• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于石墨烯光子晶體光纖的流體傳感器

    2023-01-13 09:41:52尚念澤程熠敖申姑力米熱李夢文王曉愚洪浩李澤暉張曉艷符汪洋劉開輝劉忠范
    物理化學(xué)學(xué)報(bào) 2022年12期
    關(guān)鍵詞:北京大學(xué)研究院石墨

    尚念澤,程熠,敖申,姑力米熱,李夢文,王曉愚,洪浩,李澤暉,張曉艷,*,符汪洋,*,劉開輝,5,*,劉忠范,*

    1北京大學(xué)前沿交叉學(xué)科研究院,人工微結(jié)構(gòu)與介觀物理國家重點(diǎn)實(shí)驗(yàn)室,北京 100871

    2北京石墨烯研究院(BGI),北京 100095

    3北京大學(xué)化學(xué)與分子工程學(xué)院,納米化學(xué)中心,北京 100871

    4清華大學(xué)材料學(xué)院,北京 100084

    5北京大學(xué)物理學(xué)院,納光電子前沿科學(xué)中心,量子物質(zhì)協(xié)同創(chuàng)新中心,北京 100871

    1 Introduction

    Distributed sensing and monitoring, generalized referring to simultaneous detection and control to a wide range of spatial area during a long period of time, was first came up in the field of optical fibers under the occasions of intrusion detection.The concept can be extrapolated to other purposes such as environmental monitoring which requires exactly such widespatial-range sensing ability.Compared to electro-chemical sensors designed for single-spot sensing and complicated sensors array, optical fiber sensors offer an elegant and simple approach to achieve distributed sensing configuration within lower system complicity1-3.

    The fact that optical fiber acts as both propagation medium and sensing medium makes it an ideal platform to realize distributed measurements, and relevant application can be realized through Optical Time-Domain Reflectometry (OTDR)4technique.In such configurations, Back-propagating light caused by Rayleigh or inelastic scattering is collected and analyzed for the modulation information brought by the sensing targets, where the signals from different distances are separated in time domain.The combination to optical Fiber Bragg Gratings(FBGs) also provides another method to achieve spatial resolutionviafrequency domain separation5.Besides that, the application of Time Division Multiplexing (TDM) and Wavelength Division Multiplexing (WDM) and other techniques, have led to substantial improvement of the accuracy,spatial range and resolution of optical fiber distributed sensing systems6-8.However, due to the confinement nature of optical fibers, such distributed sensors are limited to the field of temperature, intruding detection and specific sensing targets related to refractive index changes, which leads to its incommensurability to environmental sensing requirements3,8-10.

    On the other hand, sensitive detection of harmful gases or liquids by optical fibers has been investigated for decades.Evanescent field plays a central role in the build-up of these fiber sensors.Furtherly, combining special optical fiber structure to specific functional materials, one can achieve strong interaction between the evanescent field of optical fibers and the target materials11.Special optical fiber structures with high evanescent field intensity are usually chosen in such configurations, like microfiber, D-shaped fiber and U-bent fiber12-19.Assisted by Surface Plasmon Resonance (SPR) techniques, such configuration can achieve supremely high sensibility to refractive index change caused by gas or liquid molecules20-24.Two-dimensional materials are found to be excellent candidate as coating materials due to their high specific surface area, which guarantees a large sensing response and, at the same time,minimizes any side effects by suppressing the propagating mode of optical fibers25-29.However, due to the obstacle from optical fiber engineering and device fabrication, the abovementioned functional 2D sensors are still limited to sample-scale fabrication and face the bottleneck of mass-production.In a word, due to the incommensurability between traditional fiber systems and environmental sensing purpose, there is still vacancy for a solution towards distributed environmental sensingviaoptical fibers.

    In this work, we propose a new configuration of griddistributed optical fiber environmental sensing by introducing low-pressure chemical vapor deposition (LPCVD) grown graphene photonic crystal fiber (PCF) into the optical fiber sensing system.We successfully synthesized monolayer and/or bilayer graphene in the air holes of PCF30.Then by fusing the Graphene PCF (Gr-PCF) to single mode optical fiber, we build up an all-optical-fiber sensing system.Gr-PCF acts as sensing tips in which the evanescent field interacts with graphene in the innermost air holes, and the intensity (only light intensity information is required in our design, substantially compressed the complicity of the system) of reflected light from the tip end is recorded.After immersed into the analysts, we obtained expected sensing responses based on light intensity difference,which can be attributed to the doping effect from adsorbing molecules (for gas, when the refractive index is negligible) or refractive index changes (for liquid, when it prevails).Our allfiber sensing system is proved to be feasible under typical scenarios, and moreover, combining with the mass-production capability of CVD growth, and WDM, TDM techniques, it provides an important possibility to realize grid-distributed optical fiber sensing towards environmental issues, which is beyond the capability of all well-established fiber sensing systems.

