趙鳳展,張啟承,張 帥,郭楊瑾,吳 鳴,陳 銘,沈 浚
·農(nóng)業(yè)信息與電氣技術(shù)·
面向高比例分布式光伏發(fā)電消納的復(fù)合型需求側(cè)響應(yīng)控制
趙鳳展1,張啟承1,張 帥1,郭楊瑾1,吳 鳴2,陳 銘3,沈 浚4
(1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;2. 國(guó)網(wǎng)上海能源互聯(lián)網(wǎng)研究院有限公司,上海 100192;3.海寧市金能電力實(shí)業(yè)有限公司,海寧 314400;4. 國(guó)網(wǎng)浙江海寧市供電有限公司,海寧 314400)
在大力推進(jìn)分布式光伏發(fā)電的形勢(shì)下,利用負(fù)荷側(cè)靈活性資源提升光伏消納水平并改善電網(wǎng)運(yùn)行經(jīng)濟(jì)性已成為促進(jìn)新能源發(fā)展的重要措施,如何高效進(jìn)行需求側(cè)響應(yīng)控制是目前該領(lǐng)域研究的關(guān)鍵問(wèn)題之一。傳統(tǒng)的峰谷分時(shí)電價(jià)僅根據(jù)區(qū)域電網(wǎng)內(nèi)的負(fù)荷變化的總體情況確定分時(shí)段電價(jià)實(shí)現(xiàn)削峰填谷,該方法未考慮區(qū)域內(nèi)新增電源的發(fā)電特性,從而導(dǎo)致負(fù)荷調(diào)整的靈活性較差,無(wú)法有效解決區(qū)域內(nèi)光伏消納的問(wèn)題。該研究針對(duì)光伏裝機(jī)比例較高的區(qū)域配電網(wǎng)尤其是鄉(xiāng)村配電網(wǎng),提出一種基于優(yōu)化調(diào)整分時(shí)電價(jià)時(shí)段的激勵(lì)型需求側(cè)響應(yīng)和區(qū)域集中優(yōu)化調(diào)控相結(jié)合的配電網(wǎng)復(fù)合型需求響應(yīng)控制策略。該策略首先結(jié)合負(fù)荷需求和光伏出力曲線對(duì)分時(shí)電價(jià)峰谷時(shí)段進(jìn)行因地制宜的自適應(yīng)調(diào)整;其次,基于新的電價(jià)時(shí)段進(jìn)行用戶側(cè)分布式最優(yōu)出力計(jì)劃建模,并給出用戶側(cè)可削減、可時(shí)移負(fù)荷的響應(yīng)調(diào)整范圍的計(jì)算方法;最后由區(qū)域調(diào)度中心實(shí)現(xiàn)負(fù)荷集中控制。通過(guò)算例對(duì)比驗(yàn)證該文方法在計(jì)及用戶舒適度的基礎(chǔ)上,棄光率和系統(tǒng)綜合運(yùn)行成本較優(yōu)化前均有明顯降低,解決了含高比例光伏配電網(wǎng)的光伏消納及經(jīng)濟(jì)運(yùn)行問(wèn)題,為配電網(wǎng)精細(xì)化管理水平的提升提供了理論依據(jù)。
光伏;分布式發(fā)電;鄉(xiāng)村配電網(wǎng);分時(shí)電價(jià);復(fù)合型需求側(cè)響應(yīng);配電網(wǎng)經(jīng)濟(jì)運(yùn)行
近年來(lái)隨著“雙碳”目標(biāo)的提出和鄉(xiāng)村振興政策的實(shí)施,分布式光伏發(fā)電裝機(jī)得到了迅猛發(fā)展,但與此同時(shí)由于控制策略的不健全,以及光伏(Photovoltaic,PV)出力特性與負(fù)荷用電需求不匹配造成的棄光問(wèn)題,使得PV運(yùn)營(yíng)收益有較大的提升空間。光伏裝機(jī)比例較高的區(qū)域配電網(wǎng),尤其是鄉(xiāng)村配電網(wǎng)面臨著負(fù)荷增長(zhǎng)與PV大規(guī)模接入的雙重壓力,二者同時(shí)作用于電網(wǎng)末端,亟需更適合的協(xié)調(diào)控制方式匹配負(fù)荷需求和PV出力,在保障區(qū)域供電電壓質(zhì)量的同時(shí)促進(jìn)光伏電能就地消納和配電網(wǎng)安全經(jīng)濟(jì)運(yùn)行[1-2]。
