• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    碳量子點(diǎn)陽離子表面活性劑的多功能性

    2023-01-13 09:41:46楊健雷辰劉祥張建孫玉蝶張鋮葉明富張奎
    物理化學(xué)學(xué)報(bào) 2022年12期
    關(guān)鍵詞:省部大學(xué)化學(xué)化工學(xué)院

    楊健,雷辰,劉祥,*,張建,孫玉蝶,張鋮,葉明富,2,張奎,*

    1安徽工業(yè)大學(xué)化學(xué)與化工學(xué)院,安徽 馬鞍山 243032

    2內(nèi)蒙古工業(yè)大學(xué),風(fēng)能太陽能利用技術(shù)省部共建教育部重點(diǎn)實(shí)驗(yàn)室,呼和浩特 010051

    1 Introduction

    As a new photoluminescent material, carbon quantum dots(CQDs) or carbon nanodots1,2had been discovered for decades.Numerous researchers published their works about the preparation with various raw materials and the fluorescent performances3-11.The cheap raw materials and convenient preparing approaches evoked extensive interests on CQDs12-16.Most CQDs were producedviapyrolysis on organic molecules at higher temperature4,12that resulted in carbonization of the starting materials accompanied by various reactions such as oxidation, condensation, dehydration, esterification,etc.In addition, some unpredicted reactions might take place simultaneously under such violent conditions.Hence, it was a tough problem for learning the precise structure of the CQDs even though there were modern detecting equipments.The accurate information about chemical structure of CQDs was not very clear until today17.However, functional groups of CQDs could be speculated according to the chemical structures of raw materials and the reaction types among them.For example,CQDs made from hemicelluloses should be rich in hydroxyl and ether groups.Such groups were sensitive to Ag+which should be due to the intensive interaction between the oxygen-contained groups and Ag+.And these caused fluorescence quenching18.CQDs derived from citric acid, urea and oxalic acid should own rich carboxyl groups on account of the multiple carboxyl groups of citric acid, which provided coordination sites for Hg+19.he authors attributed this as a determinative cause of the fluorescent quenching.The destruction of fluorescence was an efficient way of detecting several metallic cations20or organic molecules21.Therefore, the utility of CQDs was determined predominantly by the surface functional groups according to analyses on these examples.

    In fact, some of functional groups of the raw materials were intact during the production of CQDs.The CQDs prepared from citric acid owned carboxyl groups even though some of them were consumed during the carbonization.The carboxyl groups could be activated byN-hydroxysuccinimide for realizing the bondage of primary amines of biomacromolecules and the fluorescent CQDs22.Since polyethyleneimine owned plenty of amino groups CQDs made from the mixture of glycerol and polyethyleneimine through one-step hydrothermal treatment were therefore positive-charged with a capability of serving as DNA condensation.With progress of the carbonization, amino groups of the raw materials were introduced into the CQDs that determined the chemical properties and the utility23.Therefore the chemical structure and the utilities of CQDs depended mainly on right choice of the raw materials24.Actually, the surface functional groups could be modified chemically that might open a door of exploiting new applications of CQDs even though the accurate structure of CQDs was difficult to be understood at present25.CQDs prepared by hydrothermal approach are soluble readily in aqueous medium depending on hydrophilicity of the surface functional groups.If a hydrophobic group is attached to one of these surface functional groups it endows hydrophobicity to the modified CQDs.Thus such modified CQDs become amphiphilic and possesses surface activity in declining surface tension of water which is similar to a conventional surfactant.

    Herein, an approach of manufacturing a novel CQDs cationic surfactant will be depicted in detail in this work.Ethylenediamine tetraacetic acid (EDTA) and ethylenediamine(EDA) are chosen as raw materials of preparing the CQDs.Nitrogen doping also favored for enhancement of fluorescent quantum yield26-30.The introduced tertiary amine may be involved in the quaternization with halogenated hydrocarbon,which described in Scheme 1.This provides an economic route of synthesizing cationic surfactant with versatility such as surface activity, fluorescence and antibacterial effect that is incomparable by conventional surfactants.

    Scheme 1 Schematic description of preparing the CQDs and the successive quaternization with n-C12H25Cl.

    2 Experimental sections

    2.1 Chemical reagents

    Ethylenediamine tetraacetic acid (EDTA, 99.5%), 1-chlorododecane (n-C12H25Cl, 98%), 1-chlorotetradecane (n-C14H29Cl, 98%), 1-chlorohexadecane (n-C16H33Cl, 97%) and quinine sulfate fluorescence standard substance (98.6%) were purchased from Aladdin Biochemical Technology Co.Ltd.(Shanghai, China).Ethylenediamine (EDA, ≥ 99.0%) and hydrogen peroxide solution (H2O2, 30.0% (w) in water) were bought from Sinopharm Chemical Reagent Co., Ltd (Shanghai,China).Double distilled water was used throughout the work.

    2.2 Preparation of the carbon quantum dots and the successive quaternization

    Firstly, weighed 3.0 g EDTA (0.010 mol) and dissolved in 6 mL water.The solution was mixed with dropwise EDA (3.5 mL,their molar ratio = 1 : 5) with a stirring.Then hydrogen peroxide of 1 mL was input into the mixture slowly with an agitation.Such a mixture was transferred into a Teflon vessel (25 mL) which placed in a stainless steel autoclave.The pyrolysis was carried out at 180 °C for 60 min.The solution in Teflon vessel was transferred completely into a round-bottom flask when the autoclave was cooled to ambient temperature.The carbon quantum dots were obtained by removing the solvent and excess EDAviareduced pressure distillation at 90 °C.Similar approach was carried out for synthesizing carbon quantum dots without hydrogen peroxide.Such two carbon dots were represented with OX-CQDs and CQDs respectively.The amount of synthesized OX-CQDs was recorded for calculating the yield.