    In summary, by introducing two-dimensional graphene in to PCFs, and also introducing electro-chemical mechanism to optical fiber sensing systems, we achieved a fiber sensing system with detectivity and promising potential for environmental sensing.The design we propose also offers new routines and opportunities to realize distributed optical fiber environmental monitoring.

    2 Methods

    2.1 Gr-PCF fluid sensor setup

    An Amplified Spontaneous Emission (Shanghai Connet) light source was used to generate 1520-1610 nm infrared laser.An acoustic optical modulator (Bandwidth 250 MHz) was used to apply modulation to the light signal.Single-mode fiber with cutoff wavelength of 1310 nm was chosen to carry the light.All the optical fiber devices were connected by FC/APC ports.A balanced amplified detector (Thorlabs PDB480C-AC) was used to collect reflected signal intensity.The readout of the balanced amplified detector was then received and amplified by a Stanford SR830 lock-in amplifier.By a NI DAQ-device we collected the signal from lock-in.

    2.2 Gr-PCF sample characterization

    A Cobalt solid-state laser generated 532 nm CW laser as incident light.The back-scattered Raman signal was collected by HORIBA iHR330 spectrometer.The electrodes in the Gr-PCF electrical devices were fabricated by DUPONT quick-drying silver glue.TheVds-Vgtransfer curve measurements were carried out by a Zurich HF2LI lock-in amplifier with pre-current amplifier.

    2.3 NO2 sensing test

    5 mg·L-1NO2 (N2 as background gas) and pure N2 are inserted to a gas distribution instrument equipped with mass flowmeter,diluted NO2gas with certain controllable thus flows into a homebuilt gas chamber.The chamber has an inlet and exit on each side and an aperture on the top for the PCF-SMF sample’s insertion.We started recording output signal with no gas supply, then we switched on the gas supply and kept it until the recording process ended.

    Using a gas distribution instrument equipped with a mass flowmeter, N2and NO2gases with different concentrations flow through the self-designed gas chamber.Through the aperture on the chamber’s top, the PCF-SMF was inserted into the gas ambient, and at the same time, the exhausts were collected through activated carbon and eventually put into the atmosphere.

    3 Results and discussion

    A fiber structure with a strong evanescent field is chosen in our design, where total internal reflection photonic crystal fiber(TIR-PCF) turns to be a good choice.Periodic arranged air holes outside the core of TIR-PCF act as low index claddings,effectively confining the propagation mode in the core area.This endows PCF strong evanescent field upon the interfaces of core and adjacent air holes.By LPCVD growth method, we fabricated Gr-PCF samples with length of ~1 cm30, where uniform graphene films are proved to be formed in the air holes.

    Then, we designed the fiber sensing system as illustrated in Fig.1.First, the Gr-PCF was fused with a Single-Mode Fiber(SMF), whose cut-off wavelength is 1310 nm, to prevent unwanted back-scattering light from the PCF-SMF joint.An amplified spontaneously emission light source was applied to generate C + L bands (1530-1625 nm) CW laser, which went through the 40 : 60 WDM module and split into two parts.One part of the light passed through a circulator into the fused SMFPCF fiber to interact with the graphene inside the air holes of PCF.As the cut-end of the PCF was controlled to be sharp and perpendicular to the fiber, back-propagating light reflected at the end of Gr-PCF could go back to the circulator.The collected back-reflected light and the other part of light divided by the WDM are recorded and detected by the balanced amplified detector.The target molecules can be detected when they diffused into the air holes of the Gr-PCF.Their adsorption on the monolayer graphene would modulate the interaction between the evanescent field and the graphene layer, leading to the modulation of the intensity of back-reflected light.The output voltage amplitude (an A.C.signal) of the balanced detector thus is proportional to the recorded light intensity differences, which can be extracted by lock-in technique.

