• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      具有Holling Ⅳ型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng)的焦點量

      2023-01-13 12:04:08張金磊孫福芹劉朋燕
      高師理科學刊 2022年11期
      關(guān)鍵詞:焦點軟件函數(shù)

      張金磊,孫福芹,劉朋燕

      具有Holling Ⅳ型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng)的焦點量

      張金磊,孫福芹,劉朋燕

      (天津職業(yè)技術(shù)師范大學 理學院,天津 300222)

      研究具有 Holling type Ⅳ型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng).通過參數(shù)變換等數(shù)學方法化簡所研究的數(shù)學模型,并應(yīng)用形式級數(shù)法對該系統(tǒng)的平衡點類型進行判定,從而確定細焦點的階數(shù).為了更好地提高研究的準確性,采用MatLab等數(shù)學軟件對研究的系統(tǒng)進行輔助計算,結(jié)合計算結(jié)果進行理論分析,進一步推出研究的平衡點是一個不穩(wěn)定的二重細焦點.

      Leslie型捕食-被捕食系統(tǒng);細焦點階數(shù);形式級數(shù)法;功能反應(yīng)函數(shù)

      1 引言及預(yù)備知識

      本文主要討論具有Holling IV型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng)模型[1],其主要形式為

      2 主要結(jié)果及證明

      式中

      通過利用數(shù)學軟件進行復(fù)雜計算,可以得出系統(tǒng)(8)的一階李雅普諾夫量等于零.

      利用形式級數(shù)法求系統(tǒng)(8)在原點的二階李雅普諾夫量[8].令

      沿系統(tǒng)的解求全導(dǎo)數(shù)[9],得

      設(shè)

      同理,可通過數(shù)學軟件計算得出

      式中:

      所以,進一步推出

      依據(jù)上文的方法可得

      從而在極坐標變換下,方程(15)變?yōu)?/p>

      利用數(shù)學軟件計算可得[12]

      3 結(jié)語

      [1] Huang Jicai,Ruan Cui,Song Jing.Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response[J].Journal of Differential Equation,2014,257:1722-1723.

      [2] Dai Yanfei,Zhao Yulin,Sang Bo.Foucit cycles in a predator–prey system of Leslie type with generalized Holling type III functional response[J].Nonlinear Analysis:Real World Applications,2019,50:218-219.

      [3] LiYilong,Xiao Dongmei.Bifurcations of a predator-prey system of Holling and Leslie types[J].Chaos Solitons and Fractals, 2007,34:607-608.

      [4] DaiYanfei,Zhao Yulin.Hopf cyclicity and global dynamics for a predator-prey system of Leslie type with simplified Holling type IV functional response[J].International Journal of Bifurcation and Chaos,2018,28(13):6-7.

      [5] SuJuan.Identifying weak focus of order 3 in a Leslie-Gower prey-predator model with prey harvesting[J].Advances in Difference Equations,2019,363:4-9.

      [6] Han Mao′an.Bifurcation Theory of Limit Cycles[M].北京:科技出版社,2017:20-21.

      [7] 黃繼才.具有Holling Type-IV 功能反應(yīng)函數(shù)的捕食與被捕食系統(tǒng)的定位分析[D].武漢:華中師范大學,2002.

      [8] 馬知恩,周義倉,李承治.常微分方程定性與穩(wěn)定性方法[M].北京:科學出版社,2015:148-149.

      [9] 劉浩.MATLAB R2018a完全自學一本通[M].北京:電子工業(yè)出版社,2018:55-59.

      [10] Freddy D,Jaume L.Qualitative Theory of Planar Differential Systems[M].Berlin:Springer-Verlag,2006:129-149.

      [11] 何青,王麗芬.Maple教程[M].北京:科學出版社,2015:53-65.

      [12] 鐘益林,彭樂群,劉炳文.常微分方程及其Maple,MATLAB求解[M].北京:清華大學出版社,2007:19-25.

      Focal value of Leslie predator-prey system with Holling type Ⅳ functional response function

      ZHANG Jinlei,SUN Fuqin,LIU Pengyan

      (School of Science,Tianjin University of Technology and Education,Tianjin 300222,China)

      The Leslie predator-prey system with Holling type Ⅳ functional response function is studied.The mathematical model is simplified by mathematical methods such as parameter transformation,and then the type of equilibrium point of the system is determined by formal series method,so as to determine the order of weak focus.In order to better improve the accuracy of the research,Matlab and other mathematical software are used to assist the calculation of the research system.Combined with the theoretical analysis of the calculation results,it is further deduced that the research equilibrium pointis an unstable weak focus with multiplicity two.

      Leslie predator-prey system;order of weak focus;formal series method;functional response function

      1007-9831(2022)11-0016-06

      O175

      A

      10.3969/j.issn.1007-9831.2022.11.003

      2022-03-12

      天津市教委科研計劃項目(2021KJ007)

      張金磊(1994-),男,河南焦作人,在讀碩士研究生,從事偏微分方程及生物數(shù)學研究.E-mail:13462816430@163.com

      孫福芹(1970-),男,山東單縣人,教授,博士,從事偏微分方程及生物數(shù)學研究. E-mail:sfqwell@163.com

      猜你喜歡
      焦點軟件函數(shù)
      焦點
      二次函數(shù)
      禪宗軟件
      英語文摘(2021年10期)2021-11-22 08:02:26
      第3講 “函數(shù)”復(fù)習精講
      二次函數(shù)
      函數(shù)備考精講
      軟件對對碰
      “兩會”焦點
      南方周末(2018-03-08)2018-03-08 08:34:56
      本期焦點
      焦點
      攝影之友(2016年8期)2016-05-14 11:30:04
      潞城市| 扬州市| 宁武县| 舟山市| 广宗县| 河东区| 洞口县| 博兴县| 蓬莱市| 江城| 白城市| 万山特区| 宜宾县| 鄱阳县| 凤翔县| 奉化市| 内江市| 凉城县| 梅州市| 丹江口市| 万年县| 江油市| 嘉义县| 泰安市| 盖州市| 大田县| 平江县| 南皮县| 五莲县| 长治县| 灵武市| 抚顺县| 洪洞县| 桐柏县| 庄浪县| 洛浦县| 荃湾区| 甘孜| 南郑县| 中西区| 博乐市|