• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DeepPurpose-based drug discovery in chondrosarcoma

    2023-01-13 02:10:42JianruiLiMingyueShiZhiweiChenYuyanPan

    Jianrui Li ,Mingyue Shi ,Zhiwei Chen ,Yuyan Pan

    a Department of Plastic and Reconstructive Surgery,Zhongshan Hospital,Fudan University,Shanghai 200032,China

    b Big Data and Artificial Intelligence Center,Zhongshan Hospital,Fudan University,Shanghai 200032,China

    Keywords:Chondrosarcoma Text mining DeepPurpose Drug therapy Drug-target interaction

    ABSTRACT Background:Chondrosarcoma(CS)is the second most common primary bone tumor,accounting for approximately 30% of all malignant bone tumors.Unfortunately,the efficacy of currently available drug therapies is limited.Therefore,this study aimed to explore drug therapies for CS using novel computational methods.Methods:In this study,text mining,GeneCodis STRING,and Cytoscape were used to identify genes closely related to CS,and the Drug Gene Interaction Database(DGIdb)was used to select drugs targeting the genes.Drug-target interaction prediction was performed using DeepPurpose,to finally obtain candidate drugs with the highest predicted binding affinities.Results:Text-mining searches identified 168 genes related to CS.Gene enrichment and protein-protein interaction analysis generated 14 genes representing 10 pathways using GeneCodis,STRING,and Cytoscape.Seventy drugs targeting genes closely related to CS were analyzed using DGIdb.DeepPurpose recommended 25 drugs,including integrin beta 3 inhibitors,hypoxia-inducible factor 1 alpha inhibitors,E1A binding protein P300 inhibitors,vascular endothelial growth factor A inhibitors,AKT1 inhibitors,tumor necrosis factor inhibitors,transforming growth factor beta 1 inhibitors,interleukin 6 inhibitors,mitogen-activated protein kinase 1 inhibitors,and protein tyrosine kinase inhibitors.Conclusion: Drug discovery using in silico text mining and DeepPurpose may be an effective method to explore drugs targeting genes related to CS.

    1.Introduction

    Chondrosarcoma(CS),a group of heterogeneous,primary malignant tumors of the bone characterized by hyaline cartilaginous neoplastic tissue,is the second most common primary bone tumor,accounting for approximately 30% of malignant bone tumors.1,2Currently,the main therapeutic methods for CS,such as surgery and chemotherapy,are unsatisfactory.3However,research on drug therapy remains limited,and adjuvant/neo-adjuvant therapy of CS has developed slowly,resulting in no significant decrease in the recurrence and metastasis rate of CS.

    Traditional drug research and discovery(R&D)has the disadvantages of high cost and time consumption,while the combination of artificial intelligence and data mining has become a powerful alternative strategy to improve drug R&D efficiency.4Recently,deep learning technology has been proven to have the ability to predict compound-protein interactions on a large scale using only limited data,and has subsequently been successfully applied to new drug development,greatly shortening the associated time and cost.5,6DeepPurpose is a deep learning framework developed to predict the affinity between drugs and targets.7This framework utilizes a variety of vector embedding methods through an encoding-decoding architecture to convert sequence-based sparse features into dense vector features,realizing automatic extraction of drug and target features through a variety of deep neural networks,and finally achieving the learning of affinity prediction through a connected network.DeepPurpose integrates a variety of the latest deep neural network models and provides 15 models pre-trained on DAVIS,BindingDB-Kd,and kinase inhibitor bioactivity(KIBA)datasets.8-10The prediction results are output as the score of the binding affinity between the drug and the molecule.Therefore,thisin silicostudy focused on drugs targeting genes related to CS.

    Target genes that were highly related to CS were identified viain silicotext mining.DeepPurpose was used to predict the drug-target interactions(DTI)and generate a ranked drug list.Finally,drugs with the highest predicted binding scores were obtained.We hypothesized that drug discovery usingin silicotext mining and DeepPurpose may be an effective method to explore drugs targeting genes related to CS.

    2.Methods

    2.1.Text mining

    Pubmed2ensembl (http://pubmed2ensembl.ls.manchester.ac.uk/)was used for text mining.11A query with the concept“chondrosarcoma”was performed,with “Ensembl Gene ID” and “Associated Gene Name”selected under attributes.The “Search for PubMed IDs” and “filter on Entrez:PMID”drop-down menus were chosen in the search of the query,which returned a list of genes used in the next step.