    Fig.1 The schematic of Gr-PCF based optical fiber sensing system.

    Owing to the excellent electrical properties and chemical inertness, graphene-based field-effect transistors (FET) sensors displayed excellent sensitivity towards a wide range of chemical analysts, including pH, heavy metal ions, and harmful gas such as ammonia, nitrogen dioxide, toluene and so on31-39.Similar to the mechanism in the field-effect sensors, we attribute the sensing ability of Gr-PCF system to the interaction of graphene and target molecules, which modulates the Fermi-level of graphene and leads to both the regulated conductance and the light absorption change of graphene, rather than the mode scattering caused by refractive index change usually prevailing in optical fiber sensors.First, we characterized the quality of Gr film via optical methods.Raman spectroscopy showed uniform characteristic peaks across the external surface regions and hole regions of Gr-PCF, where the G peaks at 1580 cm-1and 2D peaks at 2680 cm-1held an intensity ratio of 2D/G ≈ 2 (Fig.2b),indicating the uniform monolayer graphene on both the inner and outer surfaces.Additionally, we examined the electrical properties of the Gr-PCF samples by fabricating Gr-FET devices(Fig.2c).To ensure that the only conducting channel is the continuous graphene on the inner surfaces of air holes, we removed the externally grown graphene by using oxygen plasma and metalized the drain and source electrodes near both ends.By injecting buffer solution into the air holes, we applied gate voltageVgviaan Ag/AgCl reference electrode and at the same time recorded the electrical conductivity of the Gr-PCF.The measured ~102kΩ resistivity between source and drain,confirms that the graphene films are continuous.The minimum conductivity located atVg= 0.45 V represents the lowest carrier concentration state and the Dirac point of graphene (Fig.2d).The existence of continuous atomic-layer thick graphene in the hole of PCF ensures the interaction between light and matter.

    Fig.2 Characterization to the Gr-PCF.

    Here, we applied the Gr-PCF to detect the typical pollutive gas nitrogen dioxide (NO2) for the first time.The home-made test equipment is shown in Fig.3a.The reflected light intensity changes caused by adsorption-induced-doping of graphene in different PCF-SMF samples under different gas conditions were measured.We compared the balanced detector readout in time domain (recorded as Relative Voltage) for Gr-PCF and Bare-PCF (PCF without graphene grown on the surface) under pure N2flow and 500 μg·L-1(1 μg·L-1= 1 ppb) NO2flow (N2as background), and only Gr-PCF under NO2flow showed distinguishable signal mutation when the gas flow was switched on, and from this we can conclude the gas flow caused vibration of the fiber and related signal change is negligible (Fig.3c).Considering the refractive index change induced by 500 μg·L-1NO2is negligible, the propagation mode of light is thus barely affected by the refractive index.And the signal to the modulation of light absorption is attributed to the NO2molecules adsorbed at the interfaces of graphene.NO2 molucules are diffused into the air holes of the Gr-PCF and naturally experience ad adsorption process.Given that NO2is oxidzing gas, the molecules adsorbed on graphene will attract the eletrons in graphene and cause the additional hole-doping of graphene in the inner air-holes39.Such additional hole-doping of graphene then leads to the the variation of graphene’s light absorption.In a more intuitive way, for a beam of monochromatic light with photon energy of ?ω, pristine graphene with Fermi level higher than -?ω/2 will have strong absorption to the light because the transition process on the Dirac cone is permitted.However, when the Fermi level of graphene is lower than -?ω/2, the same transition process is then forbidden by Pauli blocking due to the ground states has been occupied by holes.Such evidential light absorption difference of graphene then leads to the obvious intensity contrast of the back-reflected light, which is then recorded by the detector.Further, we tested the sensitivity of our Gr-PCF sensor under different gas concentration, and the response of Gr-PCF under series of NO2 flow concentrations from 30 μg·L-1to 500 μg·L-1(Fig.3e) were collected, the flow rate was kept the same for different concentrations.It should be noticed that our Gr-PCF sensor showed comparable limit of detection (ppb level) to traditional FET sensors.Then we calculated the output voltage signal changes ΔVby subtraction ΔV = Vstat- V0, whereVstat is the average voltage readout after the switch on of the gas supply, fromt= 20 s tot= 120 s.andV0is the initial value of the voltage.The dependence of ΔVto NO2concentration was also presented (Fig.3d), which shows a clear logarithmic dependence, consistent to graphene FET sensors reported previously39.