    As-prepared OX-CQDs were dissolved entirely in 15 mL methanol and mixed with 3 mLn-C12H25Cl (0.010 mol).The mixture was heated with a reflux at 65 °C for 5 h.Finally the solvent methanol was removed completely by reduced pressure distillation.The remaining was mixed with 25 mL water and transferred into a separating funnel for removing the supernatant(n-C12H25Cl).Such operation was repeated twice for removing the excessn-C12H25Cl.The suspension was placed in an oven with ventilation at 70 °C until the water was removed entirely.Amount of the product (represented with OX-CQDs-C12H25)was noted down for calculating the yield.In order to explore the effect of length of hydrocarbon chain on the surface activity quaternization of OX-CQDs withn-C14H29Cl andn-C16H33Cl were also carried out.The products were represented with OXCQDs-C14H29and OX-CQDs-C16H33respectively.

    Similarly, quaternization of CQDs withn-C12H25Cl was executed (the product was represented with CQDs-C12H25) for comparing the performance of declining surface tension of water with that of OX-CQDs-C12H25.

    2.3 Measurements of fluorescence quantum yields and surface tensions of the solutions of samples

    The fluorescence emission areas of CQDs, OX-CQDs and OX-CQDs-C12H25solutions and the corresponding UV-visible absorbance (< 0.05) were recorded for linear regressions for calculating the slopes of the lines.Fluorescence quantum yields of these samples were obtained by comparing the slopes with that of standard substance of quinine sulfate according to

    whereQsandQxrepresents quantum yields of fluorescent standard substance (55.00% in 0.05 mol·L-1sulphuric acid solution) and sample; SlopexandSlopesrefer to slopes of the linear regressions of sample and standard substance respectively;nxandnsrepresent to refractive index of sample and standard substance respectively (they are equal approximately in this case).

    Surface tensions of the aqueous solutions of OX-CQDs-C12H25, CQDs-C12H25, OX-CQDs-C14H29and OX-CQDs-C16H33were measured by virtue of maximum bubble pressure method.Concentrations of the measured solutions were increased gradually until surface tension of the solution did not decrease almost.

    2.4 Measurement of minimal inhibitory concentrations of OX-CQDs-C12H25 and OX-CQDs

    Firstly, took eight EP tubes and prepared varied concentrations of OX-CQDs-C12H25and OX-CQDs (3.30, 1.65, 0.83, 0.41,0.21, 0.10, 0.052 and 0.026 mg·mL-1for the samples respectively) with test bacteria solution (Escherichia coli).Three times of 100 μL of each sample was added to three wells of a 96-well plate for a parallel comparison (including a sample of positive control).Then the plate was placed in an incubator at constant temperature of 37 °C for 18-24 h.The OD (optical density) values of such mixtures were measured with an enzymatic marker.Thus the antibacterial percentages were obtained by calculations on these OD values.

    2.5 Characteristic techniques

    Morphologies of CQDs, OX-CQDs and OX-CQDs-C12H25were illustrated by images of transmission electron microscopy(Tecnai G2 F20 S-TWIN).Fluorescence spectra (LS 45,PerkinElmer) of OX-CQDs, CQDs and OX-CQDs- C12H25were measured for calculating the fluorescence quantum yields.Structural information of OX-CQDs and OX-CQDs-C12H25were revealed by infrared (IR),1H nuclear magnetic resonance(1H-NMR) and X-ray photoelectron energy (XP) spectra respectively (corresponding to equipments of Nicolet 380,BRUKER 400 and KRATOS AMICUS respectively).Percentages of elemental C, N and O of OX-CQDs and OXCQDs-C12H25were received by analysis on XP spectra of a wide scanning.Narrow scanning on C 1sand N 1swas also carried out for demonstrating the quaternization of OX-CQDs.

    3 Results and discussion

    Purposes of choosing EDTA as a raw material of preparing OX-CQDs are based on the following two considerations.(1)The four terminal carboxyl groups ensure the reactivity with EDA and possibility of carbonizationviapyrolysis12.The combination with EDA may increases hydrophilicity of OXCQDs.Additionally the doped nitrogen may lead to an enhancement of fluorescence quantum yield of CQDs31,32.(2)The tertiary amines of EDTA can involve in successive quaternization with chlorohydrocarbon.If the hydrocarbon chains are introduced onto OX-CQDs a cationic OX-CQDs surfactant with bright fluorescence may be synthesized.Hydrogen peroxide, as intensive oxidant, may benefit for fluorescence quantum yields, which is demonstrated in our previous work33,34.It does not lead to excessive operation since the final product is water.During the synthesis, EDA is excess intentionally which ensures the complete conversion of EDTA.The excess EDA can be removed completely by reduced pressure distillation.This favors the purity of synthesized OXCQDs.The experimental result shows that the yield of OXCQDs and OX-CQDs-C12H25are 82.6% and 65.4% respectively(the respective amounts of OX-CQDs and OX-CQDs-C12H25are 5.49 and 6.03 g).The carbonization of the raw materials is proved by images of Fig.1a and Fig.S1 (Supporting Information).The sizes of OX-CQDs are distributed mainly at 1.8-2.0 nm with lattice distance of 0.3 nm35,36.

