• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PtRuAgCoNi高熵合金納米顆粒高效電催化氧化5-羥甲基糠醛

    2023-01-13 09:41:48楊艷何博文馬華隆楊森任州宏秦天盧發(fā)貴任力聞張熠霄王天富劉晰陳立桅
    物理化學(xué)學(xué)報(bào) 2022年12期
    關(guān)鍵詞:楊艷上海交通大學(xué)電催化

    楊艷,何博文,馬華隆,楊森,任州宏,秦天,盧發(fā)貴,任力聞,張熠霄,王天富,*,劉晰,*,陳立桅,*

    1上海交通大學(xué)化學(xué)化工學(xué)院,物質(zhì)科學(xué)原位中心,轉(zhuǎn)化分子前沿科學(xué)中心,上海 200240

    2上海交通大學(xué)環(huán)境科學(xué)與工程學(xué)院,上海 200240

    1 Introduction

    5-Hydroxymethylfurfural (HMF), which is derived from renewable biomass1is an important bio-sourced intermediates for the preparation of a wide range of chemicals2.Among all the value-added chemicals produced by HMF, 2,5-furandicarboxylic acid (FDCA) has been used as a precursor for the production of polyethylene furandicarboxylate (PEF)3.Bio-based PEF has excellent gas barrier properties, recyclability and mechanical properties4, and thus being considered as a promising substitute for petroleum-based polyethylene terephthalate (PET).Compared to thermal catalytic process, electrocatalytic conversion of HMF into FDCA provides a more environmentalfriendly and economical method to sustainably product valueadded chemicals under mild conditions5, therefore attracting increasing attention from both industrial and academic perspectives.

    Cheap transition metal, including Ni, Co, Fe, Cu, V, Mo, Mn,have been used in electro-oxidation of HMF into FDCA6.Their sulfide and phosphite compounds display unique catalytic performance7,8, but suffer poor stability since the surfides or phosphites are prone to be converted into their oxide counterparts under alkaline conditions9,10.Some noble metals,like Pt and Ru, have also been used due to their good electrochemical stability, but only 16% and 6.48% of FDCA yield were obtained, respectively11,12.In order to improve both catalytic activity and stability for electro-oxidation of HMF,alloying noble metals and cheaper transition metals is considered to be an effective strategy to achieve synergy-enhanced catalytic performance for the FDCA production.

    High entropy alloys are defined as the mixing of five or more elements at the nanoscale in equal or near molar ratios (recently reported as 5%-35% (atom fraction) for each constituent)13.Compared with monometal and traditional alloys, high entropy alloys show better physical and chemical properties due to the synergistic interaction among metal elements, and display outstanding performance in electrocatalysis14, such as hydrogen evolution reaction (HER)15, oxygen evolution reaction (OER)16and oxygen reduction reaction (ORR)17.Solution-phase synthesis method is widely used in the synthesis of nanomaterials with controllable size, morphology and crystal phase.However, due to increasing difficulty in balancing diverse reduction kinetics of different metal precursors18, limited works have been done in synthesis of metallic nanometarials containing more than three metal elements in solvent phase.Additionally,surfactants used in solution-phase synthesis will cover parts of active sites of synthesized nanomaterials and therefore reduce its catalytic performance19.Various methods have been applied to remove these surfactants, including annealing in gas20, acid washing21, and UV-ozone irradiation22, but all these methods show certain limitations or negative influences on the microstructure and catalytic performance of supported catalysts23.

    In this work, we developed a low-temperature solvothermal method to synthesize single-phase PtRuAgCoNi high entropy alloy nanoparticles with an averaged diameter of about 9 nm and applied a facile treatment to remove the surfactant without changing the particle structure and composition24.The active carbon-supported PtRuAgCoNi high entropy alloy nanoparticles with surfactants showed better activities in the electrochemical conversion of HMF to FDCA than commercial Pt/C catalyst.After calcination at lower temperature (185 °C), the catalytic performance of the surfactant-free high entropy nanoparticles was enhanced markedly.Therefore, PtRuAgCoNi high entropy alloy nanoparticles could be a promising electrocatalyst for production of FDCA from electro-oxidation of HMF.

    2 Experimental

    2.1 Chemicals and materials

    Sodium citrate (97%), potassium bromide (98%), ethylene glycol (99%), and Nafion solution (5%, mass fraction) were all purchased from Aladdin Industrial Co., Ltd.Oleylamine (RG).Polyvinylpyrrolidone (PVP) with an averageMW = 40000 was procured from Shanghai Titan Scientific Co., Ltd.Platinum bis(acetylacetonate) (Pt(acac) (97%), ruthenium(Ⅲ)2,4-pentanedionate (Ru(acac)3) (97%), cobalt(III) acetylacetonate(Co(acac)3) (97%), nickel(II) acetylacetonate (Ni(acac)2), and AgNO3were purchased from Sigma-Aldrich (Shanghai) Trading Co., Ltd.All reagents were used directly without further purification.The water used for all the experiments was deionized (DI) to achieve a resistivity of 18.2 MΩ·cm at room temperature.