    Fig.3 Gas sensing experiment for NO2.

    Besides the capability to sense gas molecules, Gr-PCF sensor is also capable to distinguish different liquid analytes.However,as the refractive index change brought by the liquid is far more obvious compared to the gas and cannot be neglected, it will prevail as the main cause of the signal change over adsorption induced light absorption change of graphene.The strategy for liquid sensing is to insert the PCF-SMF sample into different solutions and record the readout of the balanced detector (Fig.4a).As shown in Fig.4b, when the PCF-SMF samples are contacted with solution, the solution will soon be siphoned into the air holes of PCF by capillary effect.This changes the refractive index of the effective cladding, which will significantly alter the fiber modes and the evanescent field, and eventually modulate the total transmission loss (including the absorption of graphene) of light before collection.Compared to random signal evolution of Bare-PCF, the signal evolutions of the Gr-PCF sample were more stable and displayed distinguishable patterns when they were regularly put in and out of three different solutions: water, NaCl, and ethanol (Fig.4ce).The difference of readout voltage step changeΔVof three different solutions can be explained by the difference of capillary depth, together with the difference of refractive index.Consequentially, the mechanism of liquid sensing for our fiber system would be rather complex and require further analysis.

    Fig.4 Liquid sensing experiment of Gr-PCF.

    4 Conclusions

    In conclusion, we designed and developed an optical fiber sensing system that is capable of environmental sensing and monitoring at room-temperature.By introducing chemical sensing mechanism to optical fibers, we can achieve sensing ability beyond traditional optical fiber configurations which only detect refractive index change.By an atomically-thin graphene photonic crystal fiber sensor we realized selective detection to NO2 with ultralow limit of detection (50 μg·L-1, 1 μg·L-1= 1 ppb), attributing to the interaction of graphene and target molecules.The sensor can be hopefully extended to other kinds of gases and liquids considering the affinity of graphene to molecules.In view of practical optical sensors, our design is compatible with the MUX/DEMUX techniques of optical fiber communication systems.Combining the ability of CVD synthesis to realize mass-production, the design we proposed shall be one of the answers to the distributed-optical-fiberenvironmental-sensors.