    Fig.1 Transmission electron microscopy images and particle distributions of OX-CQDs and OX-CQDs-C12H25 corresponding to (a) and (b) respectively.

    3.1 Analyses on OX-CQDs and OX-CQDs-C12H25 with IR, 1H-NMR and XP spectra

    IR spectrum of OX-CQDs shown in Fig.2a reveals the intensive absorption between 3000 and 3500 cm-1.This should be attributed to overlapping of O-H and N-H stretching vibration of -OH and -NH2respectively.And the deep absorption near 3000 cm-1is due to stretching vibration of CH of alkyl.Peaks of 1634 and 1588 cm-1should be arisen from modes of amide I and II respectively, which proves the amidation between EDTA and EDA.Also, Peaks of 1396 and 1317 cm-1are due to the coupling of stretching vibration of C-N and scissoring vibration of N-H.The spectrum demonstrates the combination between EDTA and EDA.

    Fig.2a also tells us that there is no obvious variation between OX-CQDs and OX-CQDs-C12H25.The spectra can not provide clear evidences to prove the quaternization of OX-CQDs.This may be due to the weak signals of the introduced hydrocarbon chains.However1H-NMR spectra of Fig.2b demonstrate the quaternization.The dense signals centered at 3.0 of both OXCQDs and OX-CQDs-C12H25are arisen from -CH2N- and-CH2C=O, which causes the1H signal atαposition of+NCH2CH2- in OX-CQDs-C12H25is obscure.Nevertheless,OX-CQDs-C12H25provides two signals at chemical shifts of 0.75 and 1.20, which belong to -CH3and -CH2-respectively37,38.That is due to the introduced hydrocarbon chains39,40.The inset of Fig.2b displays the enlarged range from 10.0 to 7.0.It exhibits the weak signals at 7.9 and 8.4 marked with asterisks, which should be due to1H of amide -NHCO-.This is consistent with the IR analysis.

    Fig.2 IR and 1H-NMR spectra of OX-CQDs and OX-CQDs-C12H25 corresponding to (a) and(b) respectively (chemical shift at 4.74 is due to solvent D2O).

    XP spectra of Fig.3 also supply the structural information of OX-CQDs and prove the quaternization of OX-CQDs.Peaks of 286.9 eV of OX-CQDs and 287.2 eV of OX-CQDs-C12H25in C 1sspectra are arisen from -ONH-.These agree with IR analyses.Signals of 285.0 eV of OX-CQDs and 285.1 eV of OXCQDs-C12H25are attributed to -NHH2-.Peaks of 283.8 eV of OX-CQDs and 284.0 eV of OX-CQDs-C12H25are due to -H2-.Beside, N 1ssignal of OX-CQDs-C12H25shifts to a higher binding energy compared with that of OX-CQDs marked with a dash line, which indicates some of nitrogen elements are quaternized partly41.Table S1 (Supporting Information) also reveals the successful attachment of the hydrocarbon chain to OX-CQDs.After the quaternization the atomic percentage of carbon reaches 73.73%, which is more than 70.05% of OXCQDs.Such evidences prove the quaternization of OX-CQDs.Summarily, both1H-NMR and XPS give solid evidences of proving the hydrocarbon chains are attached to OX-CQDs.

    Fig.3 C 1s and N 1s signals of XP spectra of OX-CQDs and OX-CQDs-C12H25.

    Additionally, Fig.1b exhibits that the particle sizes of OXCQDs-C12H25are distributed predominately in 3.5-4.5 nm,which are greater than those of OX-CQDs.Such evidence proves that the long hydrocarbon chain is attached to OX-CQDs.

    3.2 Fluorescent performances of CQDs, OX-CQDs and OX-CQDs-C12H25

    Integrated areas of fluorescent peaks of CQDs, OX-CQDs and OX-CQDs-C12H25varied with the absorbance are recorded in Fig.4a, b.The slopes of the regressed lines corresponding to CQDs and OX-CQDs are 3731.62 and 5006.59, respectively.Thus the quantum yields are 6.09% and 8.17% respectively.That illustrates hydrogen peroxide is contributive for the enhancement of quantum yield.Intensive oxidation of hydrogen peroxide may result in more oxygen-contained functional groups in the CQDs.Some of them may be involved in conjugated structuresviap-πorπ-πinteractions.The quantum yield of OXCQDs-C12H25is 6.44% according to the slope of regressed line shown in Fig.4b, which declares that fluorescent quantum yield of OX-CQDs decreases after the quaternization.The fluorescence spectra in Fig.4c indicate the fluorescent emissions of both OX-CQDs and OX-CQDs-C12H25are 414 nm.Quaternization on OX-CQDs with 1-chlorododecane does not alter the emission.This declares the tertiary amino group does not belong to fluorophore of OX-CQDs.Additionally the excited electrons are disturbed by positive charge of quaternary ammonium of OX-CQDs-C12H25, which impedes the back transition to ground state that declines the fluorescent quantum yield.

    Fig.4 (a, b) Fluorescent emission area versus the corresponding absorbance of the measured solutions as well as the regressed lines(fixed intercept at 0); (c) fluorescence spectra of OX-CQDs and OX-CQDs-C12H25 (excitation wavelength = 340 nm).

