• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved High Order Model-Free Adaptive Iterative Learning Control with Disturbance Compensation and Enhanced Convergence

    2023-01-22 09:00:10ZhiguoWangFangqingGaoandFeiLiu

    Zhiguo Wang,Fangqing Gao and Fei Liu

    Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education),Institute of Automation,Jiangnan University,Wuxi,214122,China

    ABSTRACT In this paper,an improved high-order model-free adaptive iterative control(IHOMFAILC)method for a class of nonlinear discrete-time systems is proposed based on the compact format dynamic linearization method.This method adds the differential of tracking error in the criteria function to compensate for the effect of the random disturbance.Meanwhile,a high-order estimation algorithm is used to estimate the value of pseudo partial derivative(PPD),that is,the current value of PPD is updated by that of previous iterations.Thus the rapid convergence of the maximum tracking error is not limited by the initial value of PPD.The convergence of the maximum tracking error is deduced in detail.This method can track the desired output with enhanced convergence and improved tracking performance.Two examples are used to verify the convergence and effectiveness of the proposed method.

    KEYWORDS Pseudo partial derivative;enhanced convergence;tracking error;disturbance compensation

    1 Introduction

    Generally, there are two strategies for controller design.One is based on the exact process information,and the other is based on the input-output data which is a model-free controller design strategy.Many practical industrial processes contain nonlinearity, uncertainty, and time-varying characteristics.In this case,model-based control becomes inapplicable because it is difficult to obtain an accurate mathematical model of the controlled object.In recent years,the model-free methods have attracted the attention of many researchers because of their remarkable advantages and have achieved some valuable results[1,2].

    Model-free adaptive control(MFAC)is one of the typical data-driven control methods proposed by Hou[3].The principle of the MFAC algorithm is to continuously generate a dynamic linearization model containing pseudo partial derivative(PPD),which transforms the nonlinear system into a timevarying linearized model that utilizes the input and output data of every step [4].Compared with the model-based algorithm,model-free adaptive control has the characteristics of fewer identification parameters and fewer calculations.This method has been applied in various fields,for example,process control[5],motor system[6],and so on.Arimoto et al.[7]proposed iterative learning control(ILC),which is suitable for a class of controlled objects with repetitive running characteristics,such as robots with reciprocating operation characteristics[8]and a chemical reactor in a batch process[9].Iterative learning control was applied to improve the tracking performance of nonlinear processes whose model and parameters are unknown[10].Zhao et al.[11]used iterative learning to design the unbiased finite impulse response.Combining the advantages of model-free adaptive control with iterative learning control, model-free adaptive iterative learning control (MFAILC) was proposed in [12].Unlike the iterative learning control with fixed learning gain, the learning gain of model-free adaptive iterative learning control is time-varying.It transforms the original nonlinear time-domain into a nonlinear iterative domain and can be applied to other nonlinear controlled objects whose structures and parameters are time-varying [13,14].Thus MFAILC algorithm has better stability and adaptability for complex systems[15].

    Based on the previous research results, many researchers have further investigated the modelfree adaptive iterative learning control algorithm.In [16], an improved model-free adaptive iterative learning control method which based on an encoding and decoding quantization mechanism was proposed for a class of unknown nonlinear systems with data quantization.Li[17]adopted a neural network to optimize the control law and the penalty of PPD.For a class of nonlinear discrete systems with load disturbance and data loss, Hua et al.[18] proposed a control method with data compensation.Model-free adaptive iterative learning control was applied to a multi-agent system by Bu et al.[19].Chi et al.[20] proposed a high order model-free adaptive iterative learning control,which uses the input and output information of the previous iterations to construct a new control input.It is obvious from the above observations that MFAILC has made great progress in theoretical research.In the control process,convergence is a critical index for ILC so as to MFAILC[21].However,the convergence speed is related to the initial pseudo partial derivative, and it often takes several experiments to get the appropriate value of the initial PPD[22].The slower convergence will deteriorate the performance of the controlled process[23].

    To obtain a faster convergence,the high-order algorithm was used to estimate the value of pseudo partial derivatives,which introduced more parameters to be adjusted unexpectedly[24].This method brings more difficulties in tuning parameters.On the basis of the former, this paper proposed an improved high-order model-free adaptive iterative control (IHOMFAILC).The main contributions of this paper are as follows:

    · An improved PPD estimation algorithm, which takes the average value of the previous PPDs can achieve faster convergence without introducing more parameters.