    猜你喜歡
    北京大學(xué)研究院石墨
    北京食品科學(xué)研究院
    肉類研究(2022年5期)2022-06-16 05:53:24
    石墨系升溫球的實(shí)踐與應(yīng)用
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    工程技術(shù)研究院簡介
    從心所欲不逾矩——為中國戲曲研究院成立70周年作
    戲曲研究(2021年3期)2021-06-05 07:06:46
    不是我!是他搗亂!
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長之演說
    石墨烯的健康路
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    亚洲av男天堂| 超碰97精品在线观看| 黄色欧美视频在线观看| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 最近视频中文字幕2019在线8| 一区二区三区乱码不卡18| 亚洲欧美精品综合久久99| 小蜜桃在线观看免费完整版高清| 身体一侧抽搐| 丰满人妻一区二区三区视频av| 听说在线观看完整版免费高清| 成人性生交大片免费视频hd| 99久久精品一区二区三区| 日本-黄色视频高清免费观看| 婷婷六月久久综合丁香| 欧美成人一区二区免费高清观看| 99久久人妻综合| 不卡视频在线观看欧美| 国产一区二区三区av在线| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 美女被艹到高潮喷水动态| 夫妻性生交免费视频一级片| 国产成人91sexporn| 嫩草影院新地址| 久久精品久久久久久久性| 赤兔流量卡办理| 中文天堂在线官网| 久久久久久久午夜电影| 成年免费大片在线观看| 久久久久免费精品人妻一区二区| 亚洲成人精品中文字幕电影| 一夜夜www| 日本黄色片子视频| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看| 国产 一区精品| 欧美性感艳星| 老司机福利观看| 日韩,欧美,国产一区二区三区 | 天天躁日日操中文字幕| 99久久人妻综合| 黄色日韩在线| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜爱| 中文字幕亚洲精品专区| 色综合色国产| 免费av毛片视频| 精品久久久久久久末码| 亚洲在线自拍视频| 天天躁夜夜躁狠狠久久av| 九色成人免费人妻av| 久久久色成人| 国产午夜精品一二区理论片| 日本免费一区二区三区高清不卡| 亚洲熟妇中文字幕五十中出| 日韩成人伦理影院| 五月伊人婷婷丁香| 18禁在线无遮挡免费观看视频| 亚洲图色成人| 欧美三级亚洲精品| 有码 亚洲区| 人妻少妇偷人精品九色| 国产伦理片在线播放av一区| 26uuu在线亚洲综合色| 欧美激情在线99| 99热这里只有精品一区| 全区人妻精品视频| 亚洲内射少妇av| 简卡轻食公司| 天堂av国产一区二区熟女人妻| 午夜福利高清视频| 综合色av麻豆| 中文字幕精品亚洲无线码一区| 秋霞伦理黄片| 亚洲精品自拍成人| 一夜夜www| 精品99又大又爽又粗少妇毛片| 国产白丝娇喘喷水9色精品| 成人国产麻豆网| 日韩高清综合在线| 日本一本二区三区精品| 亚洲精品亚洲一区二区| 天美传媒精品一区二区| av线在线观看网站| 色综合色国产| 国产欧美另类精品又又久久亚洲欧美| 国产美女午夜福利| 亚洲欧美日韩东京热| 免费观看a级毛片全部| 69人妻影院| 欧美极品一区二区三区四区| 在线观看66精品国产| 99热网站在线观看| 精品人妻熟女av久视频| 国产免费男女视频| 九九久久精品国产亚洲av麻豆| 亚洲国产最新在线播放| 婷婷色av中文字幕| 国产探花在线观看一区二区| 国产欧美日韩精品一区二区| 国产午夜精品论理片| 一个人看的www免费观看视频| 日本免费一区二区三区高清不卡| 哪个播放器可以免费观看大片| 丰满人妻一区二区三区视频av| 男女边吃奶边做爰视频| 日日干狠狠操夜夜爽| 国产真实乱freesex| 一级av片app| 可以在线观看毛片的网站| 99视频精品全部免费 在线| 亚洲成人精品中文字幕电影| 国产精品三级大全| 午夜免费激情av| 日韩一区二区三区影片| 99久久成人亚洲精品观看| 欧美最新免费一区二区三区| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品| 国产免费又黄又爽又色| 久久99蜜桃精品久久| 欧美一区二区亚洲| av在线老鸭窝| 国产一区二区三区av在线| 亚洲国产精品成人综合色| 又爽又黄a免费视频| 国内精品美女久久久久久| 久久久久久大精品| av线在线观看网站| 午夜福利在线在线| 午夜老司机福利剧场| 亚洲在线观看片| 日本免费一区二区三区高清不卡| 