    2.2.Biological process and pathway analysis

    GeneCodis (http://genecodis.cnb.csic.es/) was used for enrichment analysis of the genes related to CS.12Genes identified in the previous step were analyzed using Gene Ontology (GO) biological process categories,and the most significantly enriched biological processes were selected.Genes with selected annotations were then annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.The pathways most relevant to CS pathology were selected.Genes in these pathways were selected for further analysis.

    2.3.Protein-protein interaction network

    The STRING database(http://string-db.org)was used to simulate the protein-protein interaction (PPI) network of the target genes.13In this study,the confidence score was set to the highest score(0.900)in order to screen out genes with strong interaction.Next,Cytoscape software was applied to analyze the interaction network.14CentiScaPe,an app that calculates network parameters,was used to analyze the topological characteristics of each node.“Degree”and“Betweenness”were chosen as parameters to select key genes.A node for which the degree and betweenness values were greater than or equal to the mean value was selected as the key node for further analysis.

    2.4.Drug-gene interactions

    The Drug Gene Interaction Database (DGIdb) (http://www.dgidb.org) was used to explore potential drug targets interacting with the genes.15The final list of genes was put into the input set.The query returned all the drug hits and provided the related information,including interaction type,sources,PubMed Unique Identifiers (PMIDs),and scores.

    2.5.DeepPurpose

    DeepPurpose uses the primary structural sequence of drugs and targets as inputs.The primary structure sequences of the drugs and targets were represented by the simplified molecular-input line-entry system(SMILES) and amino acid sequence pair,respectively.The binding affinity of each drug and target was predicted using 15 pretrained models provided by DeepPurpose.The threshold of the DAVIS and BindingDB dataset models was set to 7.0,while the threshold of the KIBA dataset model was set to 12.1.8-10

    3.Results

    3.1.Results of text mining,biological process,and pathway analysis

    Fig.1 shows the process used to explore potential drugs for CS;in summary,a text mining search revealed 168 genes related to CS(Fig.2).To ensure that only the most enriched biological processes were selected,aP-value cutoff ofP=1.00E-8 was set for the analysis of enriched GO biological process annotations,resulting in 14 sets of annotations containing 83 genes (Table 1).The three most enriched biological process annotations were:(1)“extracellular matrix organization”(P=6.16E-30);(2) “skeletal system development” (P=8.55E-18);(3) “proteolysis,extracellular matrix organization,collagen catabolic process”(P=7.15E-14).In the analysis of enriched KEGG pathway annotations,theP-value cutoff was set atP<1.00E-10,which yielded 11 pathways containing 54 genes (Table 2).The three most significantly enriched pathways were: (1) “proteoglycans in cancer” (P=3.08E-19);(2)“pathways in cancer”(P=7.36E-15);and(3)“MAPK signaling pathway”(P=6.57E-13),while other highly enriched pathways included “osteoclast differentiation,” “PI3K-akt signaling pathway,” and “cytokinecytokine receptor interaction.”

    Fig. 1.Flowchart showing an overview of the data mining process.Text mining and Genecodis were performed to identify genes associated with chondrosarcoma.Protein-protein interaction analysis was performed with STRING and Cytoscape.The Drug Gene Interaction Database(DGIdb) was used to select drugs targeting the genes highly related to chondrosarcoma.DeepPurpose was then used to select candidate drugs based on gene-target interaction.

    Table 1 Summary of the GO biological process gene set enrichment analysis.

    Table 2 Summary of KEGG process gene set enrichment analysis.

    3.2.Results of protein-protein interaction analysis

    STRING was used to construct the PPI network of the target genes(Fig.3).Cytoscape revealed a network of 54 nodes (Fig.4),while CentiScaPe showed that the average degree and betweenness were 71.49 and 7.05,respectively.A total of 134 genes were selected based on the criterion that the nodes for which the degree and betweenness were both greater than or equal to the mean were the key nodes.The final gene list included the genes ITGB3,ITGAV,ITGB1,EP300,CREBBP,HIF1A,VEGFA,AKT1,TNF,TGFβ-1,MMP9,IL-6,MAPK1,and PTK2.