    2.2 Synthesis of five-element PtRuAgCoNi alloy nanoparticles

    To prepare the five-element PtRuAgCoNi alloy nanoparticles,3.9 mg Pt(acac)2, 4.0 mg of Ru(acac)3, 1.7 mg of AgNO3, 2.6 mg of Co(acac)3and 2.6 mg of Ni(acac)2(Pt : Ru : Ag : Co : Ni molar ratio is 1 : 1 : 1 : 1 : 1), 100 mg of PVP, 80 mg of sodium citrate and 50 mg of KBr, were dissolved in 20 mL of ethylene glycol while stirring, and the mixture was sonicated until transparent.The resulting homogeneous solution was transferred to a 20 mL Teflon-lined stainless-steel autoclave.The sealed vessel was then heated at 200 °C for 12 h in the oven before it was cooled to room temperature.The synthetic five-element alloy nanoparticles was obtained by high-speed centrifugation and washed three times with anhydrous ethanol, which was denoted as PtRuAgCoNi-PVP.Then, the obtained nanoparticles(5 mg) were loaded on activated carbon (20 mg), which was denoted as PtRuAgCoNi-PVP/C (20%, mass fraction).

    2.3 Surfactant removal of five-element PtRuAgCoNi alloy nanoparticles

    The PtRuAgCoNi-PVP ethanol solution was transferred into a 50 mL round bottom flask, and 10 mL of ethanol, 5 mL of oleylamine and 10 mL of toluene were added.Afterwards, it was refluxed at 60 °C for 8 h.The solid sample, which was collected after centrifugation, was denoted as PtRuAgCoNi-OAm.Then,the obtained nanoparticles (5 mg) were loaded on activated carbon (20 mg), which was denoted as PtRuAgCoNi-OAm/C(20% (w)).Afterwards, the obtained sample was heated in air at 185 °C for 5 h or 300 °C for 5 h to obtain desired supported nanoalloy catalysts, which are denoted as PtRuAgCoNi-OAm/C-185 and PtRuAgCoNi-OAm/C-300, respectively.

    2.4 Electrochemical measurements

    The prepared catalysts (1 mg) were ultrasonically dispersed in 500 μL of deionized water, 500 μL of ethanol, and 50 μL of Nafion solution (5%, mass fraction) to form a homogeneous ink.To fabricate the working electrode, 100 μL of the electrocatalyst ink was dropped onto the surface of a piece of carbon paper (1 cm2) and dried at room temperature.Electrochemical measurements were carried out with a CHI 760E electrochemical workstation (Shanghai Chenhua Instrument Company, China) in a standard three-electrode cell configuration using the prepared catalysts as the working electrode, Pt mesh as the counter electrode, and Ag/AgCl (3 mol·L-1KCl, aqueous) as the reference electrode.The polarization curves were recorded at a scan rate of 50 mV·s-1.In order to highlight the properties of the alloy material, commercial Pt/C (20% (w), purchased from Johnson Matthey) was tested under the identical condition for comparison.

    2.5 Materials characterization

    XRD patterns were obtained using a Bruker D8 Advance diffractometer with CuKαand operating at 40 kV/40 mA.Transmission electron microscopy (TEM) images and EDS mapping were collected on a Hitachi HF5000 microscope operated at 200 kV.X-ray photoelectron spectroscopy (XPS)profiles were obtained on Axis Ultra DLD.Contents of metal elements in the samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS).Infrared spectra were obtained through a FT-IR Spectrometer (Spectrum 100).Quantifications of the reactant and products were done by using High performance liquid chromatography (HPLC, FL2200-2).

    3 Results and discussion

    The PtRuAgCoNi-PVP (PtRuAgCoNi alloy nanoparticles coated with the surfactant PVP) high entropy alloy nanoparticles were synthesized by reduction of M(acetylacetonate)x(M = Pt,Ru, Co and Ni) and AgNO3with PVP and sodium citrate in ethylene glycol solution25.A TEM image of the synthesized PtRuAgCoNi-PVP high entropy alloy nanoparticles is displayed in Fig.1a.It is evident that the PtRuAgCoNi-PVP high entropy alloy nanoparticles have a spherical morphology with a mean size 9.04 ± 0.17 nm (Fig.1b).A selected area electron diffraction(SAED) pattern of the PtRuAgCoNi-PVP nanoparticles shows legible rings corresponding to the (111), (002), (022) and (113)crystallographic planes of face-centered cubic (FCC) crystal structure (Fig.1c).An X-ray diffraction (XRD) profile of the prepared PtRuAgCoNi-PVP/C (PtRuAgCoNi-PVP loaded on activated carbon, which was denoted as PtRuAgCoNi-PVP/C)alloy nanoparticles was used to characterize the crystal structure of the materials.As shown in Fig.1d, a main peak at 2θ= 42.5°observed in the XRD pattern is associated with the (111) plane of the face-centered cube, but its diffraction angle is 0.1° higher than that of FCC Pt (JCPDF file No.96-101-1108), which should be attributed to the polycrystalline nature of the five-element metal alloy nanoparticles or the synergy between the metal elements26(seeing Figs.S1 and S2, Supporting Information).Both the XRD and SAED results confirm that these five elements are stabilized in a FCC structure.