    3.3 Surface tensions of CQDs-C12H25, OX-CQDs-C12H25, OX-CQDs-C14H29 and OX-CQDs-C16H33 solutions

    The dilute solution of OX-CQDs-C12H25performs wonderful capability of declining surface tension of water, which exhibited in Fig.5a.Surface tension of pure water declines rapidly with the increased concentrations of OX-CQDs-C12H25.When the concentration is greater than 10.0 mg·mL-1, surface tension of the solution remains almost unchanged.Minimum of the surface tension reaches 26.7 mN·m-1.At pH = 6.0 or 8.0 such performance is affected scarcely, which indicated in Fig.S2(Supporting Information).Alkalescent medium at pH = 8.0 achieves a better performance of declining surface tension of water compared with that at pH = 6.0, which equals to the result shown in Fig.5a approximately.CQDs-C12H25possesses the similar performance.However, the minimum of surface tension is greater than that of OX-CQDs-C12H25.Hydrogen peroxide plays a role of oxidizer that increases the amount of oxygencontained groups which is favorable for the hydrophilicity of OX-CQDs.Thus hydrophile-lipophile balance is optimized.Additionally quaternization on OX-CQDs withn-C14H29Cl orn-C16H33Cl can not lead to a more decline of surface tension compared with that withn-C12H25Cl, illustrated in Fig.5b.The value of critical micelle concentration is also much greater than that of OX-CQDs-C12H25.These results exclaim thatn-C12H25Cl provide a proper length of hydrocarbon chain that results in a better performance of reducing surface tension of water.

    Fig.5 (a, b) Surface tensions of CQDs-C12H25, OX-CQDs-C12H25, OX-CQDs-C14H29 and OX-CQDs-C16H33 solutions varied with the concentrations;(c, d) surface absorption capacities of OX-CQDs-C12H25 and CQDs-C12H25 solutions via the theoretical calculations.

    Contact angle detections on solutions of CQDs-C12H25and OX-CQDs-C12H25are exhibited in Fig.6.CQDs-C12H25solutions with 1.0, 5.0 and 10.0 mg·mL-1own contact angles of 75.5°, 50.1° and 44.6° respectively.Contact angles of OXCQDs-C12H25solutions of 70.4°, 43.4° and 38.0° corresponding to 1.0, 2.5 and 5.0 mg mL-1demonstrate more excellent performance of OX-CQDs-C12H25in declining surface tension of water than that of CQDs-C12H25because of the smaller contact angles and lower concentrations.This is also in accordance with the measurements of the surface tension of the solutions shown in Fig.5a.

    Fig.6 Contact angles of CQDs-C12H25 and OX-CQDs-C12H25 solutions with different concentrations.

    Such an outstanding performance of OX-CQDs- C12H25is superior to several of Gemini cationic surfactants reported recently, which belong to new type of one with wonderful property in decreasing surface tension of water.For example, the minimum surface tensions of the solutions of 1,3-2(alkyl amide propyl dimethyl ammonium chloride)iso-propyl alcohol42,N,N-dimethyl-N-[3-(gluconamide/lactobionamide)] propyl-N-alkylammonium bromides43, [CH2=C(CH3)COO(CH2)11N+(CH3)2CH2]2·Br-44and dendritic cationic tetrameric surfactants with different alkyl chains (C12, C14 and C16)45are 34.78,28.36, 32 and 30.29 mN·m-1respectively.All the values are greater than that of OX-CQDs-C12H25.Additionally the procedures of synthesizing these Gemini cationic surfactants are more complicate than the one of preparing OX-CQDs- C12H25.The technique of synthesizing such a novel cationic surfactant shows more superiority in the cheap raw materials and the convenient manufacture.

    The regressed curve of Fig.5a represents the relationship between surface tensions of CQDs-C12H25and OX-CQDs-C12H25solutions and the concentrations (see the descriptions in Supporting Information).Hence, the surface absorption amount(Γ) can be calculated by Gibbs absorption isothermal equation as long as the derivation of this curve is obtained, which depicted in the equation:

    wherea,Tandγrepresent activity of the surfactant, temperature(Kelvin) and surface tension (N·m-1) respectively;Ris gaseous Constance (8.314 J·mol-1·K-1);nis the number of ionic species;n= 2 is generally accepted38.According to the theory of solution surface adsorption, surface adsorption amount enhances gradually with the increased concentration of OX-CQDs-C12H25until it reaches a maximum which predicts absorbing saturation.When the concentration is rather low the variableain Gibbs absorption isothermal equation can be replaced by the concentration.Higher concentrations lead to errors of calculatedΓ.Fig.5c reveals that when the concentration is less than 1.2 mg·mL-1the surface absorption capacities calculated by Gibbs isothermal equation satisfy the rule stated above (the data are exhibited in Table S2 (Supporting Information)).Therefore the maximum of surface absorption capacity is 3.31 × 10-6mol·m-2.Thus the sectional areas of hydrophobic chains can be calculated according to

    whereAmandΓmrepresent sectional areas of hydrophobic chains of every OX-CQDs-C12H25molecule and saturated absorption capacity respectively;Nis Avogadro constant (6.022 × 1023mol-1).ThusAm= 0.502 nm2.Since sectional area of a hydrophobic chain is 0.205 nm2every OX-CQDs-C12H25particle possesses 2.447 hydrocarbon chains averagely.Such hydrocarbon chains along with the hydrophilic groups of OXCQDs such as carboxyl, amide and amino groups devote the well performance in declining surface tension of water.The oxidation of hydrogen peroxide is contributive for producing more hydrophilic groups, which regulates a proper value of hydrophile-lipophile-balance.That is helpful for the surface activity.