国产成人a∨麻豆精品| 一级爰片在线观看| 亚洲自拍偷在线| 91精品伊人久久大香线蕉| 真实男女啪啪啪动态图| 久久热精品热| 18禁在线无遮挡免费观看视频| 黄色欧美视频在线观看| 午夜福利在线在线| 最近手机中文字幕大全| 91狼人影院| 亚洲av成人精品一二三区| 男插女下体视频免费在线播放| 一级毛片aaaaaa免费看小| 国产午夜精品久久久久久一区二区三区| 欧美zozozo另类| 国产大屁股一区二区在线视频| 人妻夜夜爽99麻豆av| 综合色av麻豆| 久久人妻av系列| 日韩av不卡免费在线播放| 91在线精品国自产拍蜜月| 在线播放国产精品三级| 身体一侧抽搐| 免费搜索国产男女视频| 国产又色又爽无遮挡免| 亚洲国产精品专区欧美| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 成人av在线播放网站| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久| 免费黄色在线免费观看| 精品国产一区二区三区久久久樱花 | 精品国产三级普通话版| 亚洲欧美中文字幕日韩二区| 黄色日韩在线| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 欧美又色又爽又黄视频| 国产亚洲精品久久久com| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 毛片女人毛片| 欧美激情久久久久久爽电影| 综合色av麻豆| 国产久久久一区二区三区| 国产成人精品久久久久久| 一级毛片久久久久久久久女| 国产色婷婷99| 最新中文字幕久久久久| 99热全是精品| 国内精品美女久久久久久| 欧美一区二区亚洲| 免费人成在线观看视频色| 成人三级黄色视频| 成人性生交大片免费视频hd| 成人亚洲欧美一区二区av| 成年女人永久免费观看视频| 久久久久久久国产电影| 2022亚洲国产成人精品| 日韩欧美精品免费久久| 亚洲国产日韩欧美精品在线观看| 麻豆久久精品国产亚洲av| 青春草亚洲视频在线观看| 亚洲久久久久久中文字幕| 国产极品精品免费视频能看的| 舔av片在线| 亚洲美女搞黄在线观看| 午夜福利在线在线| 亚洲欧美日韩高清专用| 一个人看视频在线观看www免费| 99久久中文字幕三级久久日本| 热99re8久久精品国产| 三级经典国产精品| 亚洲av电影在线观看一区二区三区 | av视频在线观看入口| 国产 一区 欧美 日韩| 神马国产精品三级电影在线观看| 大香蕉97超碰在线| 国产精品一区二区三区四区免费观看| 黑人高潮一二区| 最近的中文字幕免费完整| 波野结衣二区三区在线| 亚洲av一区综合| 天堂网av新在线| 亚洲欧美精品专区久久| 最近的中文字幕免费完整| .国产精品久久| 九九热线精品视视频播放| av线在线观看网站| 婷婷色综合大香蕉| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 能在线免费看毛片的网站| 国产午夜精品论理片| 日韩三级伦理在线观看| 国产精品久久电影中文字幕| 国产真实伦视频高清在线观看| 日本一二三区视频观看| 国产精品.久久久| 淫秽高清视频在线观看| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 国产成人精品久久久久久| 亚洲欧美日韩卡通动漫| 中国美白少妇内射xxxbb| 日韩三级伦理在线观看| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩无卡精品| 91精品伊人久久大香线蕉| 亚洲图色成人| 三级男女做爰猛烈吃奶摸视频| 亚洲伊人久久精品综合 | 国产白丝娇喘喷水9色精品| 综合色av麻豆| 国产色婷婷99| 黑人高潮一二区| 国产精品久久久久久久久免| 久久精品人妻少妇| 麻豆成人午夜福利视频| 午夜福利在线观看免费完整高清在| 一区二区三区四区激情视频| 色5月婷婷丁香| 99在线人妻在线中文字幕| 国产在线一区二区三区精 | 成人性生交大片免费视频hd| 永久网站在线| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 一边亲一边摸免费视频| 天堂影院成人在线观看| 精品国产三级普通话版| 晚上一个人看的免费电影| 成人毛片a级毛片在线播放| 亚洲五月天丁香| 搞女人的毛片| 亚洲av电影在线观看一区二区三区 | 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 欧美变态另类bdsm刘玥| 精品久久国产蜜桃| 啦啦啦观看免费观看视频高清| 久久婷婷人人爽人人干人人爱| 美女高潮的动态| 国产免费一级a男人的天堂| 男女视频在线观看网站免费| 色综合色国产| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 五月玫瑰六月丁香| 又黄又爽又刺激的免费视频.