    ·A differential module is introduced into the criteria function of the controller to compensate for the dynamic performance of the system under random disturbance.

    · The proposed method contains fewer parameters to design and with the number of iterations increases,the maximum error gradually converges to zero.

    The rest of this paper is organized as follows:Section 2 introduces the basic principle of modelfree adaptive iterative learning control.The proposed method with disturbance compensation and enhanced convergence is shown in detail in Section 3.In Section 4, the convergence and stability of the proposed algorithm are proved in detail.Two examples are used to illustrate the effectiveness of the method in Section 5 and the conclusions are drawn in Section 6.

    2 Basic Principle of MFAILC

    Consider the following nonlinear discrete-time SISO system:

    whereuk(t)andyk(t)are thekth iteration input and output of system,respectively,nyandnuare the unknown orders of system,andf(·)is a nonlinear function.

    The following two assumptions are given for system(1)to make the discussion rigorous:

    Assumption 1:The partial derivative of the nonlinear functionf(·)with respect to its control inputuk(t)is continuous.

    Assumption 2:System(1)satisfies the generalized Lipschitz condition,that is,for any timetand iterationk,if|Δuk(t)|≠0,then the system(1)satisfies the following conditions:

    where Δyk(t+1) =yk(t+1)-yk-1(t+1),Δuk(t)=uk(t)-uk-1(t), andbis a positive constant.Based on the two assumptions,Lemma 1 can be achieved:

    Lemma 1:For any nonlinear system that satisfies assumptions 1 and 2, if |Δuk(t)| ≠ 0, there must exist time-varying pseudo-partial derivativeφk(t),such that system(1)can be transformed into the following generic model:

    whereφk(t)is bounded and satisfies|φk(t)|≤b.

    In order to design the control law,the following criteria function is considered:

    whereλis a weighting factor used to restrict the control input variation between adjacent iterations,andyr(t+1)is the desired output.

    Substituting(3)into(4)and minimizing(4)with respect touk(t),we get the following control law:

    whereρkis a step factor, andek-1(t+1) =yr(t+1) -yk-1(t+1) is the output tracking error.Sinceφk(t)is a time-varying parameter which is difficult to acquire its accurate values, it needs to be estimated based on input and output data.

    As with solvinguk(t),the following criteria function is denoted:

    whereμ >0 is a weighting factor,(t)is the estimation ofφk(t).

    Taking the derivative of Eq.(4)with respect to(t)results in the following parameter estimation algorithm:

    whereηk >0 is a step factor.

    In order to make the algorithm estimate value of Eq.(7) more accurate, the following reset algorithm is denoted:if|(t)|<εor|Δuk(t)|≤εor

    whereεis a small positive constant, and(t)is the initial value of iteration.The reset algorithm ensures the condition of Lemma 1 and the stronger tracking ability of Eq.(7) for time-varying parameters.

    However,the rapidity of convergence of the maximum error of MFAILC is related to the value of the initial PPD.The larger the value is,the slower the convergence rate is and the larger the error is.Therefore,an improved method is proposed to solve the above problem.

    3 Improved High-Order Model-Free Adaptive Iterative Learning Control Method

    In the proposed method, a differential link is added to compensate for the impact of random disturbance on the system and only use input and output data to design the control law.

    Consider the following criteria function:

    whereγ≥0 is weighting factor limits the change of tracking error, and whenγ= 0 the criteria function is the same as Eq.(4).Substituting(3)into(9),we can get:

    To get the optional solution, we minimizing (10) with respect touk(t)leads to following control law:

    according to (11),φk(t)is an unknown time-varying parameter that needs to be estimated utilizing input and output data.

    Unlike other high-order algorithms designed based on control input[25]and tracking error terms[26], the improved high-order algorithm uses previous iterations to estimate the PPD.Compared to the algorithm in[24],the improved algorithm does not need to take different weight coefficients for the previous PPDs.