    According to the similar way of treating the fitted curve of CQDs-C12H25shown in Fig.5a, the calculatedΓvaried with the concentrations are plotted in Fig.5d (the data are exhibited in Table S3 (Supporting Information)).Every CQDs-C12H25possesses 2.529 hydrocarbon chains averagely that equals approximately with that of OX-CQDs-C12H25.However, the surface activity of CQDs-C12H25is weaker than that of OXCQDs-C12H25.This illustrates that oxidation of hydrogen peroxide increases the amount of hydrophilic groups of OXCQDs which is helpful for the surface activity.Hence, hydrogen peroxide plays a positive role in enhancing both the fluorescent quantum yield and the surface activity of the surfactant.

    3.4 Antibacterial activities of of CQDs, OX-CQDs,CQDs-C12H25 and OX-CQDs-C12H25

    Antibiosis of CQDs, OX-CQDs, CQDs-C12H25and OXCQDs-C12H25onEscherichia coliis indicated in Fig.7.The minimal inhibitory concentration for OX-CQDs-C12H25or CQDs-C12H25is 0.41 mg·mL-1, at which the antibacterial percentage still approaches 100% approximately.The concentration is far less than critical micelle concentration (10.0 mg·mL-1) revealed in Fig.5a.That declares OX-CQDs-C12H25solution has wonderful antibiosis during exerting the surface activity.OX-CQDs or CQDs solution without chemical modifications has the similar performance46.However, the power of antibiosis is far weaker than that of OX-CQDs-C12H25or CQDs-C12H25since the minimal inhibitory concentration reaches 3.30 mg·mL-1.Quaternization of OX-CQDs or CQDs favors the enhancement of antibiosis.The quaternary ammonium group of OX-CQDs-C12H25or CQDs-C12H25with positive charged interacts with negative charges on surface of cellular cytoplasmic membrane.The long hydrocarbon chain may insert into the membrane.Thus the selective permeability of the membrane is disturbed.

    Fig.7 Histogram of antibacterial activities of CQDs, OX-CQDs,CQDs-C12H25 and OX-CQDs-C12H25.

    As a new type of surfactant, OX-CQDs-C12H25possesses not only wonderful performance of reducing surface tension of water but also well antibacterial activity.These properties are beneficial for being as a component of making detergent.

    4 Conclusions

    The work provides economical techniques of synthesizing cationic surfactant with more inexpensive raw materials and more convenient approaches.Hydrothermal approach of preparing OX-CQDs satisfies the demands of green chemical synthesis.OX-CQDs-C12H25prepared in the presence of hydrogen peroxide performs better than that of CQDs-C12H25obtained without hydrogen peroxide.The invented OX-CQDs-C12H25, as a novel CQDs cationic surfactant, owns versatility in fluorescent emission, surface activity and antibiosis.Hence, it is superior to some conventional surfactants with sole function.It is believed that OX-CQDs-C12H25can be as a component of a compounded detergent, in which it exerts the versatility.The fluorescent emission endows function of fluorescent whitening.This may avoid use of organic fluorescence dyes which is advantageous for health of the public such as in paper making.The antibiosis contributes antibacterial function without needing extra addition of bactericide.