需求側(cè)響應(yīng)(Demand Response,DR)為電力系統(tǒng)源網(wǎng)荷協(xié)調(diào)經(jīng)濟(jì)運(yùn)行提供了積極主動(dòng)的解決方案[3-4]。相較于需要投入設(shè)備且造價(jià)較高、充放電頻率受到限制的儲(chǔ)能技術(shù),需求側(cè)響應(yīng)技術(shù)無(wú)需增加過(guò)多投入,從需求側(cè)入手利用柔性負(fù)荷解決運(yùn)行控制問(wèn)題。DR分為價(jià)格型[5]和激勵(lì)型兩類(lèi)。價(jià)格型需求側(cè)響應(yīng)利用實(shí)時(shí)電價(jià)引導(dǎo)用戶調(diào)整其生產(chǎn)生活用電時(shí)段,激勵(lì)型需求側(cè)響應(yīng)(Incentive Demand Response,IDR)則通過(guò)補(bǔ)貼或相應(yīng)折扣來(lái)主動(dòng)激勵(lì)用戶響應(yīng)調(diào)度策略[6]。對(duì)于DR參與配電網(wǎng)經(jīng)濟(jì)運(yùn)行控制國(guó)內(nèi)外學(xué)者已經(jīng)做了許多研究,文獻(xiàn)[7] 提出了一種考慮峰谷分時(shí)電價(jià)策略的加氣母站經(jīng)濟(jì)調(diào)度方案。文獻(xiàn)[8-9] 提出了一種計(jì)及分時(shí)電價(jià)和用戶滿意度的戶用型微電網(wǎng)需求響應(yīng)策略。文獻(xiàn)[10-11]在保證各時(shí)段運(yùn)行的靈活性裕度前提下,構(gòu)建價(jià)格型需求側(cè)響應(yīng)模型引導(dǎo)用戶響應(yīng)實(shí)時(shí)電價(jià)的變化。文獻(xiàn)[12]研究了需求響應(yīng)優(yōu)化配置模型及其對(duì)配電網(wǎng)彈性提升的效果。上述研究大多針對(duì)統(tǒng)一分時(shí)段的價(jià)格型DR進(jìn)行經(jīng)濟(jì)性最優(yōu)建模,但配電網(wǎng)的各個(gè)供電區(qū)域都有其特點(diǎn),這種固定且統(tǒng)一的分時(shí)電價(jià)的時(shí)段劃分通常不能適應(yīng)不同區(qū)域的負(fù)荷特征。相反,IDR相較價(jià)格型DR具有調(diào)節(jié)速度快、方式靈活、潛力大等優(yōu)點(diǎn)[13]。文獻(xiàn)[14]提出了售電商運(yùn)用IDR通過(guò)調(diào)整補(bǔ)貼價(jià)格引導(dǎo)用戶用電達(dá)到自身經(jīng)濟(jì)效益最優(yōu)的策略。文獻(xiàn)[15]建立一種IDR模型降低了基于能量樞紐模塊的綜合能源系統(tǒng)的規(guī)劃運(yùn)行成本和碳排放值。文獻(xiàn)[16]綜合考慮基于分時(shí)電價(jià)和用戶協(xié)議的DR策略,建立IDR參與自主決策的智能家庭日前優(yōu)化調(diào)度模型。文獻(xiàn)[17]從用戶用電偏好入手,以IDR與用戶之間的實(shí)際利益平衡為出發(fā)點(diǎn),基于委托–代理理論構(gòu)建信息不對(duì)稱情形下的最優(yōu)激勵(lì)模型以提高用戶參與度。文獻(xiàn)[18-19]針對(duì)微電網(wǎng)中存在的源-荷不確定性,建立IDR參與的實(shí)時(shí)滾動(dòng)優(yōu)化策略。