亚洲综合成人网| 国产精品一区二区免费欧美 | 岛国毛片在线播放| 中文字幕色久视频| 少妇粗大呻吟视频| 一级片免费观看大全| 校园人妻丝袜中文字幕| 久久狼人影院| 日本色播在线视频| 男人爽女人下面视频在线观看| 尾随美女入室| 桃花免费在线播放| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 少妇人妻 视频| 国产老妇伦熟女老妇高清| 午夜福利,免费看| 一区二区av电影网| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看| 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 夜夜骑夜夜射夜夜干| 国产一卡二卡三卡精品| av片东京热男人的天堂| 啦啦啦啦在线视频资源| 老司机影院毛片| 婷婷丁香在线五月| 欧美日韩亚洲高清精品| 狠狠婷婷综合久久久久久88av| 亚洲精品国产一区二区精华液| 欧美日韩精品网址| 欧美激情极品国产一区二区三区| √禁漫天堂资源中文www| 久久精品久久久久久久性| 视频区欧美日本亚洲| 一边亲一边摸免费视频| 三上悠亚av全集在线观看| 男女免费视频国产| 我的亚洲天堂| 久久亚洲精品不卡| 亚洲国产av新网站| 久久久久久免费高清国产稀缺| 亚洲第一青青草原| xxx大片免费视频| 亚洲三区欧美一区| 美女高潮到喷水免费观看| 欧美黄色淫秽网站| 丝袜在线中文字幕| 黄频高清免费视频| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 久久精品久久久久久噜噜老黄| 在现免费观看毛片| 国产在线视频一区二区| 男女边吃奶边做爰视频| av在线app专区| 日韩大码丰满熟妇| 久久久久网色| 精品人妻熟女毛片av久久网站| av片东京热男人的天堂| 亚洲熟女毛片儿| 最近中文字幕2019免费版| 国产人伦9x9x在线观看| 欧美在线黄色| 国产女主播在线喷水免费视频网站| 可以免费在线观看a视频的电影网站| 一区二区三区乱码不卡18| 亚洲av综合色区一区| 熟女av电影| 亚洲五月婷婷丁香| www.熟女人妻精品国产| 丝袜脚勾引网站| 午夜福利乱码中文字幕| 美女大奶头黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 女人爽到高潮嗷嗷叫在线视频| 午夜免费成人在线视频| 色网站视频免费| av片东京热男人的天堂| 欧美乱码精品一区二区三区| 精品亚洲成国产av| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 欧美日韩国产mv在线观看视频| av天堂在线播放| 最近中文字幕2019免费版| 欧美黄色淫秽网站| 国产精品久久久av美女十八| 欧美日韩福利视频一区二区| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| 美国免费a级毛片| 热99久久久久精品小说推荐| 国产极品粉嫩免费观看在线| 亚洲精品国产av成人精品| 精品国产一区二区三区四区第35| 亚洲,欧美,日韩| 999精品在线视频| 热99久久久久精品小说推荐| 大香蕉久久成人网| 国产成人a∨麻豆精品| 国产又爽黄色视频| 最近最新中文字幕大全免费视频 | 婷婷色综合www| 国产欧美日韩一区二区三区在线| 国产主播在线观看一区二区 | 国产黄色视频一区二区在线观看| 久久毛片免费看一区二区三区| 国产精品国产三级专区第一集| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 一二三四社区在线视频社区8| 欧美人与性动交α欧美精品济南到| 高清不卡的av网站| 亚洲av在线观看美女高潮| 99国产综合亚洲精品| 大片电影免费在线观看免费| 国产精品免费视频内射| 亚洲人成77777在线视频| www.熟女人妻精品国产| 精品人妻一区二区三区麻豆| 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 只有这里有精品99| 国产黄色视频一区二区在线观看| 国产成人精品无人区| 中文字幕高清在线视频| 国产欧美亚洲国产| 欧美精品av麻豆av| 久久亚洲精品不卡| 久久天堂一区二区三区四区| 国产精品欧美亚洲77777| 91成人精品电影| 日本午夜av视频| 又紧又爽又黄一区二区| 男女下面插进去视频免费观看| 热re99久久国产66热| 午夜福利,免费看| 欧美中文综合在线视频| 日韩 欧美 亚洲 中文字幕| 亚洲av成人精品一二三区| 国产精品.