    Scanning/Transmission electron microscope energydispersive X-ray spectroscopy (STEM-EDS), inductively coupled plasma-mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the element distributions and valence states of PtRuAgCoNi-PVP/C alloy nanoparticles.STEM-EDS elemental mapping (Fig.1e and Fig.S3) demonstrates that the synthesized metal nanoparticles have a core-shell microstructure in which the outer shell is rich in Pt, but Ru, Ag, Co and Ni distribute throughout the particle.ICP-MS confirms the molar ratio of the Pt/Ru/Ag/Co/Ni composition is 16/34/13/20/14(Table S1, Supporting Information), which does not deviate far from our design (1 : 1 : 1 : 1 : 1).XPS was used to investigate the chemical state of the elements in PtRuAgCoNi-PVP/C.As shown in the Pt 4fXPS spectrum of PtRuAgCoNi-PVP/C (Fig.1f), the peaks center at approximately 71.7 and 75.1 eV are assigned to Pt 4f7/2and Pt 4f5/2, respectively, which are likely due to the metallic state of Pt27.In the Ag 3dspectrum (Fig 1g), two peaks at 364.4 and 370.4 eV assigned to Ag 3d5/2 and Ag 3d3/2,respectively, are lower than those of metallic Ag28.The XPS spectrum of Co shows that both metallic (781.6 eV) and divalent cobalt (787.3 and 803.2 eV) are present in the alloy nanoparticles(Fig.1h).The Ru 3pspectra (seeing Fig.S4a) exhibits metallic Ru (3p3/2, 462.8 eV)29.The Ni 2pspectra (seeing Fig.S4b)display divalent Ni (861.3 and 879.1 eV)30.We can speculate that intrinsic charge transfer might occur among Ag, Ni and Co.This phenomenon is consistent with the XPS spectra of CrMnFeCoNi high entropy alloy nanoparticles reported in literature31.

    Fig.1 Characterizations of the structure and morphology of the PtRuAgCoNi-PVP and PtRuAgCoNi-PVP/C alloy nanoparticles.

    During the synthesis of the PtRuAgCoNi high entropy alloy nanoparticles, PVP acts as a surfactant, which covers surface of the nanoparticles to inhibit nanoparticle overgrowth and aggregation32.However, a larger amount of surface active sites is also occupied by surfactants, leading to the reduction of their catalytic performance.Since PVP has a stronger affinity for surface than other small-molecule surfactants, it is more difficult to remove it without damage to microstructure and morphology.The complete removal of PVP by calcination requires more than 450 °C, which makes the morphology, size, structure, and catalytic performance of the material inevitably change during this process33.Accordingly, we developed a universal two-step method of removing surfactants.Firstly, small molecular oleylamine were used for ligand exchange to replace large PVP molecules in the sample, then the obtained nanoparticles were deposited on carbon (denoted as PtRuAgCoNi-OAm/C) and subsequently calcined at low temperature (185 °C) in air to get surfactants-free nano alloys (denoted as PtRuAgCoNi-OAm/C-185).In order to examine the influence of calcination temperature on morphology and catalytic performance of the nano alloy, the prepared PtRuAgCoNi-OAm/C was also calcinated at 300 °C (which was denoted as PtRuAgCoNi-OAm/C-300) for comparison.

    Fourier infrared (FTIR) spectroscopy, XRD and TEM-EDS were employed to examine the effectiveness of the applied twostep method for the removal of PVP.As displayed in Fig.2a,FTIR spectrum of PtRuAgCoNi-OAm exhibits characteristic peaks associated with the C-H stretching vibrations of oleylamine molecules34.After the nanomaterials were calcined at 185 or 300 °C, the stretching vibration peaks of C-H bond disappeared, indicating that the surfactant was completely removed from the nanoparticles.Fig.2b demonstrates that the crystal structure of the material retains a single-phase FCC structure after calcination at 185 or 300 °C.A TEM image of PtRuAgCoNi-OAm/C-185 (Fig 2c and Fig.S3) confirms that there is no change in the morphology and microstructure of the high entropy alloy nanoparticles after calcination at 185 °C.EDS mapping of Fig.2d further demonstrates that the element distributions remain almost identical.However, when the calcination temperature increased to 300 °C, A STEM image and corresponding EDS mapping (Fig.2e) shows that the microstructure of nanoparticles is completely destroyed and broken nanoparticles are sintered into larger particles with varied elemental compositions.