文獻(xiàn)[20]通過(guò)分析IDR對(duì)配電網(wǎng)可靠性指標(biāo)的影響,提出基于負(fù)荷削減與負(fù)荷轉(zhuǎn)移2種需求響應(yīng)合同的投標(biāo)決策優(yōu)化模型。上述文獻(xiàn)充分體現(xiàn)IDR在價(jià)格型DR的基礎(chǔ)上,通過(guò)在配電網(wǎng)側(cè)給予用戶用電補(bǔ)貼,引導(dǎo)用戶進(jìn)一步調(diào)整其負(fù)荷出力的優(yōu)勢(shì)。
大量的農(nóng)村負(fù)荷,如農(nóng)產(chǎn)品加工負(fù)荷、電采暖負(fù)荷、電動(dòng)汽車(chē)充電負(fù)荷等,具有可時(shí)移、可削減的柔性負(fù)荷特性,可以利用DR引導(dǎo)柔性負(fù)荷資源匹配PV有功出力,這將提高光伏消納水平,同時(shí)實(shí)現(xiàn)負(fù)荷削峰填谷的目的。為了解決分時(shí)電價(jià)峰谷時(shí)段設(shè)置不能適合各地配電網(wǎng)的源-荷的實(shí)際運(yùn)行情況,需要引入IDR,在分時(shí)電價(jià)的基礎(chǔ)上,通過(guò)經(jīng)濟(jì)補(bǔ)償或電價(jià)優(yōu)惠政策來(lái)激勵(lì)用戶主動(dòng)參與電力系統(tǒng)所需的負(fù)荷增減調(diào)控,對(duì)用戶用電行為進(jìn)行進(jìn)一步的引導(dǎo)和調(diào)整同時(shí)更加合理地解決PV消納問(wèn)題。但是,上述價(jià)格型DR或IDR均沒(méi)有計(jì)及用戶側(cè)分布式光伏發(fā)電的影響,同時(shí)基于獨(dú)立負(fù)荷的需求側(cè)響應(yīng)也不能達(dá)到含多用戶區(qū)域配電網(wǎng)最優(yōu)的需求響應(yīng)效果。為了適應(yīng)高比例分布式光伏配電網(wǎng)發(fā)展趨勢(shì)并實(shí)現(xiàn)配電網(wǎng)更經(jīng)濟(jì)的運(yùn)行控制,本文提出計(jì)及光伏發(fā)電曲線的自適應(yīng)分時(shí)電價(jià)峰谷時(shí)段優(yōu)化調(diào)整方案,以及IDR分布調(diào)節(jié)與集中式控制相結(jié)合的復(fù)合型需求側(cè)響應(yīng)策略。該策略首先基于高比例分布式光伏配電網(wǎng)的光伏出力和負(fù)荷時(shí)域特點(diǎn),對(duì)當(dāng)?shù)貐^(qū)域配電網(wǎng)峰谷時(shí)段進(jìn)行自適應(yīng)重新劃分;然后,針對(duì)可時(shí)移[21]和可削減[22-23]2種負(fù)荷類(lèi)型建立各自的需求響應(yīng)模型,并給出了基于IDR補(bǔ)貼后的負(fù)荷調(diào)整范圍的計(jì)算方法,最后采用系統(tǒng)集中調(diào)控使得負(fù)荷在參與電網(wǎng)協(xié)調(diào)優(yōu)化調(diào)度后既保障用戶自身的利益,又使系統(tǒng)整體達(dá)到減少棄光與經(jīng)濟(jì)運(yùn)行的目的。