久久久| 免费av中文字幕在线| 国产亚洲av片在线观看秒播厂| 国产精品一国产av| 久久久久久免费高清国产稀缺| 人体艺术视频欧美日本| 99久久99久久久精品蜜桃| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 国产真人三级小视频在线观看| 国产欧美日韩综合在线一区二区| 蜜桃国产av成人99| 波多野结衣一区麻豆| 亚洲精品在线美女| 欧美日韩成人在线一区二区| 久久久精品区二区三区| 国产色视频综合| 亚洲精品第二区| 人成视频在线观看免费观看| 日韩免费高清中文字幕av| 免费高清在线观看日韩| 人妻人人澡人人爽人人| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 久久国产精品人妻蜜桃| www.999成人在线观看| 人人澡人人妻人| 午夜福利,免费看| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 制服人妻中文乱码| 99re6热这里在线精品视频| 黄片播放在线免费| 捣出白浆h1v1| 精品高清国产在线一区| 国产av精品麻豆| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 国产成人a∨麻豆精品| 性高湖久久久久久久久免费观看| 久久精品国产综合久久久| 捣出白浆h1v1| 国产成人精品久久二区二区免费| 精品国产一区二区三区久久久樱花| 欧美日韩国产mv在线观看视频| 天天添夜夜摸| av电影中文网址| 少妇裸体淫交视频免费看高清 | 免费在线观看日本一区| 亚洲中文av在线| 精品高清国产在线一区| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 国产成人精品久久二区二区91| 国产精品久久久久成人av| 国产亚洲欧美在线一区二区| 美女扒开内裤让男人捅视频| 亚洲精品国产区一区二| 亚洲男人天堂网一区| www.熟女人妻精品国产| 嫩草影视91久久| 国产一区二区三区av在线| 夜夜骑夜夜射夜夜干| 日本a在线网址| av在线播放精品| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 大香蕉久久网| 一本综合久久免费| 大香蕉久久网| 久久精品国产综合久久久| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 天天躁夜夜躁狠狠躁躁| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 老司机亚洲免费影院| 国产欧美亚洲国产| av一本久久久久| 久久av网站| 国产一区二区三区av在线| 午夜视频精品福利| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 美女脱内裤让男人舔精品视频| 精品第一国产精品| 在线天堂中文资源库| svipshipincom国产片| 99久久人妻综合| 国产成人免费观看mmmm| 亚洲精品国产区一区二| 18禁黄网站禁片午夜丰满| 久久国产精品影院| 人体艺术视频欧美日本| 美女国产高潮福利片在线看| 黑丝袜美女国产一区| 欧美性长视频在线观看| 美女高潮到喷水免费观看| av国产久精品久网站免费入址| 亚洲成人国产一区在线观看 | 欧美日韩精品网址| 两性夫妻黄色片| 一区二区三区激情视频| 国产成人av教育| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 久热这里只有精品99| 一级a爱视频在线免费观看| 一区二区日韩欧美中文字幕| 成年美女黄网站色视频大全免费| svipshipincom国产片| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 日日爽夜夜爽网站| 国产精品二区激情视频| 操出白浆在线播放| 久久综合国产亚洲精品| 丁香六月天网| 亚洲黑人精品在线| 丰满少妇做爰视频| 国产真人三级小视频在线观看| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| a 毛片基地| 国产av精品麻豆| 熟女少妇亚洲综合色aaa.