    Supporting Information:available free of chargeviathe internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    省部大學(xué)化學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    重型機(jī)械裝備省部共建協(xié)同創(chuàng)新中心簡(jiǎn)介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動(dòng)省部合作項(xiàng)目實(shí)施方案的通知
    4個(gè)涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    《化工學(xué)報(bào)》贊助單位
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻(xiàn)計(jì)量學(xué)研究——以河南大學(xué)為例
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    成年女人在线观看亚洲视频 | 色播亚洲综合网| 亚洲成人久久爱视频| 午夜久久久久精精品| 免费看光身美女| 在线观看av片永久免费下载| 九色成人免费人妻av| 欧美成人一区二区免费高清观看| 丝瓜视频免费看黄片| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 精品一区二区免费观看| 久久久久九九精品影院| 久久久久久久亚洲中文字幕| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲网站| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版 | 免费看av在线观看网站| 麻豆成人av视频| 日韩av不卡免费在线播放| 国产精品一区二区三区四区久久| 国产老妇伦熟女老妇高清| 老女人水多毛片| 网址你懂的国产日韩在线| 美女大奶头视频| 欧美性感艳星| 国产亚洲一区二区精品| 欧美+日韩+精品| 日韩精品青青久久久久久| 国产亚洲午夜精品一区二区久久 | 青春草视频在线免费观看| 精品国产露脸久久av麻豆 | 啦啦啦啦在线视频资源| 熟妇人妻久久中文字幕3abv| 精华霜和精华液先用哪个| 偷拍熟女少妇极品色| 日韩一区二区三区影片| 亚洲国产日韩欧美精品在线观看| 午夜福利在线在线| 噜噜噜噜噜久久久久久91| 麻豆成人午夜福利视频| 一级毛片aaaaaa免费看小| 亚洲电影在线观看av| 久久久久久久久大av| 精品久久久久久久末码| 中文在线观看免费www的网站| 人人妻人人澡人人爽人人夜夜 | 三级毛片av免费| 欧美潮喷喷水| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 国产男女超爽视频在线观看| 亚洲精品成人久久久久久| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影| av卡一久久| 高清毛片免费看| 中国美白少妇内射xxxbb| 黄色配什么色好看| 亚洲国产精品sss在线观看| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 亚洲久久久久久中文字幕| 99久久九九国产精品国产免费| av国产免费在线观看| 久久6这里有精品| 99久国产av精品| 亚洲在久久综合| 国产午夜精品久久久久久一区二区三区| 欧美性猛交╳xxx乱大交人| 99热全是精品| 欧美激情久久久久久爽电影| 亚洲综合色惰| 乱系列少妇在线播放| 午夜免费观看性视频| av网站免费在线观看视频 | 老女人水多毛片| 免费观看在线日韩| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 熟妇人妻不卡中文字幕| 网址你懂的国产日韩在线| 免费av毛片视频| 精品久久久精品久久久| 国产一区有黄有色的免费视频 | 18禁在线无遮挡免费观看视频| 女的被弄到高潮叫床怎么办| 国产男女超爽视频在线观看| 麻豆国产97在线/欧美| 精品人妻熟女av久视频| 亚洲性久久影院| 边亲边吃奶的免费视频| 亚洲精品,欧美精品| 国产免费一级a男人的天堂| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| 国产在视频线在精品| 精品国产露脸久久av麻豆 | 别揉我奶头 嗯啊视频| 色网站视频免费| 国产成人免费观看mmmm| 最近2019中文字幕mv第一页| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 欧美一级a爱片免费观看看| 国产精品综合久久久久久久免费| 日本av手机在线免费观看| 成人亚洲精品av一区二区| 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 人妻系列 视频| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 欧美xxxx黑人xx丫x性爽| 亚洲精品一区蜜桃| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 亚洲人与动物交配视频| 国内精品一区二区在线观看| 久久久久久伊人网av| 在现免费观看毛片| 熟妇人妻久久中文字幕3abv| 亚洲欧美成人综合另类久久久| 亚洲国产最新在线播放| 国产淫语在线视频| 精品人妻视频免费看| 毛片一级片免费看久久久久| 亚洲人成网站高清观看| 黄片无遮挡物在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 只有这里有精品99| videossex国产| 99热这里只有是精品50| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 天堂影院成人在线观看| freevideosex欧美| av国产久精品久网站免费入址| 国产精品麻豆人妻色哟哟久久 | 免费看日本二区| 看十八女毛片水多多多| 国产成人精品婷婷| 国产精品蜜桃在线观看| 亚洲欧美一区二区三区黑人 | 国产成人freesex在线| 久久久成人免费电影| 在线 av 中文字幕| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影| av女优亚洲男人天堂| 97超碰精品成人国产| 男人舔女人下体高潮全视频| 国产淫片久久久久久久久| 国产亚洲精品av在线| 黄片wwwwww| 一本久久精品| 十八禁网站网址无遮挡 | 大又大粗又爽又黄少妇毛片口| 亚洲av国产av综合av卡| 