    Fig. 2.Summary of data mining results.(A) Text mining: text mining was performed using the search term“chondrosarcoma”in pubmed2ensembl,yielding 269 genes in total,including 168 genes after deleting duplicates.(B) Gene set enrichment: 83 and 54 genes were enriched using GO biological processes and KEGG pathway analysis in GeneCodis,respectively.(C) Protein-protein analysis: 14 genes were selected using STRING and Cytoscape.(D) Drug-gene interactions: 70 drugs were selected with DGIdb.(E)Drug-target interaction: 25 candidate drugs with highest predicted binding affinity were finally derived.GO,Gene Ontology;KEGG,Kyoto Encyclopedia of Genes and Genomes;DGIdb,Drug Gene Interaction Database.

    Fig. 3.The protein-protein highest (confidence score,0.900)interaction network of the targeted genes constructed with STRING.Network nodes represent proteins and different colored edges represent protein-protein associations.

    Fig. 4.The protein-protein interaction network of the targeted genes constructed using Cytoscape.Network nodes represent proteins and edges represent proteinprotein associations.

    3.3.Results of drug-gene interactions

    Using the final list of 14 genes identified as potential targets in the drug-gene interaction analysis,a list of 70 drugs was initially selected as possible targets for drug treatment for CS(Supplementary Table 1).These drugs were divided into integrin protein inhibitors,E1A binding protein P300 (EP300) inhibitors,hypoxia-inducible factor 1 alpha (HIF1A) inhibitors,vascular endothelial growth factor A(VEGFA)inhibitors,AKT1 inhibitors,tumor necrosis factor (TNF) inhibitors,transforming growth factor beta 1 (TGFB1) inhibitors,matrix metalloproteinase 9 (MMP9)inhibitors,interleukin 6 (IL-6) inhibitors,mitogen-activated protein kinase 1(MAPK1)inhibitors,and tyrosine kinase(PTK2)inhibitors.

    3.4.Results of DeepPurpose

    Drugs in the SMILES format were selected for the DeepPurpose analysis.Subsequently,each pre-trained model in DeepPurpose generated a ranked list showing the predicted binding affinity between drugs and molecules.Drugs with binding affinity scores higher than the threshold were selected as potential treatments for CS(Table 3).The final drug list comprised 25 drugs,including inhibitors of ITGB3,HIF1A,EP300,VEGFA,AKT1,TNF,TGFB1,IL-6,MAPK1,and PTK2.

    Table 3 Identification of drug candidates for chondrosarcoma by DeepPurpose analysis.

    4.Discussion

    CS is a common cartilage-forming tumor that accounts for approximately one-third of all malignant bone carcinomas.16Unfortunately,current therapeutic approaches have limited effectiveness.In this study,we combined text mining and deep learning technologies to explore novel drugs for CS.In particular,DeepPurpose,a powerful toolkit to predict promising drugs to treat various diseases,was a useful tool for ranking candidate drugs targeting relevant genes and selecting the 25 most likely drugs for CS based on DTI analysis.As an encoding-decoding framework,DeepPurpose provides the five encoders we used for drug molecules,namely,Morgan,Daylight,convolutional neural network(CNN),transformer encoders,and message passing neural network(MPNN),as well as the two encoders we used for protein targets,including amino acid composition(AAC)and CNN.With a combination of different encoders and the three datasets mentioned above (DAVIS,BindingDB,and KIBA),we obtained 15 pre-trained models on Deep-Purpose,thus obtaining 15 binding affinity score predictions.Here,we briefly introduce the 25 drugs selected using text mining and DeepPurpose.

    Among these candidate drugs,there were eight drugs targeting AKT1.The PI3K/AKT/mTOR pathway is frequently activated to promote tumorigenesis in CS,which greatly accelerates tumor aggression and inhibits tumor-associated apoptosis in cells where AKT serves as an oncogene.17Among the eight listed drugs,sirolimus has been applied to patients with CS,whereas everolimus and paclitaxel have been approved for various solid tumors.18,19The others,have shown antitumor ability,but are still under clinical testing.The MAPK pathway is a major oncogenic pathway in human cancer and is interlinked with the PI3K/AKT pathway,which mediates tumor proliferation and invasion through co-regulated cancer-associated proteins.Derivatives of irofulven have been found to display significant antitumor activity,and clinical trials of refametinib for various solid tumors have already been proven to have positive effects on tumor growth.20Therefore,inhibition of the MAPK pathway may present a selective treatment option for CS.