    Fig.2 Characterizations of the structure, morphology and element distributions of the high-entropy alloy after the surfactant was removed.

    The electrocatalytic performance of the PtRuAgCoNi-PVP/C,PtRuAgCoNi-OAm/C, PtRuAgCoNi-OAm/C-185 and PtRuAgCoNi-OAm/C-300 was evaluated by linear sweep voltammetry (LSV).In order to evaluate the catalytic performance of these prepared materials, commercial Pt/C(20%) catalyst was used for comparison.These catalysts for HMF oxidation was studied in a three-electrode cell, and a nitrogen-saturated 1 mol·L-1KOH electrolyte solution was used in all tests.The prepared catalyst was mixed into ink solution and dropped onto carbon paper as the working electrode for the electrocatalytic oxidation of HMF.LSV of all the tested materials show similar change trend toward the OER reaction in the absence of HMF (Fig 3a).Comparing Fig.3a, b, it can be proved that OER is negligible in the potential between 1.2 and 1.5 Vvs.RHE, where HMF oxidation is facilitated by all catalyst materials (Fig.3b).For comparison catalytic performance of all catalyst materials for electrocatalytic oxidation of HMF, two performance criteria were taken into consideration, which are the current density at a potential of 1.4 Vvs.RHE and the potential to attain a current density of 1 mA·cm-2.The PtRuAgCoNi-OAm/C-185 catalyst achieved a current density of 3.79 mA·cm-2at 1.4 Vvs.RHE and 1.0 mA·cm-2at 1.06 Vvs.RHE (in the presence of 50 mmol·L-1HMF).The overpotential for HMF oxidation is decreased by 378 mV as compared to the OER at current density 1.0 mA·cm-235.Among these materials tested,PtRuAgCoNi-OAm/C-185 is the most active electrocatalyst for the oxidation of HMF.A detailed comparison of the activities of all catalysts is highlighted in Table 1.

    Fig.3 Electrocatalytic performance of the high entropy alloys nanoparticles.

    Table 1 A comparison of the OER and HMF oxidation activities of PtRuAgCoNi-OAm/C-185, PtRuAgCoNi-OAm/C-300,PtRuAgCoNi-OAm/C, PtRuAgCoNi-PVP/C, commercial Pt/C (data taken from LSVs of Fig.3).

    Subsequently, Tafel plots were used to analyze the kinetics for the reaction36.The Tafel slope of each catalyst is shown in Fig.3c.The Tafel slope of PtRuAgCoNi-OAm/C-185 is 45.2 mV·dec-1, which is much lower than that of the other four catalysts, suggesting that PtRuAgCoNi-OAm/C-185 exhibits improved kinetics for HMF electrooxidation.Furthermore, we used electrochemical impedance spectroscopy (EIS) to study the electrochemical behavior at the interface between the electrode and electrolyte37.Comparing with all tested catalyst, theRct(charge transfer resistance) of PtRuAgCoNi-OAm/C-185 is the smallest, which means that the catalyst has the fastest charge transfer rate (Fig.3d).The Tafel slope andRctindicate that PtRuAgCoNi-OAm/C-185 is more favorable for catalytic oxidation of HMF.

    Based on the above electrochemical performance study, these five catalyst materials only undergo HMF oxidation reactions without water oxidation at 1.40 Vvs.RHE.At this potential, the products of the electrocatalytic reaction were analyzed by highperformance liquid chromatography (HPLC).The HMF conversion rate, FDCA yield and Faraday efficiency of all specimens are presented in Fig.4a and 4b, respectively.The HMF conversion rate, FDCA yield and Faraday efficiency of PtRuAgCoNi-OAm/C-185 is 55.2%, 46.0% and 45.1%,respectively, which are much higher than those obtained for surfactant decorated catalysts (PtRuAgCoNi-OAm/C andPtRuAgCoNi-PVP/C).This enhanced activity is due to the exposure of active sites caused by removal of surfactants.In addition, the results in Fig.4a, b also indicate that the commercial Pt/C shows the lowest reaction rate and energy conversion efficiency (16.6% FDCA yield and 14.8% Faraday efficiency), which also implies the advantages of high entropy alloy catalyst.A STEM image and corresponding element mapping (Fig.5) of the used PtRuAgCoNi-OAm/C-185 electrocatalyst confirm stability of PdRuAgCoNi-OAm/C-185 as the microstructure and elemental composition of the electrocatalyst is unchanged under the reaction condition.Therefore, the better catalytic performance of PtRuAgCoNi alloy nanoparticles should be attributed to the synergy effect among noble metals and cheap transition metals, which not only improves its catalytic performance, but also reduces the amount of noble metals.Meanwhile, once the calcination temperature increased from 185 to 300 °C, the nanoparticles are broken and its electrocatalytic performance dropped markedly, which suggests that the unique catalytic performance of PtRuAgCoNi-OAm/C-185 should be assigned to its high entropy nature.