    If the number of iterations is less than the iteration learningn,the estimation algorithm of Eq.(7)is adopted:

    when the number of iterations is larger than the iteration learningn,the following algorithm is adopted to reduce the dependence of the error convergence speed on the initial PPD value.Denote the following criteria function:

    Taking the partial derivative of(t)in Eq.(13):

    Minimizing Eq.(14)by solvingthe estimate algorithm is expressed:

    wherenis number of iterative learning.The reset algorithm of(t)is the same as Eq.(8).The improved algorithm uses the PPDs of previousniterations to estimate the current PPD.Thus the PPD can learn more from past data,making the tracking error has fast convergence.Therefore,the overall control scheme of IHOMFAILC consists of(16)–(18):

    4 Convergence Analysis

    In this section,the convergence of the proposed method is mainly proved.In order to make the following discussion more rigorous,the following assumption is given:

    Assumption 3:For allk∈ {0,1,2,...,N-1} andt∈ {0,1,2,...,T-1}, if |Δuk(t)| ≠ 0,φk(t)>0.

    Assumption 3 is similar to a restriction on the direction of control input gain.

    Lemma 2:If system(1)satisfies assumption 1–3,there must existλmin>0 so that whenλ >λmin,the IHOMFAILC method has the following properties:

    1.For allk∈{0,1,2,...,N-1}andt∈{0,1,2,...,T-1},(t)is bounded.

    2.Whenk→∞,the system output tracking error converges to 0.

    3.The close-loop system is BIBO stability, for allk∈{0,1,2,...,N-1} andt∈{0,1,2,...,T-1},uk(t)is bounded.

    Proof:The first step is to prove that(t)is bounded.

    In other cases,when 2 ≤k <n,denote the following estimation error of the PPD parameters:

    Subtractingφk(t)from both sides of Eq.(12):

    Denote Δφk(t)=φk(t)-φk-1(t),substituting(3)into(20),we have:

    When 0<η≤1,μ >0,from Eq.(21)we can get:

    From Lemma 1 we get|φk(t)|≤b,so|φk(t)-φk-1(t)|≤2b.Taking absolute worthwhile at both sides of Eq.(21):

    whenn≤kand|uk(t)|>ε,we have:

    Substituting Eq.(3)into(24)and taking absolute worthwhile at both sides,we have:

    Eq.(25)can finally be simplified as follows:

    From Lemma 1, we knowφk(t)is bounded and therefore |φk-n(t)| is bounded.Finally from Eq.(26),we can prove that(t)is bounded.

    Then the convergence of tracking error and the bounded control input are proved as follows:

    Denote ifk≤1,then|Δuk(t)| =0.Taking absolute worthwhile at both sides of Eq.(11):

    Sinceφk(t)and(t)are bounded,whenλ >λmin>0,then there must existM1,M2,M3satisfy the following inequality:

    From Eqs.(28)and(29)we get:

    Sinceφk(t)and(t)are bounded,there existsd1that:

    According to Eqs.(28)–(31),we have:

    From Eq.(33)we can get,ifek(t)converges to 0,thenuk(t)is bounded.

    Letd2=1-ρM2,substituting Eq.(33)into(34)we have:

    Then Eq.(35)can be described as follows:

    Letd3=ρM3, according to Eq.(29) we getM1φk(t)≤M3<0.5, soM1φi+1(t)≤M3<0.5.Eq.(36)can be transformed into:

    whereg2(t+1) =d2|e1(t+1)|.According to (38), whenk→∞, ifgk(t+1)converges to 0 thenek(t+1)will converge to 0.Therefore,it is possible to prove the convergence ofgk(t+1)rather thanek(t+1)directly.

    wherehk-1(t+1)=d3dk-11|e1(t+1)|+···+d3d21|ek-1(t+1)|+d3d1|gk-1(t+1)|.

    According to Eq.(31):M2+M3<1,so we have:

    Substituting Eq.(40)intohk-1(t+1),we get the following inequality:

    Eq.(41)hk-1(t+1)can finally be expressed as:

    Substituting(42)into(39)yields:

    Whend2+d1<1,gk(t+1)converges gradually.Selectingρ∈(0,1),γ >0 to make:

    Thus the following inequality is given:

    Substitutingd2+d1<1 into Eq.(43),

    According to inequality(38)and(46),with the increase of the number of iterationsk,gk(t+1)converge to 0 gradually,and thereforeek(t+1)will converge to 0 finally.

    From inequality(33),we have:

    Eq.(47)can be reorganized as follows:

    This implies thatuk(t)is bounded.Lemma 2(1)–(3)are established.

    5 Simulation

    Example 1:Consider the following time-varying system[14]:

    The desired output is:

    whereα(t)=1+round(t/50)is a time-varying parameter of the system(49).For IHOMAFILC,the controller parameters are set as:λ=0.4,ρ=1,μ=1,η=0.5,γ=0.01 andε=10-5.The number of previous iterative learning is set asn=3.The initial value of PPD is set toφ0(t)=10.