| 黄片wwwwww| 色视频www国产| 大香蕉久久网| 亚洲内射少妇av| videos熟女内射| 精品人妻偷拍中文字幕| 日日干狠狠操夜夜爽| 国产午夜精品一二区理论片| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 看非洲黑人一级黄片| 久久精品国产亚洲网站| 日韩av在线免费看完整版不卡| 男人和女人高潮做爰伦理| 精品不卡国产一区二区三区| 一区二区三区免费毛片| .国产精品久久| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 嫩草影院新地址| 尾随美女入室| 激情 狠狠 欧美| 久久精品熟女亚洲av麻豆精品 | 中文字幕熟女人妻在线| 中文字幕av在线有码专区| 一边亲一边摸免费视频| av专区在线播放| 欧美精品国产亚洲| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 十八禁国产超污无遮挡网站| 久久久久久久久久黄片| 在线播放国产精品三级| 七月丁香在线播放| 国产在视频线在精品| 男人舔女人下体高潮全视频| 中文字幕免费在线视频6| 日本色播在线视频| 亚洲精品456在线播放app| 汤姆久久久久久久影院中文字幕 | 久久久久久久国产电影| 日韩精品有码人妻一区| 内地一区二区视频在线| 九九久久精品国产亚洲av麻豆| 欧美另类亚洲清纯唯美| 久久这里只有精品中国| 高清在线视频一区二区三区 | 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 日韩一本色道免费dvd| 日韩亚洲欧美综合| 欧美精品一区二区大全| 国产真实乱freesex| 人妻夜夜爽99麻豆av| 午夜精品在线福利| 国产女主播在线喷水免费视频网站 | 老司机影院成人| 国产免费男女视频| 五月伊人婷婷丁香| 2021天堂中文幕一二区在线观| 男女视频在线观看网站免费| 国产精品野战在线观看| 波多野结衣高清无吗| 欧美xxxx黑人xx丫x性爽| 欧美高清成人免费视频www| www.色视频.com| 久久99热6这里只有精品| 国产高清不卡午夜福利| 亚洲精品色激情综合| 99久久精品热视频| 在线免费十八禁| 最近中文字幕2019免费版| АⅤ资源中文在线天堂| 内地一区二区视频在线| av在线观看视频网站免费| 日韩欧美精品免费久久| 国产探花极品一区二区| 亚洲自偷自拍三级| 少妇熟女欧美另类| 国产老妇女一区| 日日摸夜夜添夜夜爱| 国产精品国产高清国产av| 丝袜美腿在线中文| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 麻豆久久精品国产亚洲av| 国产真实乱freesex| 国产爱豆传媒在线观看| 国产视频内射| 亚洲精品日韩av片在线观看| 亚洲不卡免费看| 美女国产视频在线观看| 成人综合一区亚洲| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| 男女边吃奶边做爰视频| 欧美日韩国产亚洲二区| 岛国在线免费视频观看| 亚洲成人av在线免费| 97热精品久久久久久| av天堂中文字幕网| 国产在视频线精品| ponron亚洲| 热99re8久久精品国产| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线| 最近最新中文字幕大全电影3| av又黄又爽大尺度在线免费看 | ponron亚洲| 非洲黑人性xxxx精品又粗又长| 波多野结衣高清无吗| 美女高潮的动态| 精华霜和精华液先用哪个| 免费黄网站久久成人精品| www.色视频.com| 男女那种视频在线观看| 97在线视频观看| 中国美白少妇内射xxxbb| 精品免费久久久久久久清纯| 国产高清不卡午夜福利| 精品一区二区三区视频在线| 国产极品天堂在线| 久久久久久久国产电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站 | 一级爰片在线观看| 成人毛片a级毛片在线播放| 狠狠狠狠99中文字幕| av专区在线播放| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品一区蜜桃| 又粗又硬又长又爽又黄的视频| 赤兔流量卡办理| 久久综合国产亚洲精品| 女人久久www免费人成看片 | 日本与韩国留学比较| 18禁动态无遮挡网站| 国产成人91sexporn| 黄色欧美视频在线观看| 一级二级三级毛片免费看| 欧美高清成人免费视频www| 嫩草影院新地址| av福利片在线观看| 亚洲欧美中文字幕日韩二区| 国产午夜精品久久久久久一区二区三区| 久久草成人影院| 久久这里只有精品中国| 免费观看精品视频网站| 一级毛片久久久久久久久女| av天堂中文字幕网| 能在线免费观看的黄片| 亚洲成人精品中文字幕电影| 国产乱人偷精品视频| 亚洲18禁久久av| 国产伦精品一区二区三区四那| 偷拍熟女少妇极品色| 