    Hypoxia is a critical characteristic of the microenvironment of solid tumors.HIF-1α is a key molecular mediator that can be activated under hypoxia,as well as a proangiogenic transcription factor which can induce the expression of VEGF.21HIF-1α has been identified as a marker of malignancy and prognosis in CS by regulating cell metabolism,apoptosis,and neo-angiogenesis.22As an inhibitor of HIF-1α,2-methoxyestradiol has previously been tested for the treatment of hypertension,kidney injury,and CS for its antitumor effect.23Notably,sunitinib,another inhibitor of HIF-1α,has been approved for the treatment of several solid tumors,and has acquired prospective results in tests for CS.24-26

    Angiogenesis is also a critical step in tumor proliferation,invasion,and metastasis.VEGFA is a key angiogenic factor that promotes angiogenesis and metastasis in CS patients.The expression of VEGFA has been found to be associated with the clinical stages of CS.27Among our list,vandetanib has been applied to treat cancers such as thyroid cancers and non-small lung cell carcinomas,but has not been formally evaluated in the setting of CS.28

    Cytokines produced in the tumor microenvironment play important roles in tumor progression.Tumor cells modify their bone microenvironment by secreting osteoclast-activating factors such as the cytokines TNF and IL-6.There is evidence to show that TNF-α enhances the migration of CS cells.29As TNF inhibitors,midostaurin is a substantial drug for hematologic malignancies,and miltefosine is a classic treatment for leishmaniasis.30,31Arsenic trioxide,an IL-6 inhibitor,evolved from an ancient Chinese medicine to a novel potent antitumor drug for acute promyelocytic leukemia and specific solid tumors.32These inhibitors require further experimental research in the treatment of CS.

    Integrin beta 3(ITGB3)is a transmembrane receptor of integrin that participates in tumor invasion and metastasis by activating the PTK2 and AKT signaling pathways.33Cilengitide,an inhibitor of the integrins αvβ3 and αvβ5,targeting integrin proteins and interacting in signaling pathways responsible for cancer metabolism,has shown promise in patients with myeloma and advanced solid tumors.34Previous studies have shown that TGF-β1 contributes to the migration of CS cells.35The TGF-β1 inhibitors tretinoin and fenretinide are currently under clinical trials for cancers,such as leukemia.36One drug in our list,garcinol,is an effective EP300 inhibitor which shows anti-neoplastic effects on cancer cell lines and experimental animal models,37,38and may be considered as a candidate for anti-cancer drugs;however,further studies are needed to ascertain its tolerability,efficacy,and safety.

    The potential of machine learning models to predict the binding affinity between new drugs and targets has been confirmed in various studies,including the study of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),39-41which has provided a method for drug R&D.DeepPurpose provides the mean value,maximum value,and mean value of the mean-maximum value to realize ensemble learning based on multiple models.However,this method may not provide the best predictions.The reasons for the different models outputting different predictions are as follows.First,the number of training samples may be insufficient.The advantage of deep learning lies in the large number of parameters and multilayer structure,which promote the feature presentation of models.However,a complicated structure may result in simultaneous overfitting of the models.Therefore,a large number and a wide variety of training samples must be ensured to promote the generalization of models and to diminish overfitting.Second,because the representation formats of SMILES have not been unified,models may not be able to extract the sequence feature when the representation formats of training samples are different from those of predicting samples,leading to inaccurate prediction.

    5.Conclusion

    Our study demonstrated that drug discovery usingin silicotext mining and DeepPurpose may be an effective method to explore drugs targeting genes highly related to CS.Our study provides a theoretical basis for the development of novel targeted therapies for CS.

    Ethics approval and consent for participate

    Not applicable.

    Consent for publication

    All the authors have consented for the publication.

    Authors’ contributions

    Li J: Writing-Original draft.Shi M: Writing-Original draft.Chen Z:Data curation,Writing-Review and editing.Pan Y: Writing-Review and editing.

    Competing interests

    The authors declare that they have no competing interests.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China(grant no.82102333).

    Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.cjprs.2022.10.004.