傳統(tǒng)分時(shí)電價(jià)時(shí)段僅針對(duì)負(fù)荷曲線進(jìn)行設(shè)置,沒(méi)有考慮分布式光伏發(fā)電特性,造成分時(shí)電價(jià)高的部分時(shí)段可能恰好是光伏發(fā)電功率大的時(shí)段,這將導(dǎo)致因削減負(fù)荷造成的棄光現(xiàn)象或電壓超越上限。為此,本文設(shè)計(jì)了計(jì)及分布式PV出力曲線和負(fù)荷需求曲線的分時(shí)電價(jià)時(shí)段自適應(yīng)調(diào)整策略,如圖1所示?;谪?fù)荷和光伏的歷史平均曲線或預(yù)測(cè)曲線,將光伏出力與負(fù)荷功率進(jìn)行比較,把原分時(shí)電價(jià)的峰平谷3類(lèi)時(shí)段重新劃分為強(qiáng)激勵(lì)增用時(shí)段、弱激勵(lì)削減階段和自調(diào)整時(shí)段。3個(gè)價(jià)格時(shí)段的具體劃分如下:
1)將光伏出力過(guò)剩時(shí)段設(shè)為“強(qiáng)激勵(lì)增用時(shí)段”(簡(jiǎn)稱為:1時(shí)段),鼓勵(lì)用戶增用負(fù)荷以減少棄光。在此時(shí)段不論原分時(shí)電價(jià)是峰或平價(jià),通過(guò)IDR補(bǔ)償將電價(jià)引導(dǎo)至原谷值電價(jià)。
2)將光伏出力一般時(shí)段設(shè)為“弱激勵(lì)削減時(shí)段”(簡(jiǎn)稱為:2時(shí)段),在此時(shí)段不論原分時(shí)電價(jià)是峰、平或谷價(jià),均劃為平時(shí)段電價(jià)。
3)除此之外為光伏出力接近0的時(shí)段,設(shè)為“自動(dòng)調(diào)整時(shí)段”(簡(jiǎn)稱為:3時(shí)段),在該時(shí)段中光伏對(duì)系統(tǒng)影響幾乎為零,電價(jià)維持不變。
圖1 分時(shí)電價(jià)自適應(yīng)調(diào)整策略
實(shí)施IDR策略調(diào)整日負(fù)荷曲線,可以經(jīng)濟(jì)有效地最大化消納光伏、減小棄光率、削減負(fù)荷峰谷差、減少系統(tǒng)網(wǎng)損和運(yùn)行成本。本文以含高比例分布式光伏電源及需求側(cè)響應(yīng)負(fù)荷的配電網(wǎng)為研究對(duì)象,設(shè)計(jì)了一種基于復(fù)合型需求側(cè)響應(yīng)的高比例分布式光伏發(fā)電的經(jīng)濟(jì)運(yùn)行控制模型,具體流程如圖2所示。
圖2 基于復(fù)合型需求側(cè)響應(yīng)的高比例分布式光伏發(fā)電的經(jīng)濟(jì)運(yùn)行控制模型
以24 h(1 d)作為一個(gè)完整的優(yōu)化周期,共分為24個(gè)時(shí)段,每個(gè)時(shí)段1 h。計(jì)及復(fù)合型需求側(cè)響應(yīng)的高比例分布式光伏配電網(wǎng)經(jīng)濟(jì)運(yùn)行控制策略以1 h為控制時(shí)間間隔。具體控制策略設(shè)計(jì)如下:
步驟1:首先由區(qū)域調(diào)度中心(如負(fù)荷聚合商、售電公司等)根據(jù)本地光伏出力及負(fù)荷時(shí)域特征,基于IDR結(jié)合當(dāng)?shù)胤謺r(shí)電價(jià)設(shè)置對(duì)分時(shí)電價(jià)的峰谷時(shí)段進(jìn)行自適應(yīng)再劃分。
步驟2:基于重新劃分后得到的3類(lèi)電價(jià)時(shí)段,由負(fù)荷用戶端基于自身負(fù)荷基準(zhǔn)值和分時(shí)段補(bǔ)貼單價(jià)求解自身計(jì)劃用電模型,并將本日各時(shí)段負(fù)荷計(jì)劃及負(fù)荷調(diào)整范圍反饋上傳至區(qū)域調(diào)度中心,實(shí)現(xiàn)分布式負(fù)荷調(diào)控范圍的計(jì)算。