    Fig.4 HPLC analysis of the products of the reaction within 3 h.

    Fig.5 HAADF-STEM image (a) and element map (b) of PtRuAgCoNi-OAm/C-185 after reaction 3 h for oxidation HMF.

    4 Conclusions

    In summary, we synthesized PtRuAgCoNi high entropy alloy nanoparticles with a uniform morphology and size distributions using low-temperature solvothermal method.Small molecule substitution and low-temperature calcination were used to remove the surfactant from nanoparticles without changing their morphology or element distribution.After the complete removal of the surfactants under mild conditions, the catalytic activity of the PtRuAgCoNi high entropy alloy with an unchanged structure and morphology was significantly enhanced.Compared with Pt/C catalyst, PtRuAgCoNi high entropy alloy shows better catalytic performance of electrocatalytic oxidation of HMF,validating the important significance of the high entropy structure to the catalytic activity.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    楊艷上海交通大學(xué)電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    上海交通大學(xué)
    上海交通大學(xué)參加機(jī)器人比賽
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    A Walk In The Forest
    我是寶貝
    Cu4簇合物“元件組裝”合成及其結(jié)構(gòu)與電催化作用
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    上海交通大學(xué)外國語學(xué)院簡介
    日日夜夜操网爽| 久久久久网色| 亚洲情色 制服丝袜| 国产男女内射视频| 午夜福利视频精品| 免费在线观看影片大全网站 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产片内射在线| 最近手机中文字幕大全| 午夜免费成人在线视频| 夫妻性生交免费视频一级片| 麻豆国产av国片精品| 日本猛色少妇xxxxx猛交久久| 亚洲国产最新在线播放| 亚洲伊人色综图| 国产伦理片在线播放av一区| 男女边摸边吃奶| 亚洲成国产人片在线观看| 在线观看免费高清a一片| 亚洲成人免费电影在线观看 | 天堂8中文在线网| 亚洲欧美精品综合一区二区三区| 国产av一区二区精品久久| 少妇裸体淫交视频免费看高清 | 中文字幕另类日韩欧美亚洲嫩草| 久久这里只有精品19| 成人三级做爰电影| 午夜日韩欧美国产| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 免费不卡黄色视频| 日韩免费高清中文字幕av| 亚洲精品国产av蜜桃| a级片在线免费高清观看视频| 伊人亚洲综合成人网| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 国产亚洲一区二区精品| 欧美黄色片欧美黄色片| 日本色播在线视频| 久久精品久久精品一区二区三区| 91字幕亚洲| 99re6热这里在线精品视频| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 国产精品国产三级国产专区5o| 久久亚洲精品不卡| 永久免费av网站大全| 国产精品秋霞免费鲁丝片| 日日夜夜操网爽| 少妇粗大呻吟视频| 亚洲av电影在线进入| 99热国产这里只有精品6| 精品少妇久久久久久888优播| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 99国产精品一区二区蜜桃av | 成人午夜精彩视频在线观看| 亚洲欧美日韩另类电影网站| 一本大道久久a久久精品| 新久久久久国产一级毛片| 色94色欧美一区二区| 国产成人一区二区三区免费视频网站 | 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 女人精品久久久久毛片| 女人爽到高潮嗷嗷叫在线视频| av在线app专区| 波野结衣二区三区在线| 日本a在线网址| 男人操女人黄网站| 国产成人精品久久二区二区免费| 丝袜喷水一区| 亚洲av欧美aⅴ国产| 国产精品欧美亚洲77777| a级毛片黄视频| 日韩视频在线欧美| 男女免费视频国产| 精品一区在线观看国产| 999精品在线视频| 久久精品国产亚洲av涩爱| 欧美日韩视频精品一区| 