    Table 1 shows the ITAE performance index of the two methods.When the number of iterations is set to 10,20,30,and 40 while other parameters are unchanged,the IATE values of IHOMFAILC is less than that of MFAILC.As the number of iterations increase,the IATE values of both methods shows a downward trend.Therefore the proposed method performance index is better.

    Table 1:The ITAE performance index of two methods with different iterations

    Fig.1 shows the tracking results of IHOMFAILC and MFAILC with different iterations.From the 15th iteration result,the proposed method can gradually approach desired output ultimately tracks it at 40 iterations.The output of the MFAILC method at the 40th iteration still has a large error with the expected output.

    Figure 1:Tracking results of IHOMFAILC and MFAILC with different iterations

    The maximum tracking error of IHOMFAILC and MFAILC with different initial PPDs is shown in Fig.2.As the picture shows,the change of the initial value of PPD has a great impact on the error convergence speed of MFAILC.The proposed method ensures fast convergence and the final error convergence to 0.Results demonstrate that IHOMFAILC can achieve fast convergence with a few attempts to select the best initial value of PPD.

    Figure 2:Comparison of max tracking error of MFAILC and IHOMFAILC with different initial PPDs

    Example 2:In order to verify the effectiveness of the proposed algorithm,simulation is performed on a permanent magnet DC linear motor[1].The dynamic characteristics of the motor are described as follows:

    wherex(t)is the position of linear motor(m),υ(t)is the speed(m/s),ffriction(t)is the friction force(N),fripple(t)is the ripple force(N),u(t)is the developed force(N),tis the continuous-time(s).

    The mathematical model between friction force and ripple force is described as follows:

    wherefcis the minimum value of coulomb friction andfsis the static friction,xδis the lubrication parameters andfυis the load parameters,δis an additional empirical parameter.m= 0.59,xδ= 0.1,δ=1,fc=10,fs=20,fυ=10,b1=8.5,ω0=314s-1.

    Denotex1(t)=x(t),x2(t)=υ(t).Eq.(45)can be described as follows:

    whered(t)is a zero-mean white noise with a variance 0.005.The desired output isyr(t)=10 sin(πt).Discretize(46)by Euler Formula and take sample time asts= 0.001.The controller parameters are set asλ= 0.06,ρ= 1,μ= 0.3,η= 1, andγ= 0.005.Fig.3 shows the maximum tracking error convergence of IHOMFAILC and MFAILC.It can be seen from the figure that the errors of the two methods are the same at the 11th and 14th iterations and the convergence errors of the IHOMFAILC in other iterations are all less than MFAILC.This simulation shows that the proposed method has fast error convergence even though the system exists interference.

    Figure 3:Max tracking error convergence of MFAILC and IHOMFAILC

    6 Conclusion

    Based on the model-free adaptive iterative learning control, a novel IHOMFAILC method has been proposed in this paper based on compact form dynamic linearization.When the system is disturbed,the proposed method can still keep track of the desired output.Furthermore,this method can achieve enhanced convergence without many experiments to find a suitable PPD value.Two examples show that the proposed method has good trajectory tracking and disturbance resistance.