| 欧美成人午夜精品| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 国产成人精品久久二区二区免费| 国产一区有黄有色的免费视频| 在线观看免费午夜福利视频| 人妻人人澡人人爽人人| 国产精品久久久人人做人人爽| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| 午夜免费鲁丝| 韩国精品一区二区三区| 你懂的网址亚洲精品在线观看| 日韩大片免费观看网站| 天天躁夜夜躁狠狠躁躁| 色综合欧美亚洲国产小说| 日本91视频免费播放| √禁漫天堂资源中文www| 美女中出高潮动态图| 黄片播放在线免费| 亚洲精品一二三| 亚洲免费av在线视频| 欧美日韩黄片免| 这个男人来自地球电影免费观看| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影 | 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠躁躁| 高清av免费在线| 亚洲成人免费av在线播放| 人人妻人人澡人人看| 欧美在线黄色| 亚洲国产欧美在线一区| 国产野战对白在线观看| av福利片在线| 精品国产超薄肉色丝袜足j| 亚洲av国产av综合av卡| 色婷婷久久久亚洲欧美| 男女免费视频国产| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 曰老女人黄片| 国产福利在线免费观看视频| 999精品在线视频| 中国美女看黄片| 欧美+亚洲+日韩+国产| 一本—道久久a久久精品蜜桃钙片| videos熟女内射| 欧美精品av麻豆av| 国产不卡av网站在线观看| 啦啦啦视频在线资源免费观看| 精品免费久久久久久久清纯 | www.av在线官网国产| 国产99久久九九免费精品| 精品少妇黑人巨大在线播放| 在线av久久热| 男人添女人高潮全过程视频| 精品少妇久久久久久888优播| 亚洲,欧美精品.| av国产久精品久网站免费入址| www.av在线官网国产| 欧美精品啪啪一区二区三区 | 国产在线观看jvid| 欧美久久黑人一区二区| 欧美97在线视频| av在线播放精品| 男女下面插进去视频免费观看| 国产老妇伦熟女老妇高清| 欧美人与性动交α欧美精品济南到| 国产亚洲一区二区精品| 各种免费的搞黄视频| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡| 人体艺术视频欧美日本| 啦啦啦在线观看免费高清www| 一区二区三区激情视频| 久久性视频一级片| 欧美av亚洲av综合av国产av| 日韩大片免费观看网站| 国产野战对白在线观看| 国产精品 欧美亚洲| av在线老鸭窝| 看免费av毛片| 欧美日本中文国产一区发布| 欧美国产精品va在线观看不卡| 国产一区二区三区综合在线观看| av国产精品久久久久影院| 狂野欧美激情性bbbbbb| 丝袜脚勾引网站| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 午夜福利一区二区在线看| 美女主播在线视频| 中文乱码字字幕精品一区二区三区| 丝袜美腿诱惑在线| av一本久久久久| 男女午夜视频在线观看| 91国产中文字幕| 午夜两性在线视频| 精品国产乱码久久久久久男人| 我的亚洲天堂| 尾随美女入室| 欧美中文综合在线视频| 久久人人97超碰香蕉20202| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 成人国产av品久久久| 亚洲人成电影免费在线| 在线 av 中文字幕| 亚洲中文av在线| 青春草亚洲视频在线观看| 1024香蕉在线观看| 日本猛色少妇xxxxx猛交久久| av欧美777| 99热网站在线观看| 十八禁高潮呻吟视频| 亚洲熟女精品中文字幕| 欧美 日韩 精品 国产| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区国产| 国产男女超爽视频在线观看| 美国免费a级毛片| 看十八女毛片水多多多| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| √禁漫天堂资源中文www| 丁香六月天网| 亚洲综合色网址| 少妇精品久久久久久久| 丝袜美腿诱惑在线| 超碰97精品在线观看| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 亚洲国产最新在线播放| 免费女性裸体啪啪无遮挡网站| 国产欧美日韩一区二区三区在线| 久久ye,这里只有精品| 亚洲,欧美,日韩| 水蜜桃什么品种好| 在线av久久热| 一区二区日韩欧美中文字幕| 国语对白做爰xxxⅹ性视频网站| 男女免费视频国产| 欧美亚洲日本最大视频资源| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 97人妻天天添夜夜摸| 一级毛片 在线播放| 波多野结衣av一区二区av| 免费一级毛片在线播放高清视频 | 观看av在线不卡|