亚洲综合精品二区| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 一本久久精品| 国产成人freesex在线| 97超视频在线观看视频| 国产一级毛片在线| 精品国产一区二区三区久久久樱花 | 一级爰片在线观看| 91av网一区二区| 国产亚洲精品久久久com| 亚洲欧美成人精品一区二区| 亚洲av男天堂| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 看非洲黑人一级黄片| 午夜福利视频1000在线观看| av在线蜜桃| 国产av不卡久久| 青春草国产在线视频| 大香蕉久久网| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| 高清毛片免费看| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件| 午夜福利在线观看吧| 午夜视频国产福利| 美女黄网站色视频| 亚洲精品成人av观看孕妇| 看十八女毛片水多多多| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 人妻少妇偷人精品九色| 九九在线视频观看精品| 18禁在线播放成人免费| 日韩电影二区| 亚洲国产精品sss在线观看| 99久国产av精品国产电影| 亚洲,欧美,日韩| av免费在线看不卡| 国产精品伦人一区二区| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 看黄色毛片网站| 亚洲国产精品专区欧美| 特大巨黑吊av在线直播| 午夜日本视频在线| 高清欧美精品videossex| 国产精品99久久久久久久久| 国产成人福利小说| 国产亚洲av片在线观看秒播厂 | 久久久色成人| av福利片在线观看| 日本爱情动作片www.在线观看| 亚洲av成人精品一区久久| 黄片无遮挡物在线观看| 久久久色成人| 成年版毛片免费区| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 精品久久久久久成人av| 国产黄频视频在线观看| 久久精品久久精品一区二区三区| 啦啦啦韩国在线观看视频| 亚洲精品成人久久久久久| 国产精品一区www在线观看| 国产精品一区二区三区四区免费观看| 一级二级三级毛片免费看| 国产色爽女视频免费观看| 精华霜和精华液先用哪个| 乱系列少妇在线播放| 欧美最新免费一区二区三区| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 国产精品1区2区在线观看.| 中国国产av一级| 极品少妇高潮喷水抽搐| 久久精品夜夜夜夜夜久久蜜豆| 日韩 亚洲 欧美在线| 色网站视频免费| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 天堂√8在线中文| 高清毛片免费看| 国产三级在线视频| 亚洲精品第二区| 亚洲国产日韩欧美精品在线观看| 精华霜和精华液先用哪个| 中国国产av一级| 干丝袜人妻中文字幕| 久久久久国产网址| 婷婷色综合大香蕉| 18禁在线无遮挡免费观看视频| 精品久久久久久成人av| 最近中文字幕2019免费版| 亚州av有码| 最近2019中文字幕mv第一页| 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 97热精品久久久久久| 午夜精品一区二区三区免费看| 纵有疾风起免费观看全集完整版 | 久久人人爽人人片av| 搞女人的毛片| 最新中文字幕久久久久| 91精品伊人久久大香线蕉| 又黄又爽又刺激的免费视频.| 亚洲精品aⅴ在线观看| 欧美另类一区| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 秋霞在线观看毛片| 亚洲精品视频女| 男插女下体视频免费在线播放| 久久精品国产亚洲av涩爱| 精品一区在线观看国产| 成人一区二区视频在线观看| 97超视频在线观看视频| 内地一区二区视频在线| 亚洲精品成人久久久久久| 久久久久性生活片| 日韩av在线免费看完整版不卡| 午夜精品在线福利| 免费观看av网站的网址| 91久久精品国产一区二区成人| 18+在线观看网站| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 日韩中字成人| 亚洲国产成人一精品久久久| 婷婷色综合大香蕉| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 欧美日韩亚洲高清精品| 91aial.com中文字幕在线观看| 国产麻豆成人av免费视频| 我的老师免费观看完整版| 亚洲综合精品二区| 肉色欧美久久久久久久蜜桃 | 午夜福利成人在线免费观看| 哪个播放器可以免费观看大片| 国产麻豆成人av免费视频| 精品熟女少妇av免费看| 成人无遮挡网站| 十八禁网站网址无遮挡 | 人人妻人人澡人人爽人人夜夜 | 亚洲精华国产精华液的使用体验| 2018国产大陆天天弄谢| 亚洲在线观看片| 九九久久精品国产亚洲av麻豆| 久热久热在线精品观看| 深夜a级毛片| 国产精品国产三级国产专区5o| ponron亚洲| 亚洲最大成人手机在线| 三级国产精品欧美在线观看| 婷婷色综合www| 大陆偷拍与自拍| 欧美激情在线99| 91狼人影院| 欧美另类一区| 亚洲欧美成人精品一区二区| av在线天堂中文字幕| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 久久精品熟女亚洲av麻豆精品 | 嘟嘟电影网在线观看| 亚洲欧美精品专区久久| 嘟嘟电影网在线观看| 亚洲成人精品中文字幕电影| 久久99热6这里只有精品| 中文天堂在线官网| 国产av码专区亚洲av| 日日摸夜夜添夜夜爱| 国产午夜精品论理片| 国产精品精品国产色婷婷| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 波多野结衣巨乳人妻| 天堂√8在线中文| 午夜精品一区二区三区免费看| 亚洲精品色激情综合| av在线老鸭窝| 国产男人的电影天堂91| 欧美潮喷喷水| 亚洲精品国产成人久久av| 天堂网av新在线| 免费不卡的大黄色大毛片视频在线观看 | 白带黄色成豆腐渣| 一个人观看的视频www高清免费观看| 一个人看视频在线观看www免费| 午夜亚洲福利在线播放| 欧美激情国产日韩精品一区| 美女xxoo啪啪120秒动态图| 国产又色又爽无遮挡免| 欧美日韩视频高清一区二区三区二| 国产午夜精品论理片| 一级二级三级毛片免费看| 99久久精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 久久久亚洲精品成人影院| 成人av在线播放网站| 永久网站在线| 午夜精品在线福利| 国产乱人视频| 欧美丝袜亚洲另类| 日韩欧美精品v在线| 