    国语自产精品视频在线第100页| 国产一区在线观看成人免费| 亚洲精品粉嫩美女一区| 成在线人永久免费视频| 精品欧美国产一区二区三| 蜜桃久久精品国产亚洲av| 欧美日韩国产亚洲二区| 日韩成人在线观看一区二区三区| 亚洲精品美女久久久久99蜜臀| 色精品久久人妻99蜜桃| svipshipincom国产片| 免费看光身美女| 欧美+亚洲+日韩+国产| www.999成人在线观看| 母亲3免费完整高清在线观看| 欧美中文日本在线观看视频| 波多野结衣巨乳人妻| 我的老师免费观看完整版| 国产精品av视频在线免费观看| 国产伦人伦偷精品视频| 成人鲁丝片一二三区免费| 脱女人内裤的视频| 国产午夜精品论理片| 熟妇人妻久久中文字幕3abv| 特级一级黄色大片| 国产精品1区2区在线观看.| 日本黄色视频三级网站网址| 日韩免费av在线播放| 午夜a级毛片| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 成人鲁丝片一二三区免费| 久久久久免费精品人妻一区二区| 亚洲欧美日韩无卡精品| 日本免费a在线| 亚洲人成伊人成综合网2020| 免费在线观看视频国产中文字幕亚洲| 日本五十路高清| 90打野战视频偷拍视频| 国产成人av教育| 窝窝影院91人妻| 我的老师免费观看完整版| 亚洲国产欧洲综合997久久,| 黄色片一级片一级黄色片| 亚洲男人的天堂狠狠| 国产精品一区二区免费欧美| 激情在线观看视频在线高清| 亚洲精品在线美女| 日韩欧美三级三区| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 美女免费视频网站| 国产精品久久视频播放| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产| 免费高清视频大片| 非洲黑人性xxxx精品又粗又长| 看片在线看免费视频| 一区二区三区高清视频在线| 中文字幕熟女人妻在线| xxxwww97欧美| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| 一夜夜www| 99久国产av精品| 亚洲国产精品合色在线| 宅男免费午夜| 欧美日韩福利视频一区二区| 香蕉久久夜色| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人 | 麻豆av在线久日| 亚洲欧美激情综合另类| 首页视频小说图片口味搜索| 色尼玛亚洲综合影院| 国产伦精品一区二区三区四那| 免费看光身美女| ponron亚洲| avwww免费| 亚洲无线在线观看| 桃红色精品国产亚洲av| 国产精品亚洲av一区麻豆| xxx96com| 99国产精品一区二区三区| 国内精品美女久久久久久| 国产av在哪里看| 国产真人三级小视频在线观看| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全免费视频| 欧美日韩一级在线毛片| 日韩大尺度精品在线看网址| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 18禁国产床啪视频网站| 麻豆国产av国片精品| 国产伦精品一区二区三区四那| 亚洲精品在线观看二区| 国产精品av久久久久免费| 欧美黄色淫秽网站| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 国产97色在线日韩免费| 国产av一区在线观看免费| 熟妇人妻久久中文字幕3abv| 亚洲美女黄片视频| 国产成人福利小说| 99riav亚洲国产免费| 色av中文字幕| 美女被艹到高潮喷水动态| 日本免费一区二区三区高清不卡| 老汉色av国产亚洲站长工具| 日韩有码中文字幕| 亚洲av成人精品一区久久| 久久精品91蜜桃| 久久精品aⅴ一区二区三区四区| 久久久国产精品麻豆| 丝袜人妻中文字幕| 久久久国产成人精品二区| 亚洲成人中文字幕在线播放| 国产三级黄色录像| 麻豆av在线久日| 国产成人av激情在线播放| 久久精品人妻少妇| 母亲3免费完整高清在线观看| 最近最新中文字幕大全电影3| 精品国产亚洲在线| 91av网站免费观看| 观看免费一级毛片| 久久人人精品亚洲av| 成人午夜高清在线视频| 午夜精品一区二区三区免费看| 国产高清视频在线播放一区| 久久久久久久精品吃奶| 丁香六月欧美| avwww免费| 国产亚洲精品久久久com| 99国产精品99久久久久| 热99在线观看视频| 午夜激情福利司机影院| 在线a可以看的网站| 波多野结衣高清作品| 精品一区二区三区四区五区乱码| 黄色成人免费大全| 国产三级黄色录像| 丰满人妻熟妇乱又伦精品不卡| 黄色 视频免费看| 舔av片在线| 熟女少妇亚洲综合色aaa.| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 国产精品久久电影中文字幕| 91字幕亚洲| 午夜亚洲福利在线播放| 日韩大尺度精品在线看网址| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁人妻一区二区| 小蜜桃在线观看免费完整版高清| 国产精品av视频在线免费观看| 国产欧美日韩一区二区精品| 日韩精品中文字幕看吧| 国产av不卡久久| 两人在一起打扑克的视频| 免费无遮挡裸体视频| 亚洲av成人av| 狂野欧美激情性xxxx| 在线a可以看的网站| 国产精品日韩av在线免费观看| 久久草成人影院| 在线观看免费视频日本深夜| 香蕉丝袜av| www.熟女人妻精品国产| 最好的美女福利视频网| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 18禁裸乳无遮挡免费网站照片| 一区二区三区国产精品乱码| 久久精品国产清高在天天线| e午夜精品久久久久久久| 国语自产精品视频在线第100页| АⅤ资源中文在线天堂| 日韩欧美在线二视频| 每晚都被弄得嗷嗷叫到高潮| 日本 欧美在线| 美女被艹到高潮喷水动态| 成人三级黄色视频| 熟女人妻精品中文字幕| 黄色成人免费大全| 亚洲国产欧美人成| 伦理电影免费视频| 99国产极品粉嫩在线观看| а√天堂www在线а√下载| av黄色大香蕉| av中文乱码字幕在线| 亚洲精品久久国产高清桃花| 国产精品乱码一区二三区的特点| 久久精品综合一区二区三区| 国产激情久久老熟女| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 夜夜躁狠狠躁天天躁| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频| 免费在线观看视频国产中文字幕亚洲| 久久精品综合一区二区三区| xxx96com| 久久精品国产亚洲av香蕉五月| 女警被强在线播放| 国产精品久久久久久久电影 | 午夜福利在线观看吧| 一区二区三区国产精品乱码| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 此物有八面人人有两片| 两性夫妻黄色片| 无限看片的www在线观看| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 国产一级毛片七仙女欲春2| 一夜夜www| 亚洲 欧美一区二区三区| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 日韩欧美 国产精品| 亚洲av熟女| 国产激情欧美一区二区| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| a在线观看视频网站| 国产伦在线观看视频一区| 国产精品一区二区三区四区久久| 亚洲欧美精品综合久久99| 免费在线观看影片大全网站| 桃红色精品国产亚洲av| 一个人看的www免费观看视频| 亚洲无线在线观看| 亚洲 欧美一区二区三区| 精品国产三级普通话版| 国产v大片淫在线免费观看| 一区二区三区高清视频在线| 丝袜人妻中文字幕| 精品福利观看| 岛国在线免费视频观看| 亚洲无线观看免费| 亚洲中文av在线| svipshipincom国产片| 女人高潮潮喷娇喘18禁视频| 99久久国产精品久久久| 欧美三级亚洲精品| 夜夜爽天天搞| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 国产精品 欧美亚洲| 嫩草影视91久久| a级毛片在线看网站| 欧美日本视频| 国产三级黄色录像| 中文字幕久久专区| 日韩欧美三级三区| 亚洲欧洲精品一区二区精品久久久| 国产野战对白在线观看| 免费在线观看成人毛片| 久久久久久九九精品二区国产| www.www免费av| 免费在线观看视频国产中文字幕亚洲| 亚洲中文av在线| 观看免费一级毛片| 久久天堂一区二区三区四区| 99久国产av精品| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频| 亚洲欧美日韩东京热| 亚洲精品国产精品久久久不卡| 精品久久久久久久久久久久久| 国产成人系列免费观看| 国产亚洲欧美98| 国产高清视频在线播放一区| 好男人在线观看高清免费视频| 99国产精品一区二区蜜桃av| 亚洲欧美日韩东京热| a级毛片a级免费在线| 久久久久久久久免费视频了| 国产高清激情床上av| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 亚洲欧美日韩高清专用| 日本黄大片高清| 中亚洲国语对白在线视频| 免费在线观看视频国产中文字幕亚洲| 91av网站免费观看| 无限看片的www在线观看| 亚洲av日韩精品久久久久久密| 真实男女啪啪啪动态图| 91麻豆精品激情在线观看国产| 人妻久久中文字幕网| 精品人妻1区二区| 国产淫片久久久久久久久 | 特大巨黑吊av在线直播| 97人妻精品一区二区三区麻豆| 在线免费观看不下载黄p国产 | 