国产白丝娇喘喷水9色精品| 禁无遮挡网站| 亚洲激情五月婷婷啪啪| 晚上一个人看的免费电影| 色综合亚洲欧美另类图片| 尾随美女入室| 中国国产av一级| 99久久九九国产精品国产免费| 插阴视频在线观看视频| 日韩精品青青久久久久久| 亚洲欧美精品综合久久99| 国产成人免费观看mmmm| 精品久久久久久久人妻蜜臀av| 天美传媒精品一区二区| 在线天堂最新版资源| 亚洲欧美中文字幕日韩二区| 成人三级黄色视频| 真实男女啪啪啪动态图| 我要看日韩黄色一级片| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 亚洲精品日韩在线中文字幕| 九九爱精品视频在线观看| 精品午夜福利在线看| 免费观看精品视频网站| 国产国拍精品亚洲av在线观看| 国产成人精品一,二区| 激情 狠狠 欧美| 免费看光身美女| 少妇裸体淫交视频免费看高清| 亚洲精华国产精华液的使用体验| 色播亚洲综合网| 成年女人看的毛片在线观看| 免费黄色在线免费观看| 亚洲欧美成人综合另类久久久 | 日本av手机在线免费观看| 人体艺术视频欧美日本| 中文字幕精品亚洲无线码一区| 欧美bdsm另类| 午夜精品一区二区三区免费看| 欧美性感艳星| 熟女电影av网| 建设人人有责人人尽责人人享有的 | 性插视频无遮挡在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 中文字幕精品亚洲无线码一区| 午夜a级毛片| 国产探花在线观看一区二区| 嫩草影院新地址| 国产午夜福利久久久久久| 国产精品一二三区在线看| 亚洲伊人久久精品综合 | 国产高清视频在线观看网站| 色5月婷婷丁香| 能在线免费看毛片的网站| 日韩av在线免费看完整版不卡| 精品99又大又爽又粗少妇毛片| 天堂√8在线中文| 特级一级黄色大片| 99久国产av精品国产电影| 亚洲乱码一区二区免费版| 99久久人妻综合| 久久久久久久午夜电影| h日本视频在线播放| av女优亚洲男人天堂| 蜜臀久久99精品久久宅男| 国产乱人偷精品视频| 淫秽高清视频在线观看| 在线a可以看的网站| 国产精品美女特级片免费视频播放器| 欧美bdsm另类| 国产激情偷乱视频一区二区| 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 久热久热在线精品观看| 国产av不卡久久| www.av在线官网国产| 在线免费十八禁| 久久精品久久久久久噜噜老黄 | 狠狠狠狠99中文字幕| 身体一侧抽搐| 亚洲av电影不卡..在线观看| 变态另类丝袜制服| 九草在线视频观看| 国产精品久久久久久精品电影小说 | 好男人在线观看高清免费视频| av播播在线观看一区| 日本一本二区三区精品| 日本爱情动作片www.在线观看| 身体一侧抽搐| 一卡2卡三卡四卡精品乱码亚洲| 国产黄a三级三级三级人| 女人久久www免费人成看片 | 国内揄拍国产精品人妻在线| 国产激情偷乱视频一区二区| av卡一久久| 婷婷色麻豆天堂久久 | 亚洲最大成人av| 夫妻性生交免费视频一级片| 久久精品国产亚洲网站| 97超视频在线观看视频| 欧美激情国产日韩精品一区| 精品欧美国产一区二区三| 亚洲精品日韩av片在线观看| 欧美另类亚洲清纯唯美| 国产精品三级大全| 免费av不卡在线播放| 在线免费观看不下载黄p国产| 99热网站在线观看| 久久久久久久久久成人| 在现免费观看毛片| 男女下面进入的视频免费午夜| 久久这里有精品视频免费| 亚洲婷婷狠狠爱综合网| 欧美日本亚洲视频在线播放| 亚洲av成人精品一区久久| av在线播放精品| 日韩av不卡免费在线播放| 尤物成人国产欧美一区二区三区| 欧美性感艳星| 国产免费一级a男人的天堂| 蜜桃久久精品国产亚洲av| 日韩强制内射视频| 国产熟女欧美一区二区| 嘟嘟电影网在线观看| 久久精品影院6| 国产白丝娇喘喷水9色精品| 免费在线观看成人毛片| 国产欧美另类精品又又久久亚洲欧美| www.av在线官网国产| 中文字幕精品亚洲无线码一区| 色吧在线观看| 看免费成人av毛片| 在线免费观看不下载黄p国产| 国产精品,欧美在线| 国产成人一区二区在线| 亚洲欧美日韩高清专用| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 久久6这里有精品| 久久久午夜欧美精品| 亚洲在线自拍视频| 99久久无色码亚洲精品果冻| 国产av在哪里看| 啦啦啦观看免费观看视频高清| 亚洲精品影视一区二区三区av| 汤姆久久久久久久影院中文字幕 | 亚洲,欧美,日韩| 午夜爱爱视频在线播放| 高清日韩中文字幕在线| 亚洲欧美日韩东京热| 午夜激情福利司机影院| 国产一区亚洲一区在线观看| 看十八女毛片水多多多| 国产精品国产三级国产专区5o | 天天一区二区日本电影三级| 最近的中文字幕免费完整| 日韩三级伦理在线观看| 国产白丝娇喘喷水9色精品| 久久99热6这里只有精品| 少妇的逼好多水| 国产av码专区亚洲av| 成年免费大片在线观看|