    Acknowledgement:This work was supported by the Natural Science Foundation of China, under Grant No.61773183.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    搡老乐熟女国产| 国产精品偷伦视频观看了| 老司机影院毛片| 亚洲第一青青草原| 如何舔出高潮| 在线免费观看不下载黄p国产| 日日爽夜夜爽网站| 欧美精品国产亚洲| 免费播放大片免费观看视频在线观看| 老鸭窝网址在线观看| 伦理电影大哥的女人| 国产成人一区二区在线| 国产一区有黄有色的免费视频| 一二三四在线观看免费中文在| 天堂8中文在线网| 亚洲欧美成人综合另类久久久| freevideosex欧美| 狠狠婷婷综合久久久久久88av| 欧美+日韩+精品| 亚洲三级黄色毛片| 晚上一个人看的免费电影| 一本久久精品| 午夜久久久在线观看| 欧美日韩成人在线一区二区| 日韩,欧美,国产一区二区三区| 国产一区有黄有色的免费视频| 亚洲精品在线美女| 91在线精品国自产拍蜜月| 日韩不卡一区二区三区视频在线| 成人毛片a级毛片在线播放| 成年女人在线观看亚洲视频| 丰满饥渴人妻一区二区三| av国产久精品久网站免费入址| 欧美国产精品一级二级三级| 人成视频在线观看免费观看| 韩国精品一区二区三区| 曰老女人黄片| 五月天丁香电影| 日日摸夜夜添夜夜爱| 亚洲欧洲日产国产| 18禁裸乳无遮挡动漫免费视频| 男的添女的下面高潮视频| 亚洲成av片中文字幕在线观看 | 黄色 视频免费看| 午夜老司机福利剧场| 制服人妻中文乱码| 成年女人毛片免费观看观看9 | 秋霞在线观看毛片| 我要看黄色一级片免费的| 999久久久国产精品视频| av一本久久久久| 99热国产这里只有精品6| av免费观看日本| 午夜日本视频在线| videosex国产| 午夜福利乱码中文字幕| 韩国精品一区二区三区| 久久久久国产精品人妻一区二区| 亚洲婷婷狠狠爱综合网| 国产日韩一区二区三区精品不卡| 亚洲综合色惰| 欧美日韩一级在线毛片| 边亲边吃奶的免费视频| 熟女电影av网| 看十八女毛片水多多多| 日韩欧美一区视频在线观看| 18禁动态无遮挡网站| 免费黄色在线免费观看| 2021少妇久久久久久久久久久| 黑人猛操日本美女一级片| 国产国语露脸激情在线看| 国产精品无大码| 欧美精品一区二区大全| 熟女电影av网| 女人久久www免费人成看片| 一区福利在线观看| 两个人免费观看高清视频| 欧美av亚洲av综合av国产av | www日本在线高清视频| 99久久精品国产国产毛片| 精品卡一卡二卡四卡免费| 天美传媒精品一区二区| 中文字幕最新亚洲高清| 色吧在线观看| 久久这里只有精品19| 日韩伦理黄色片| 久久99一区二区三区| 亚洲欧美精品自产自拍| 性高湖久久久久久久久免费观看| kizo精华| 亚洲欧美色中文字幕在线| 999久久久国产精品视频| 秋霞在线观看毛片| 春色校园在线视频观看| 国产1区2区3区精品| 国产人伦9x9x在线观看 | 国产精品久久久久久久久免| 高清欧美精品videossex| 大片免费播放器 马上看| 黄色毛片三级朝国网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲国产日韩| 久久免费观看电影| 永久网站在线| 在线天堂中文资源库| 99re6热这里在线精品视频| 国产伦理片在线播放av一区| 久久婷婷青草| videos熟女内射| 性色av一级| 亚洲国产欧美日韩在线播放| 韩国av在线不卡| 99久久精品国产国产毛片| 欧美国产精品va在线观看不卡| 最近手机中文字幕大全| 中文字幕av电影在线播放| 久久青草综合色| 午夜免费鲁丝| 中文字幕最新亚洲高清| 久久午夜综合久久蜜桃| 色吧在线观看| 极品人妻少妇av视频| 两性夫妻黄色片| 日产精品乱码卡一卡2卡三| 欧美亚洲 丝袜 人妻 在线| 国产精品 国内视频| 日本-黄色视频高清免费观看| 波野结衣二区三区在线| 免费在线观看完整版高清| 在线精品无人区一区二区三| 久久精品国产亚洲av涩爱| 精品人妻熟女毛片av久久网站| 国产精品一区二区在线观看99| 成人亚洲精品一区在线观看| 久久鲁丝午夜福利片| kizo精华| 午夜免费男女啪啪视频观看| 久久国产精品男人的天堂亚洲| 国产免费又黄又爽又色| 一级爰片在线观看| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 熟女av电影| 伦精品一区二区三区| 国产成人一区二区在线| 亚洲第一青青草原| 你懂的网址亚洲精品在线观看| 欧美精品人与动牲交sv欧美| 免费观看av网站的网址| 精品国产露脸久久av麻豆| 熟女av电影| 午夜福利,免费看| 91精品三级在线观看| 伦理电影大哥的女人| 在线精品无人区一区二区三| 久久久国产精品麻豆| 国产免费现黄频在线看| 国产精品一区二区在线观看99| 亚洲经典国产精华液单| 天堂中文最新版在线下载| 中文字幕另类日韩欧美亚洲嫩草| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 成人免费观看视频高清| 大陆偷拍与自拍| 在线看a的网站| 精品人妻偷拍中文字幕| 高清黄色对白视频在线免费看| av.