99久久精品国产亚洲精品| 黄色 视频免费看| 一本久久中文字幕| 全区人妻精品视频| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看| a级毛片a级免费在线| 成人一区二区视频在线观看| 亚洲国产看品久久| 99在线视频只有这里精品首页| www日本在线高清视频| 精品乱码久久久久久99久播| x7x7x7水蜜桃| 亚洲熟女毛片儿| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 午夜两性在线视频| 欧美一区二区国产精品久久精品| 亚洲第一欧美日韩一区二区三区| 99视频精品全部免费 在线 | 波多野结衣巨乳人妻| avwww免费| 最近在线观看免费完整版| 特级一级黄色大片| 岛国视频午夜一区免费看| 中文字幕精品亚洲无线码一区| 亚洲国产精品合色在线| 亚洲精品色激情综合| 亚洲成a人片在线一区二区| 免费av不卡在线播放| 床上黄色一级片| 婷婷丁香在线五月| 午夜福利在线观看免费完整高清在 | 亚洲成人精品中文字幕电影| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 三级男女做爰猛烈吃奶摸视频| 岛国视频午夜一区免费看| 亚洲五月天丁香| 99热这里只有精品一区 | 国产精品精品国产色婷婷| 久久人妻av系列| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看| 熟妇人妻久久中文字幕3abv| 午夜免费观看网址| 亚洲人与动物交配视频| 成人国产综合亚洲| 久久精品影院6| 欧美一级毛片孕妇| 三级国产精品欧美在线观看 | 国产熟女xx| 久久99热这里只有精品18| 亚洲欧美日韩高清专用| 欧美绝顶高潮抽搐喷水| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 国产精品影院久久| 中亚洲国语对白在线视频| 啦啦啦观看免费观看视频高清| 丰满人妻一区二区三区视频av | 一级毛片高清免费大全| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 18禁美女被吸乳视频| 熟妇人妻久久中文字幕3abv| 国产成人精品久久二区二区91| 757午夜福利合集在线观看| 日本a在线网址| 欧美精品啪啪一区二区三区| 成人午夜高清在线视频| 亚洲专区国产一区二区| 午夜福利视频1000在线观看| 日韩欧美 国产精品| 久99久视频精品免费| ponron亚洲| 18禁黄网站禁片午夜丰满| 欧美+亚洲+日韩+国产| 午夜激情福利司机影院| 无遮挡黄片免费观看| 女人被狂操c到高潮| 97人妻精品一区二区三区麻豆| 99久久综合精品五月天人人| 男女做爰动态图高潮gif福利片| www.熟女人妻精品国产| 亚洲18禁久久av| 国产探花在线观看一区二区| 九九热线精品视视频播放| 亚洲国产欧美网| 欧美性猛交╳xxx乱大交人| 亚洲专区字幕在线| 久久亚洲真实| 午夜两性在线视频| 在线观看日韩欧美| 午夜免费成人在线视频| 老司机福利观看| 草草在线视频免费看| 天堂影院成人在线观看| 十八禁网站免费在线| 免费一级毛片在线播放高清视频| 亚洲性夜色夜夜综合| 亚洲无线观看免费| 99国产精品一区二区蜜桃av| 国产亚洲精品久久久久久毛片| 嫁个100分男人电影在线观看| 999久久久精品免费观看国产| 久久久国产成人免费| 日本免费一区二区三区高清不卡| 成年免费大片在线观看| av欧美777| 日韩欧美国产在线观看| 九色成人免费人妻av| 亚洲av片天天在线观看| 欧美成人性av电影在线观看| 欧美不卡视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 熟女电影av网| 午夜精品久久久久久毛片777| 日本免费一区二区三区高清不卡| 亚洲一区高清亚洲精品| 热99在线观看视频| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| 91九色精品人成在线观看| 黄频高清免费视频| 黄色日韩在线| 99在线视频只有这里精品首页| 嫩草影视91久久| 国产精品亚洲av一区麻豆| 少妇丰满av| 亚洲欧洲精品一区二区精品久久久| 国产成年人精品一区二区| 国产av麻豆久久久久久久| 亚洲精品在线美女| 久99久视频精品免费| 桃红色精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 国产精品一区二区三区四区久久| 人人妻人人看人人澡| 99国产综合亚洲精品| 超碰成人久久| 欧美xxxx黑人xx丫x性爽| 久久精品91蜜桃| bbb黄色大片| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲av免费在线观看| 小蜜桃在线观看免费完整版高清| 亚洲欧美一区二区三区黑人| 在线观看免费视频日本深夜| 