国产亚洲一区二区精品| 精品久久久久久久久亚洲| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 久久久久久久国产电影| 久久精品久久久久久噜噜老黄| 免费黄网站久久成人精品| 国产不卡一卡二| 中文字幕免费在线视频6| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 亚洲怡红院男人天堂| 丝瓜视频免费看黄片| 国产精品久久久久久精品电影| videos熟女内射| av免费在线看不卡| 欧美潮喷喷水| av在线天堂中文字幕| 久久久久久久久久成人| 一区二区三区四区激情视频| 三级男女做爰猛烈吃奶摸视频| 一区二区三区免费毛片| 身体一侧抽搐| 99热全是精品| 美女主播在线视频| 亚洲不卡免费看| 久久99热这里只有精品18| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件| 麻豆av噜噜一区二区三区| 国产爱豆传媒在线观看| 亚洲精品久久午夜乱码| 亚洲在线观看片| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲网站| 国产一级毛片七仙女欲春2| 两个人视频免费观看高清| 欧美变态另类bdsm刘玥| 日韩欧美三级三区| 欧美成人精品欧美一级黄| 亚洲av中文av极速乱| 亚洲av免费高清在线观看| 一个人看的www免费观看视频| 欧美性感艳星| 欧美潮喷喷水| 国产精品一及| 成人亚洲精品av一区二区| 只有这里有精品99| 国产精品一区www在线观看| 国产高清不卡午夜福利| 一夜夜www| 18+在线观看网站| 又粗又硬又长又爽又黄的视频| 精品人妻一区二区三区麻豆| 国内揄拍国产精品人妻在线| av在线老鸭窝| 国产亚洲最大av| 亚洲无线观看免费| 91久久精品国产一区二区成人| 欧美区成人在线视频| 午夜久久久久精精品| 亚洲18禁久久av| av专区在线播放| 偷拍熟女少妇极品色| 色综合色国产| 午夜福利视频1000在线观看| 亚洲激情五月婷婷啪啪| 一级av片app| 久久久成人免费电影| 成人综合一区亚洲| 国产高清国产精品国产三级 | 中文字幕av在线有码专区| 偷拍熟女少妇极品色| 免费无遮挡裸体视频| 精品久久久久久久末码| 一区二区三区高清视频在线| 婷婷色av中文字幕| 婷婷六月久久综合丁香| 联通29元200g的流量卡| 欧美性猛交╳xxx乱大交人| 欧美不卡视频在线免费观看| 亚洲最大成人手机在线| 国产亚洲5aaaaa淫片| 国产v大片淫在线免费观看| 国产成人91sexporn| 欧美97在线视频| 狂野欧美激情性xxxx在线观看| 看免费成人av毛片| 高清欧美精品videossex| 亚洲激情五月婷婷啪啪| 亚洲av电影不卡..在线观看| xxx大片免费视频| 国产在线男女| 欧美激情在线99| 免费观看av网站的网址| 国产视频内射| 国产成人91sexporn| 国产欧美日韩精品一区二区| 啦啦啦中文免费视频观看日本| 三级男女做爰猛烈吃奶摸视频| 麻豆成人午夜福利视频| 哪个播放器可以免费观看大片| 中文在线观看免费www的网站| 国国产精品蜜臀av免费| 国产毛片a区久久久久| 国语对白做爰xxxⅹ性视频网站| 久久久亚洲精品成人影院| 国产v大片淫在线免费观看| 免费电影在线观看免费观看| 免费av观看视频| 欧美激情在线99| 亚洲欧美一区二区三区黑人 | 99久久精品热视频| 国产伦精品一区二区三区四那| 国产黄片视频在线免费观看| 高清午夜精品一区二区三区| 秋霞在线观看毛片| 久久99热这里只有精品18| 国产欧美日韩精品一区二区| 欧美激情在线99| 精品一区二区三区人妻视频| 一级av片app| 97超视频在线观看视频| 91狼人影院| 性色avwww在线观看| 亚洲精品亚洲一区二区| 别揉我奶头 嗯啊视频| 亚洲欧洲日产国产| 白带黄色成豆腐渣| 精品人妻熟女av久视频| 日韩精品有码人妻一区| 大又大粗又爽又黄少妇毛片口| 亚洲av一区综合| 肉色欧美久久久久久久蜜桃 | 欧美激情国产日韩精品一区| 高清欧美精品videossex| 亚洲精品,欧美精品| 极品少妇高潮喷水抽搐| 乱人视频在线观看| 三级男女做爰猛烈吃奶摸视频| 最近的中文字幕免费完整| 国产一区二区在线观看日韩| 夜夜爽夜夜爽视频| 国产黄色小视频在线观看| 免费观看在线日韩| 超碰97精品在线观看| 亚洲一级一片aⅴ在线观看| 日日摸夜夜添夜夜添av毛片| 嫩草影院入口| 亚洲精品亚洲一区二区| 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 最近中文字幕2019免费版| 久久精品国产亚洲网站| 国产精品一及| 国产伦在线观看视频一区| 亚洲国产最新在线播放| 免费看a级黄色片| 国产 一区 欧美 日韩| 99九九线精品视频在线观看视频| 夜夜看夜夜爽夜夜摸| a级毛色黄片| 丰满人妻一区二区三区视频av| kizo精华| 午夜免费激情av| 欧美三级亚洲精品| 久热久热在线精品观看| 亚洲内射少妇av| 成年版毛片免费区| 97精品久久久久久久久久精品| 亚洲伊人久久精品综合| 亚洲欧美成人精品一区二区| 婷婷色综合www| 精品人妻视频免费看| 国产色婷婷99| 卡戴珊不雅视频在线播放| 91午夜精品亚洲一区二区三区| 久久久久久久久久久丰满| 最近视频中文字幕2019在线8| av天堂中文字幕网| 国产视频内射| 久久久久久久久大av| 国产午夜精品论理片| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 日韩一区二区视频免费看| 亚洲高清免费不卡视频| 国产精品国产三级专区第一集| 精品久久久久久久久久久久久| 欧美性感艳星| 国产精品一区二区性色av| 亚洲人成网站在线播| 一级毛片电影观看| 熟女电影av网| 极品教师在线视频| 一边亲一边摸免费视频| 国产黄片美女视频| 国产视频内射| 777米奇影视久久| 免费无遮挡裸体视频| 韩国av在线不卡| 亚洲av免费在线观看| 免费大片黄手机在线观看| 51国产日韩欧美| 亚洲国产精品专区欧美| 国产成人午夜福利电影在线观看| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 少妇的逼水好多| 婷婷色综合www| 日韩中字成人| 免费看不卡的av| 午夜福利视频1000在线观看| 3wmmmm亚洲av在线观看| 国产又色又爽无遮挡免| 亚洲最大成人手机在线| 在线观看一区二区三区| 国产精品不卡视频一区二区| videossex国产| 深夜a级毛片| 国产激情偷乱视频一区二区| 国产精品久久视频播放| 国产精品福利在线免费观看| 天堂网av新在线| 六月丁香七月| 亚洲欧美精品专区久久| 国产欧美日韩精品一区二区| 精品久久久精品久久久| 婷婷色综合大香蕉| kizo精华| av女优亚洲男人天堂|