在线天堂| 最近最新中文字幕大全免费视频 | 国产高清国产精品国产三级| 国产片内射在线| 欧美国产精品一级二级三级| 伦理电影免费视频| 黄片播放在线免费| 黄色毛片三级朝国网站| 免费观看性生交大片5| 激情五月婷婷亚洲| 久久午夜综合久久蜜桃| www.精华液| 国产视频首页在线观看| 色视频在线一区二区三区| 久久精品国产综合久久久| 中文字幕精品免费在线观看视频| 久久久久国产精品人妻一区二区| 激情视频va一区二区三区| 国产在线一区二区三区精| 91成人精品电影| 午夜影院在线不卡| 久久精品aⅴ一区二区三区四区 | 人成视频在线观看免费观看| freevideosex欧美| 国产精品一国产av| 性少妇av在线| 亚洲av.av天堂| 国产精品人妻久久久影院| 久久久久人妻精品一区果冻| 亚洲色图综合在线观看| 国产精品嫩草影院av在线观看| 国产精品久久久久久精品古装| 新久久久久国产一级毛片| 日韩视频在线欧美| 亚洲视频免费观看视频| 久久久久国产网址| 国产熟女欧美一区二区| 黄片无遮挡物在线观看| 七月丁香在线播放| 成人18禁高潮啪啪吃奶动态图| 亚洲成人手机| 麻豆乱淫一区二区| 亚洲精品一区蜜桃| 免费黄频网站在线观看国产| 天天影视国产精品| 亚洲精华国产精华液的使用体验| 女人久久www免费人成看片| 亚洲一码二码三码区别大吗| 欧美精品一区二区免费开放| 色吧在线观看| 亚洲精品av麻豆狂野| 97在线视频观看| 国产亚洲欧美精品永久| av在线播放精品| 亚洲精品国产av成人精品| 黄网站色视频无遮挡免费观看| 晚上一个人看的免费电影| 日日啪夜夜爽| 欧美日本中文国产一区发布| 99国产综合亚洲精品| 精品福利永久在线观看| av在线观看视频网站免费| 看非洲黑人一级黄片| 各种免费的搞黄视频| 久久人人爽av亚洲精品天堂| 日韩成人av中文字幕在线观看| a级毛片黄视频| 亚洲av在线观看美女高潮| 自线自在国产av| 久久久a久久爽久久v久久| 亚洲欧美成人精品一区二区| 叶爱在线成人免费视频播放| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| 久久97久久精品| 久久久久精品性色| 精品亚洲乱码少妇综合久久| 久热这里只有精品99| 在线天堂中文资源库| 天堂中文最新版在线下载| 91国产中文字幕| 国产男人的电影天堂91| 欧美日韩视频高清一区二区三区二| 99久久精品国产国产毛片| 国产黄色视频一区二区在线观看| 午夜福利视频在线观看免费| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 2022亚洲国产成人精品| 亚洲成国产人片在线观看| 日本爱情动作片www.在线观看| 在现免费观看毛片| 97在线人人人人妻| 伦精品一区二区三区| 伊人亚洲综合成人网| 国产熟女午夜一区二区三区| 亚洲精品国产一区二区精华液| 卡戴珊不雅视频在线播放| 国产精品国产三级国产专区5o| 亚洲精品国产av蜜桃| 18+在线观看网站| 久久99一区二区三区| 国产熟女午夜一区二区三区| 日韩av免费高清视频| 最近手机中文字幕大全| 18禁动态无遮挡网站| 国产精品麻豆人妻色哟哟久久| 老汉色av国产亚洲站长工具| 亚洲欧美精品自产自拍| 一区二区av电影网| 国产精品一区二区在线不卡| 最近手机中文字幕大全| 亚洲成人一二三区av| 久久久欧美国产精品| 亚洲成色77777| 日韩不卡一区二区三区视频在线| 精品一区在线观看国产| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人爽人人夜夜| 婷婷色麻豆天堂久久| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区| 最近手机中文字幕大全| 欧美精品亚洲一区二区| 99久久人妻综合| 欧美精品高潮呻吟av久久| 久久精品熟女亚洲av麻豆精品| 叶爱在线成人免费视频播放| 国产麻豆69| 一边亲一边摸免费视频| 少妇猛男粗大的猛烈进出视频| 人妻少妇偷人精品九色| 午夜福利视频在线观看免费| 性高湖久久久久久久久免费观看| 只有这里有精品99| 在线观看三级黄色| 午夜日韩欧美国产| 999精品在线视频| 国产又爽黄色视频| 久久国产精品大桥未久av| 香蕉丝袜av| 2022亚洲国产成人精品| 成人国语在线视频| 看免费av毛片| 亚洲成人一二三区av| 蜜桃在线观看..