久久人人爽av亚洲精品天堂| 18禁观看日本| 精品免费久久久久久久清纯 | 久久精品aⅴ一区二区三区四区| 精品福利永久在线观看| 伦理电影免费视频| 久久久久久免费高清国产稀缺| 91精品三级在线观看| 欧美日韩成人在线一区二区| 91老司机精品| 999久久久国产精品视频| av有码第一页| 又粗又硬又长又爽又黄的视频| 欧美日韩av久久| 久久精品aⅴ一区二区三区四区| 日韩av在线免费看完整版不卡| 欧美少妇被猛烈插入视频| 亚洲欧美精品综合一区二区三区| 国产欧美亚洲国产| 最新在线观看一区二区三区 | 国产欧美日韩精品亚洲av| 在线观看免费午夜福利视频| 2021少妇久久久久久久久久久| 日本欧美视频一区| 99国产精品一区二区蜜桃av | 欧美激情 高清一区二区三区| 香蕉丝袜av| 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 免费看十八禁软件| 这个男人来自地球电影免费观看| 如日韩欧美国产精品一区二区三区| 91国产中文字幕| 制服人妻中文乱码| 亚洲av综合色区一区| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 无限看片的www在线观看| 在线观看一区二区三区激情| 国产精品一国产av| 国语对白做爰xxxⅹ性视频网站| 亚洲成人免费av在线播放| 亚洲欧美一区二区三区黑人| 国产一区二区 视频在线| 亚洲精品中文字幕在线视频| 美女脱内裤让男人舔精品视频| 久久久久国产一级毛片高清牌| 9热在线视频观看99| 80岁老熟妇乱子伦牲交| 99精品久久久久人妻精品| 精品卡一卡二卡四卡免费| 搡老岳熟女国产| 男女边摸边吃奶| 久久久久久久精品精品| 男人舔女人的私密视频| 亚洲欧美精品自产自拍| 两个人看的免费小视频| 亚洲专区中文字幕在线| 满18在线观看网站| 日日爽夜夜爽网站| 精品国产一区二区三区四区第35| 欧美精品一区二区免费开放| 美国免费a级毛片| 亚洲国产看品久久| 久9热在线精品视频| 亚洲欧美日韩高清在线视频 | 在现免费观看毛片| 国产在线视频一区二区| av网站在线播放免费| 亚洲五月色婷婷综合| 一二三四社区在线视频社区8| 欧美日韩福利视频一区二区| 日韩 亚洲 欧美在线| 久久av网站| 观看av在线不卡| 中文字幕高清在线视频| 日韩电影二区| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 成人国语在线视频| 亚洲欧美日韩另类电影网站| 国产熟女欧美一区二区| 青春草亚洲视频在线观看| 欧美+亚洲+日韩+国产| 中文字幕人妻丝袜制服| 天堂8中文在线网| 精品人妻一区二区三区麻豆| 男女边摸边吃奶| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 日韩av在线免费看完整版不卡| 一区二区三区四区激情视频| 国产xxxxx性猛交| 日韩大码丰满熟妇| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 少妇人妻 视频| 色婷婷久久久亚洲欧美| 亚洲中文av在线| 狂野欧美激情性xxxx| 久久久久国产精品人妻一区二区| 亚洲av电影在线进入| 日本猛色少妇xxxxx猛交久久| 老司机靠b影院| 久久中文字幕一级| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 中国美女看黄片| 亚洲精品av麻豆狂野| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜人妻中文字幕| 无限看片的www在线观看| a级片在线免费高清观看视频| 国产成人一区二区三区免费视频网站 | 无遮挡黄片免费观看| 一级片免费观看大全| 色视频在线一区二区三区| 成人国产一区最新在线观看 | 妹子高潮喷水视频| 男的添女的下面高潮视频| 午夜免费鲁丝| 日韩欧美一区视频在线观看| 极品人妻少妇av视频| 欧美人与性动交α欧美精品济南到| 99九九在线精品视频| h视频一区二区三区| 日本色播在线视频| 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀 | 久久毛片免费看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 91字幕亚洲| av网站免费在线观看视频| 亚洲精品久久午夜乱码| h视频一区二区三区| 国产欧美日韩综合在线一区二区| 9热在线视频观看99| 捣出白浆h1v1| 爱豆传媒免费全集在线观看| 自线自在国产av| 久久天躁狠狠躁夜夜2o2o | 男女之事视频高清在线观看 | 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 美女国产高潮福利片在线看| 亚洲成色77777| 免费av中文字幕在线| 999久久久国产精品视频| 欧美精品人与动牲交sv欧美| 91精品国产国语对白视频| 久热这里只有精品99| 久久精品久久久久久噜噜老黄| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久av网站| 亚洲精品国产一区二区精华液| 狠狠精品人妻久久久久久综合| 大型av网站在线播放| 日日夜夜操网爽| 人妻 亚洲 视频| 亚洲欧洲国产日韩| 日韩中文字幕欧美一区二区 | 亚洲专区国产一区二区| 国产免费福利视频在线观看| 看免费av毛片| 亚洲av美国av| 男女边吃奶边做爰视频| 亚洲av成人不卡在线观看播放网 | 久久久精品94久久精品| 少妇精品久久久久久久| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 亚洲精品自拍成人| 热99国产精品久久久久久7| 