步驟3:在區(qū)域調(diào)度中心計(jì)及各用戶上傳的負(fù)荷計(jì)劃及其調(diào)整范圍,結(jié)合光伏曲線預(yù)測(cè)結(jié)果建立以分布式調(diào)控計(jì)算結(jié)果為控制變量,以光伏消納量最多及經(jīng)濟(jì)運(yùn)行成本最低為目標(biāo)的集中控制模型求解得到最優(yōu)負(fù)荷調(diào)整計(jì)劃,在控制日內(nèi)基于直接負(fù)荷控制(Direct Load Control,DLC),控制用戶負(fù)荷量以實(shí)現(xiàn)負(fù)荷曲線與PV出力曲線的匹配、最大化光伏消納,保障系統(tǒng)全局經(jīng)濟(jì)運(yùn)行,從而實(shí)現(xiàn)系統(tǒng)的集中經(jīng)濟(jì)運(yùn)行控制。
基于需求側(cè)管理技術(shù)用電負(fù)荷可分為可時(shí)移負(fù)荷、可削減負(fù)荷和可中斷負(fù)荷。在鄉(xiāng)村,常見(jiàn)的農(nóng)產(chǎn)品加工和電動(dòng)汽車(chē)充電站可視為典型可時(shí)移負(fù)荷,夏季供冷空調(diào)和冬季電采暖設(shè)備根據(jù)用戶滿意度和IDR的雙重博弈可以視為可削減負(fù)荷,此外,可中斷負(fù)荷可視為一種特殊的可削減負(fù)荷。本文設(shè)計(jì)了一套針對(duì)鄉(xiāng)村用戶用電負(fù)荷特點(diǎn)的用戶響應(yīng)機(jī)制,下面分別對(duì)可削減負(fù)荷、可時(shí)移負(fù)荷2種典型的需求側(cè)響應(yīng)負(fù)荷類(lèi)型進(jìn)行激勵(lì)型需求側(cè)響應(yīng)函數(shù)建模。
2.1.1 可削減負(fù)荷的激勵(lì)型響應(yīng)精確建模分析
用戶獲得售電單位的分時(shí)電價(jià)信號(hào)和預(yù)期IDR補(bǔ)償信息后會(huì)根據(jù)經(jīng)濟(jì)補(bǔ)償和待付出的舒適成本,做出自身利益最優(yōu)的綜合決策,具體用戶可削減負(fù)荷的IDR函數(shù)可以建模為無(wú)約束優(yōu)化問(wèn)題[6],其目標(biāo)函數(shù)即為綜合收益的極大值。
圖3 可削減負(fù)荷IDR建模原理
2.1.2 可時(shí)移負(fù)荷的激勵(lì)型響應(yīng)精確建模分析
可時(shí)移負(fù)荷的IDR具體建模如下:
為利用IDR及源-荷協(xié)調(diào)減小棄光現(xiàn)象、增進(jìn)光伏消納、并保障系統(tǒng)經(jīng)濟(jì)運(yùn)行,負(fù)荷優(yōu)化集中控制模型以參與調(diào)整的各用戶負(fù)荷量為控制變量,其調(diào)整范圍即為用戶分布式優(yōu)化計(jì)算后用戶上傳至區(qū)域調(diào)度中心的可調(diào)范圍,再由區(qū)域調(diào)度中心進(jìn)行集中協(xié)調(diào)控制。此階段建立的優(yōu)化目標(biāo)函數(shù)包含減少棄光損失和降低系統(tǒng)運(yùn)行成本,即
本文采用文獻(xiàn)[24]的17節(jié)點(diǎn)用戶小型鄉(xiāng)村10 kV配電網(wǎng)拓?fù)?,算例拓?fù)浣Y(jié)構(gòu)示意圖如圖4所示。
注:1~17表示負(fù)荷節(jié)點(diǎn)編號(hào)。