国产美女午夜福利| av国产免费在线观看| 俄罗斯特黄特色一大片| 国内精品久久久久精免费| 色综合站精品国产| 又黄又爽又免费观看的视频| 俺也久久电影网| 成人av一区二区三区在线看| 美女高潮的动态| 啦啦啦免费观看视频1| 亚洲第一电影网av| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 亚洲欧美日韩卡通动漫| 精品一区二区三区视频在线观看免费| 三级毛片av免费| 亚洲国产精品sss在线观看| 亚洲国产精品久久男人天堂| 久久久久久久久久黄片| 波多野结衣巨乳人妻| 香蕉丝袜av| 亚洲av五月六月丁香网| 给我免费播放毛片高清在线观看| 999久久久国产精品视频| 亚洲欧美日韩高清专用| 动漫黄色视频在线观看| 成人无遮挡网站| 亚洲精品乱码久久久v下载方式 | 国产人伦9x9x在线观看| 国产精品久久久av美女十八| 三级毛片av免费| 亚洲中文字幕一区二区三区有码在线看 | 很黄的视频免费| 国内少妇人妻偷人精品xxx网站 | 国产午夜福利久久久久久| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 制服丝袜大香蕉在线| 欧美日本视频| 一个人免费在线观看的高清视频| 99热精品在线国产| 99精品欧美一区二区三区四区| 高清在线国产一区| 久久精品国产亚洲av香蕉五月| 91麻豆av在线| 精品久久久久久,| 夜夜夜夜夜久久久久| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 中国美女看黄片| 免费无遮挡裸体视频| 亚洲欧美一区二区三区黑人| 国产亚洲精品一区二区www| or卡值多少钱| 一级毛片高清免费大全| 成年女人永久免费观看视频| 99精品在免费线老司机午夜| 亚洲熟妇熟女久久| 啦啦啦观看免费观看视频高清| 岛国视频午夜一区免费看| 久久久久精品国产欧美久久久| av欧美777| 成熟少妇高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美98| 免费看a级黄色片| av片东京热男人的天堂| 国产av在哪里看| av片东京热男人的天堂| 亚洲精品在线观看二区| 亚洲人成伊人成综合网2020| 久久欧美精品欧美久久欧美| 狂野欧美白嫩少妇大欣赏| 亚洲 国产 在线| 黄色片一级片一级黄色片| 嫩草影视91久久| 一进一出抽搐动态| 好男人电影高清在线观看| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| av女优亚洲男人天堂 | 国产亚洲av嫩草精品影院| 中文亚洲av片在线观看爽| 俺也久久电影网| 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 欧美乱色亚洲激情| 男女之事视频高清在线观看| 无限看片的www在线观看| 51午夜福利影视在线观看| 久久久精品欧美日韩精品| 日日夜夜操网爽| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 天堂√8在线中文| 欧美最黄视频在线播放免费| 亚洲av成人av| 99久久精品一区二区三区| 亚洲无线在线观看| 欧美日本视频| 免费观看人在逋| 成人高潮视频无遮挡免费网站| 母亲3免费完整高清在线观看| 在线a可以看的网站| 99在线视频只有这里精品首页| 国产一区在线观看成人免费| 日日摸夜夜添夜夜添小说| 国产精品 国内视频| 久久久久亚洲av毛片大全| 国产人伦9x9x在线观看| 91av网站免费观看| 我的老师免费观看完整版| 亚洲国产中文字幕在线视频| 欧美性猛交黑人性爽| 亚洲人成网站在线播放欧美日韩| e午夜精品久久久久久久| 深夜精品福利| 婷婷亚洲欧美| 99热6这里只有精品| 久久天堂一区二区三区四区| 欧美乱色亚洲激情| 午夜精品久久久久久毛片777| 久久亚洲精品不卡| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 亚洲精品在线观看二区| 91老司机精品| 国产精品久久久久久人妻精品电影| 男人舔奶头视频| 级片在线观看| 18禁美女被吸乳视频| 国内少妇人妻偷人精品xxx网站 | 久久香蕉国产精品| 久久国产精品影院| 国产单亲对白刺激| 久久香蕉国产精品| 九九在线视频观看精品| 99久久综合精品五月天人人| 久久久国产精品麻豆| 一区二区三区激情视频| 色av中文字幕| 国产一区二区三区在线臀色熟女| 成年女人看的毛片在线观看| 美女扒开内裤让男人捅视频| or卡值多少钱| 色哟哟哟哟哟哟| 亚洲第一电影网av| 国产伦人伦偷精品视频| 91字幕亚洲| 国产高清三级在线| 色播亚洲综合网| 亚洲精品在线观看二区| 高潮久久久久久久久久久不卡| cao死你这个sao货| 人人妻人人澡欧美一区二区| 免费在线观看日本一区| 免费看十八禁软件| 18禁黄网站禁片免费观看直播|