| 国产精品久久久av美女十八| 亚洲人成网站在线观看播放| 成人毛片a级毛片在线播放| 国产成人91sexporn| 最近中文字幕高清免费大全6| 在线观看www视频免费| 成人午夜精彩视频在线观看| 亚洲精品自拍成人| 欧美精品av麻豆av| 五月天丁香电影| 一级爰片在线观看| 久久久久久久久久人人人人人人| 18在线观看网站| 在线观看三级黄色| 国产精品久久久久成人av| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久久免| 三级国产精品片| 国产一区二区 视频在线| av有码第一页| 中文乱码字字幕精品一区二区三区| 日韩三级伦理在线观看| 国产精品三级大全| av国产久精品久网站免费入址| 久久久久国产精品人妻一区二区| 美女中出高潮动态图| 成年美女黄网站色视频大全免费| 久久久久久伊人网av| 97精品久久久久久久久久精品| 人妻一区二区av| 成人手机av| 亚洲精品国产av成人精品| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 一级毛片电影观看| 丝袜脚勾引网站| 国产一区二区三区综合在线观看| 中文字幕人妻熟女乱码| 日本av手机在线免费观看| 精品国产超薄肉色丝袜足j| 日韩,欧美,国产一区二区三区| 国产欧美日韩综合在线一区二区| av国产久精品久网站免费入址| 日韩制服丝袜自拍偷拍| 老司机影院毛片| 亚洲国产av影院在线观看| 2021少妇久久久久久久久久久| 欧美av亚洲av综合av国产av | 久久这里有精品视频免费| 一级片免费观看大全| 欧美精品国产亚洲| 水蜜桃什么品种好| 亚洲男人天堂网一区| 国产麻豆69| 在线 av 中文字幕| kizo精华| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久精品久久精品一区二区三区| www.自偷自拍.com| 亚洲av日韩在线播放| 久久综合国产亚洲精品| 久久精品国产a三级三级三级| 99国产综合亚洲精品| 男女边吃奶边做爰视频| 另类精品久久| 色网站视频免费| 丰满乱子伦码专区| 三上悠亚av全集在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产一区二区| 在线观看www视频免费| 五月开心婷婷网| 各种免费的搞黄视频| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 十分钟在线观看高清视频www| 最近2019中文字幕mv第一页| 久久久久精品人妻al黑| 成人国产av品久久久| 男的添女的下面高潮视频| 天美传媒精品一区二区| 在线观看人妻少妇| a级毛片在线看网站| 高清不卡的av网站| 天天影视国产精品| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 日本午夜av视频| 下体分泌物呈黄色| 亚洲成色77777| 国产亚洲午夜精品一区二区久久| 国产欧美日韩一区二区三区在线| 天堂中文最新版在线下载| 9色porny在线观看| 国产日韩欧美亚洲二区| 高清黄色对白视频在线免费看| 久久综合国产亚洲精品| 男女午夜视频在线观看| 丝袜人妻中文字幕| 王馨瑶露胸无遮挡在线观看| 欧美在线黄色| 美女主播在线视频| 男人爽女人下面视频在线观看| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频| 美女视频免费永久观看网站| 国产成人精品久久久久久| 啦啦啦中文免费视频观看日本| 天天影视国产精品| 国产 一区精品| 成年人午夜在线观看视频| 不卡视频在线观看欧美| xxx大片免费视频| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 黄色毛片三级朝国网站| 80岁老熟妇乱子伦牲交| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 色网站视频免费| 国产综合精华液| 国产色婷婷99| 日本色播在线视频| 午夜激情av网站| 精品国产一区二区三区久久久樱花| 久久午夜综合久久蜜桃| 亚洲少妇的诱惑av| 超色免费av| 婷婷色综合www| 亚洲精品美女久久久久99蜜臀 | 巨乳人妻的诱惑在线观看| 国产精品一国产av| 最近中文字幕2019免费版| 男的添女的下面高潮视频| 精品少妇内射三级| 欧美激情 高清一区二区三区| 色吧在线观看| 久热久热在线精品观看| 男女下面插进去视频免费观看| 91在线精品国自产拍蜜月| 