圖4中節(jié)點(diǎn)9為商業(yè)負(fù)荷,節(jié)點(diǎn)13為鄉(xiāng)村特色集中式農(nóng)產(chǎn)品加工負(fù)荷(此處為集中式炒茶加工負(fù)荷),節(jié)點(diǎn)6、7、8、11為分布式農(nóng)產(chǎn)品加工負(fù)荷(此處為戶用炒茶爐負(fù)荷),其余節(jié)點(diǎn)均為普通居民負(fù)荷,所有節(jié)點(diǎn)均配置容量為170 kVA的分布式光伏設(shè)施。本算例參考文獻(xiàn)[25]的炒茶設(shè)施模型。在算例仿真中為簡(jiǎn)化運(yùn)算,將含有炒茶設(shè)施的節(jié)點(diǎn)(節(jié)點(diǎn)6、7、8、11、13)作為可時(shí)移負(fù)荷進(jìn)行控制,其余節(jié)點(diǎn)作為可削減負(fù)荷進(jìn)行控制。運(yùn)用MATLAB仿真平臺(tái)(R2019 a版本),以某一春季炒茶用戶負(fù)荷典型日為例,采用圖2所示的計(jì)算流程圖,驗(yàn)證本優(yōu)化控制策略模型的有效性。
3.2.1 自適應(yīng)分時(shí)電價(jià)峰谷時(shí)段優(yōu)化調(diào)整結(jié)果分析
算例實(shí)時(shí)電價(jià)采用中國(guó)廣東省某鄉(xiāng)村地區(qū)2022年10 kV用電分時(shí)電價(jià),電價(jià)數(shù)據(jù)及3類(lèi)時(shí)段經(jīng)自適應(yīng)調(diào)整后的分時(shí)電價(jià)如表1和表2所示。典型日各時(shí)段光伏出力及系統(tǒng)總負(fù)荷曲線如圖5所示。由圖可見(jiàn),10:00到16:00為光伏過(guò)剩時(shí)段,此時(shí)原分時(shí)電價(jià)處于峰或平時(shí)段,為了增加光伏消納需要采用復(fù)合型需求側(cè)響應(yīng)引導(dǎo)用戶增用負(fù)荷,固將該時(shí)段調(diào)整為強(qiáng)激勵(lì)增用時(shí)段;16:00至19:00此時(shí)光伏出力一般、原分時(shí)電價(jià)處于峰值,復(fù)合型需求側(cè)響應(yīng)需引導(dǎo)用戶適度減少負(fù)荷以達(dá)到削峰的目的,固將該時(shí)段設(shè)為弱激勵(lì)削減時(shí)段;其余時(shí)段,由用戶根據(jù)實(shí)時(shí)電價(jià)進(jìn)行有選擇的負(fù)荷增用或削減,這些時(shí)段設(shè)為自調(diào)整時(shí)段。調(diào)整后各時(shí)段電價(jià)如表2所示。
表1 中國(guó)廣東某鄉(xiāng)村農(nóng)業(yè)生產(chǎn)用電分時(shí)電價(jià)設(shè)置
表2 IDR修正后分時(shí)電價(jià)設(shè)置
注:t1、t2、t3為時(shí)段電價(jià)調(diào)整分隔點(diǎn)。
3.2.2 用戶負(fù)荷分布式出力調(diào)整計(jì)算分析
圖6給出了節(jié)點(diǎn)9和節(jié)點(diǎn)13負(fù)荷分別作為典型的可削減負(fù)荷和可時(shí)移負(fù)荷經(jīng)過(guò)IDR的負(fù)荷經(jīng)濟(jì)偏移曲線及其可調(diào)范圍,IDR在引導(dǎo)用戶獲得利益的同時(shí)也為電網(wǎng)控制提供了極大的有功功率調(diào)節(jié)裕度。
3.2.3 光伏消納優(yōu)化效果分析
圖7給出了利用本文策略優(yōu)化后系統(tǒng)的控制日總負(fù)荷出力曲線和優(yōu)化前總負(fù)荷曲線的對(duì)比。
圖6 節(jié)點(diǎn)9和13負(fù)荷經(jīng)IDR經(jīng)濟(jì)偏移曲線及可調(diào)范圍
圖7 優(yōu)化調(diào)度后系統(tǒng)總負(fù)荷出力曲線
從圖7可以看出經(jīng)復(fù)合型需求側(cè)響應(yīng)策略優(yōu)化后,17:00—23:00尖峰負(fù)荷得到較大削減,同時(shí)午夜谷時(shí)段的負(fù)荷明顯上升。在正午時(shí)分光伏出力高峰時(shí)期,系統(tǒng)總負(fù)荷曲線因IDR強(qiáng)激勵(lì)增用而匹配貼合PV有功輸出,根據(jù)公式(17)、公式(18)計(jì)算,棄光率由優(yōu)化前的12.6%降低到了2.79%,較優(yōu)化前減少了約77.8%,極大提升了新能源利用率。