国产成人一区二区在线| √禁漫天堂资源中文www| 乱人伦中国视频| 亚洲人成电影观看| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| 青青草视频在线视频观看| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 女人被躁到高潮嗷嗷叫费观| 国产免费福利视频在线观看| 日韩av免费高清视频| 国精品久久久久久国模美| 亚洲欧美日韩另类电影网站| 亚洲国产精品999| 交换朋友夫妻互换小说| 亚洲av成人精品一二三区| 免费在线观看日本一区| 欧美亚洲日本最大视频资源| 午夜免费男女啪啪视频观看| 最近最新中文字幕大全免费视频 | 久久国产精品男人的天堂亚洲| 天天操日日干夜夜撸| 国产高清videossex| 天堂俺去俺来也www色官网| 亚洲成人国产一区在线观看 | 欧美日韩黄片免| 亚洲精品美女久久av网站| 美女主播在线视频| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看| 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区 | 亚洲欧美一区二区三区黑人| 咕卡用的链子| 国产免费现黄频在线看| 日日夜夜操网爽| 尾随美女入室| 久久久久精品国产欧美久久久 | avwww免费| 女人精品久久久久毛片| 精品人妻1区二区| 美女主播在线视频| 建设人人有责人人尽责人人享有的| cao死你这个sao货| 99国产精品一区二区三区| 久久精品人人爽人人爽视色| 国精品久久久久久国模美| 黄片小视频在线播放| 午夜激情久久久久久久| 无遮挡黄片免费观看| 人人妻人人澡人人看| 韩国高清视频一区二区三区| 嫁个100分男人电影在线观看 | 国产一区二区三区av在线| 亚洲欧美中文字幕日韩二区| 国产成人精品久久久久久| 久久精品国产综合久久久| 欧美激情极品国产一区二区三区| 黄色a级毛片大全视频| 热99久久久久精品小说推荐| 亚洲国产中文字幕在线视频| av在线老鸭窝| av片东京热男人的天堂| videos熟女内射| av福利片在线| 欧美 日韩 精品 国产| 国产精品成人在线| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 色婷婷久久久亚洲欧美| 男女下面插进去视频免费观看| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 国产免费一区二区三区四区乱码| 久久久国产精品麻豆| 亚洲色图综合在线观看| 深夜精品福利| 伦理电影免费视频| 亚洲成人国产一区在线观看 | av有码第一页| 中文字幕高清在线视频| 老司机影院毛片| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 欧美日韩视频高清一区二区三区二| 人妻 亚洲 视频| 亚洲国产中文字幕在线视频| 日韩视频在线欧美| 欧美中文综合在线视频| 国产淫语在线视频| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 多毛熟女@视频| 日韩精品免费视频一区二区三区| 国产亚洲午夜精品一区二区久久| 一区福利在线观看| 多毛熟女@视频| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 国产精品国产av在线观看| 国产精品欧美亚洲77777| 日韩视频在线欧美| 男女边吃奶边做爰视频| 久久天堂一区二区三区四区| 亚洲情色 制服丝袜| 亚洲,欧美精品.| 欧美中文综合在线视频| 国产欧美日韩一区二区三 | 99精品久久久久人妻精品| 婷婷成人精品国产| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 亚洲色图 男人天堂 中文字幕| 妹子高潮喷水视频| 精品熟女少妇八av免费久了| 狠狠精品人妻久久久久久综合| 欧美日韩福利视频一区二区| 乱人伦中国视频| 菩萨蛮人人尽说江南好唐韦庄| 999久久久国产精品视频| 久久精品久久久久久噜噜老黄| 狠狠精品人妻久久久久久综合| 亚洲人成电影免费在线| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 欧美 日韩 精品 国产| 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| 老司机影院毛片| 日韩一本色道免费dvd| 亚洲一卡2卡3卡4卡5卡精品中文| 国产99久久九九免费精品| avwww免费| 两人在一起打扑克的视频| 久久人人爽人人片av| 国产熟女欧美一区二区| 欧美少妇被猛烈插入视频| 亚洲熟女毛片儿| 91麻豆精品激情在线观看国产 | 下体分泌物呈黄色| av有码第一页| 国产男人的电影天堂91| 亚洲精品日本国产第一区| av有码第一页| 黑人欧美特级aaaaaa片| 日本五十路高清| 免费高清在线观看视频在线观看| 99九九在线精品视频| 欧美老熟妇乱子伦牲交| 美女主播在线视频| 黄色视频在线播放观看不卡| 人妻一区二区av| 人成视频在线观看免费观看| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 久久精品aⅴ一区二区三区四区| 汤姆久久久久久久影院中文字幕| 国产成人a∨麻豆精品| av在线app专区| 亚洲一区二区三区欧美精品| 精品一区二区三区av网在线观看 | 日韩电影二区| 久久九九热精品免费| 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 