精品一品国产午夜福利视频| 国产麻豆69| 一区二区三区激情视频| 在线天堂最新版资源| 久久99热这里只频精品6学生| 一区福利在线观看| 搡女人真爽免费视频火全软件| 久久精品夜色国产| 中文字幕人妻丝袜制服| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 少妇熟女欧美另类| 最近中文字幕2019免费版| 亚洲成人手机| 黄色配什么色好看| 国产亚洲最大av| 丝袜喷水一区| 国产精品一国产av| a 毛片基地| 国产av码专区亚洲av| 亚洲 欧美一区二区三区| 精品人妻在线不人妻| 十分钟在线观看高清视频www| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 不卡av一区二区三区| 国产精品.久久久| 国产日韩一区二区三区精品不卡| 久久狼人影院| 亚洲综合色惰| 久久精品久久久久久久性| 天天操日日干夜夜撸| 热re99久久国产66热| 日韩,欧美,国产一区二区三区| 国产片内射在线| 美女中出高潮动态图| 女人精品久久久久毛片| 国产精品蜜桃在线观看| 久久精品亚洲av国产电影网| 国产精品99久久99久久久不卡 | 香蕉丝袜av| 精品少妇内射三级| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 99久久人妻综合| 成人国产麻豆网| 国产成人欧美| 只有这里有精品99| 五月天丁香电影| 叶爱在线成人免费视频播放| 免费观看无遮挡的男女| 丝袜美足系列| 亚洲男人天堂网一区| 午夜久久久在线观看| 巨乳人妻的诱惑在线观看| 99久久中文字幕三级久久日本| 男人舔女人的私密视频| 午夜av观看不卡| 国产日韩欧美视频二区| 美女大奶头黄色视频| 亚洲四区av| 肉色欧美久久久久久久蜜桃| 99九九在线精品视频| 看十八女毛片水多多多| 人人妻人人添人人爽欧美一区卜| 国产精品不卡视频一区二区| 97在线视频观看| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 久久久久久人妻| 最黄视频免费看| 老汉色∧v一级毛片| 这个男人来自地球电影免费观看 | 欧美精品亚洲一区二区| 成人毛片60女人毛片免费| 免费在线观看视频国产中文字幕亚洲 | 亚洲三级黄色毛片| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 久久精品亚洲av国产电影网| 99热全是精品| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说| 永久网站在线| 在现免费观看毛片| 亚洲精品aⅴ在线观看| 欧美国产精品va在线观看不卡| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 在线天堂中文资源库| 我的亚洲天堂| 国产精品二区激情视频| 欧美另类一区| 久热这里只有精品99| 久久久久视频综合| 在线观看一区二区三区激情| 免费不卡的大黄色大毛片视频在线观看| 国产深夜福利视频在线观看| 日本vs欧美在线观看视频| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 精品亚洲成国产av| 久久这里只有精品19| 老熟女久久久| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 亚洲国产精品国产精品| 一本色道久久久久久精品综合| 波多野结衣av一区二区av| 中国三级夫妇交换| 久久久a久久爽久久v久久| 国产精品亚洲av一区麻豆 | 涩涩av久久男人的天堂| 99久久中文字幕三级久久日本| tube8黄色片| 爱豆传媒免费全集在线观看| 亚洲国产看品久久| 国产精品三级大全| 亚洲欧美成人精品一区二区| 久久热在线av| 国产在线视频一区二区| 看免费av毛片| 久久女婷五月综合色啪小说| 好男人视频免费观看在线| 国产精品av久久久久免费| 免费在线观看视频国产中文字幕亚洲 | 激情视频va一区二区三区| av免费观看日本| 乱人伦中国视频| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 多毛熟女@视频| 人妻一区二区av| 国产1区2区3区精品| 欧美日韩综合久久久久久| 国产精品熟女久久久久浪| 天天操日日干夜夜撸| 久久精品夜色国产| 黄片无遮挡物在线观看| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| 日本91视频免费播放| 免费久久久久久久精品成人欧美视频| 少妇的逼水好多| 我的亚洲天堂| 国产精品av久久久久免费| 久久久久网色| 麻豆av在线久日| 精品国产超薄肉色丝袜足j|