青草久久国产| kizo精华| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品国产av蜜桃| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 国产一卡二卡三卡精品| 国产亚洲欧美精品永久| 国产深夜福利视频在线观看| 亚洲天堂av无毛| 亚洲欧美一区二区三区国产| 日本a在线网址| 日韩免费高清中文字幕av| 成人亚洲欧美一区二区av| 精品第一国产精品| 91成人精品电影| 欧美日韩视频精品一区| 亚洲专区国产一区二区| 精品国产乱码久久久久久男人| 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| 97人妻天天添夜夜摸| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区三区在线| 在线av久久热| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 国产成人一区二区在线| 9191精品国产免费久久| 亚洲av日韩在线播放| 又紧又爽又黄一区二区| 日韩伦理黄色片| 日本五十路高清| 2018国产大陆天天弄谢| 男女床上黄色一级片免费看| 精品高清国产在线一区| 男女之事视频高清在线观看 | 美女脱内裤让男人舔精品视频| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片| 久久精品国产a三级三级三级| 在线av久久热| 免费看不卡的av| 黄色a级毛片大全视频| 精品久久久久久久毛片微露脸 | 少妇 在线观看| 中文欧美无线码| 丝瓜视频免费看黄片| 91麻豆av在线| 高清视频免费观看一区二区| 日日夜夜操网爽| 香蕉丝袜av| 久热爱精品视频在线9| 香蕉国产在线看| 亚洲国产精品国产精品| 国产精品欧美亚洲77777| 91精品三级在线观看| 男男h啪啪无遮挡| 男女免费视频国产| 精品国产超薄肉色丝袜足j| 操出白浆在线播放| 韩国精品一区二区三区| 国产激情久久老熟女| 99国产精品免费福利视频| 男男h啪啪无遮挡| 满18在线观看网站| 亚洲av综合色区一区| 国产成人91sexporn| 久久亚洲精品不卡| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 水蜜桃什么品种好| 日韩伦理黄色片| 天天影视国产精品| 黄色a级毛片大全视频| 国产av精品麻豆| 五月天丁香电影| 欧美精品一区二区免费开放| 精品亚洲成国产av| 国产日韩一区二区三区精品不卡| 九草在线视频观看| 在线 av 中文字幕| 这个男人来自地球电影免费观看| 韩国精品一区二区三区| 多毛熟女@视频| 黄色一级大片看看| 曰老女人黄片| 最黄视频免费看| 国产免费又黄又爽又色| 亚洲欧美日韩高清在线视频 | 十八禁网站网址无遮挡| 超碰成人久久| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| av一本久久久久| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 涩涩av久久男人的天堂| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 我要看黄色一级片免费的| 亚洲五月婷婷丁香| videos熟女内射| 久久影院123| 亚洲成色77777| 亚洲精品一卡2卡三卡4卡5卡 | 久久久久久亚洲精品国产蜜桃av| 两个人免费观看高清视频| 91精品国产国语对白视频| 国产在线免费精品| 一级毛片电影观看| 国产片内射在线| 精品人妻在线不人妻| 首页视频小说图片口味搜索 | 婷婷色麻豆天堂久久| 国产亚洲一区二区精品| 黄频高清免费视频| 丝袜美足系列| 久久国产精品大桥未久av| av天堂久久9| 亚洲国产精品999| 我的亚洲天堂| 99国产精品免费福利视频| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 伦理电影免费视频| 欧美黄色片欧美黄色片| 亚洲情色 制服丝袜| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 国产成人a∨麻豆精品| 国产在线免费精品| 大片免费播放器 马上看| 捣出白浆h1v1| 精品少妇内射三级| 香蕉丝袜av| 国产精品久久久久久精品电影小说| 日韩av不卡免费在线播放| 建设人人有责人人尽责人人享有的| 麻豆国产av国片精品| 好男人电影高清在线观看| 久久这里只有精品19| 91麻豆精品激情在线观看国产 | 久久人人97超碰香蕉20202| 免费av中文字幕在线| 成在线人永久免费视频| 亚洲精品在线美女| av网站在线播放免费| 女人久久www免费人成看片| 欧美日韩精品网址| 亚洲av成人精品一二三区| 亚洲视频免费观看视频| 91九色精品人成在线观看| 欧美精品一区二区免费开放| 亚洲国产看品久久| 亚洲成人手机| 国产黄频视频在线观看| 极品少妇高潮喷水抽搐| 伦理电影免费视频| 国产亚洲精品久久久久5区| 女人被躁到高潮嗷嗷叫费观| svipshipincom国产片| 色94色欧美一区二区| 亚洲中文字幕日韩| 亚洲综合色网址| 90打野战视频偷拍视频| 国产亚洲一区二区精品| 一级片'在线观看视频| 波野结衣二区三区在线| 久久精品久久久久久久性| 午夜激情久久久久久久| 国产成人精品在线电影| 性色av一级| 精品欧美一区二区三区在线| 黄色视频不卡| 亚洲欧美一区二区三区国产| 一级毛片 在线播放| 亚洲成av片中文字幕在线观看| 曰老女人黄片| 国产成人91sexporn| 精品人妻熟女毛片av久久网站| 亚洲精品日本国产第一区| 亚洲国产av影院在线观看| 亚洲,欧美精品.| 亚洲一区中文字幕在线| 亚洲欧洲国产日韩| 一本一本久久a久久精品综合妖精| a级毛片黄视频|