3.2.4 系統(tǒng)綜合運(yùn)行成本優(yōu)化效果分析
本文用公式(12)中包含的棄光減益和系統(tǒng)運(yùn)行成本的函數(shù)表征系統(tǒng)綜合運(yùn)行成本來(lái)對(duì)比說(shuō)明所提出策略的經(jīng)濟(jì)性優(yōu)勢(shì)。分別采用方案1:采用本文復(fù)合需求側(cè)響應(yīng)的經(jīng)濟(jì)運(yùn)行控制策略;方案2:僅有優(yōu)化分時(shí)電價(jià)響應(yīng)的電價(jià)型DR控制策略;方案3:未采用優(yōu)化方案前系統(tǒng)。將3個(gè)方案總運(yùn)行成本進(jìn)行對(duì)比,不同方案的3個(gè)時(shí)段系統(tǒng)運(yùn)行成本對(duì)比如表3所示,24 h內(nèi)系統(tǒng)運(yùn)行成本,如圖8所示。
表3 3個(gè)方案不同時(shí)段系統(tǒng)綜合運(yùn)行成本對(duì)比
圖8 系統(tǒng)分時(shí)綜合運(yùn)行成本對(duì)比
從圖8和表3可以看出采用方案1復(fù)合型需求側(cè)響應(yīng)優(yōu)化后的系統(tǒng)總成本曲線在凌晨的負(fù)荷自動(dòng)調(diào)整時(shí)段和正午時(shí)分的強(qiáng)激勵(lì)增用時(shí)段由于存在IDR的激勵(lì)成本,這些時(shí)段的總成本要高于優(yōu)化前的成本曲線。但在17:00—23:00的弱激勵(lì)削減時(shí)段由于負(fù)荷的明顯減用,系統(tǒng)總成本較方案2和方案3明顯下降。經(jīng)計(jì)算,本文方案優(yōu)化后的24時(shí)段總成本相較方案2和方案3分別下降了約10.5%和12.9%。由此可見(jiàn),本文提出的基于復(fù)合型需求側(cè)響應(yīng)的運(yùn)行控制策略更具經(jīng)濟(jì)性優(yōu)勢(shì)。
針對(duì)含高比例分布式光伏發(fā)電的鄉(xiāng)村配電網(wǎng),通過(guò)對(duì)區(qū)域內(nèi)典型可削減負(fù)荷、可時(shí)移負(fù)荷的詳細(xì)數(shù)學(xué)建模,在保障用戶收益的基礎(chǔ)上提出了一種以區(qū)域分布式光伏利用率最高和系統(tǒng)總運(yùn)行成本最低為目標(biāo)的復(fù)合型需求側(cè)響應(yīng)運(yùn)行控制通用模型,該模型基于當(dāng)?shù)嘏潆娋W(wǎng)分布式光伏出力及負(fù)荷時(shí)序曲線將分時(shí)電價(jià)時(shí)段自適應(yīng)重新劃分,再通過(guò)分布式-集中復(fù)合負(fù)荷控制方案,保證用戶經(jīng)過(guò)激勵(lì)型需求側(cè)響應(yīng)控制獲得正收益,同時(shí)為電網(wǎng)提供負(fù)荷調(diào)節(jié)裕度,實(shí)現(xiàn)了用戶與電網(wǎng)的雙向友好互動(dòng)。
算例及對(duì)比分析表明,本文所提的基于復(fù)合型需求側(cè)響應(yīng)的高比例分布式光伏配電網(wǎng)經(jīng)濟(jì)運(yùn)行控制策略具有如下2個(gè)方面的優(yōu)點(diǎn):
1)提升了光伏消納能力。在保障用戶收益的同時(shí),復(fù)合型優(yōu)化調(diào)控策略使負(fù)荷曲線盡量匹配光伏出力曲線,最大化提升了光伏利用率,同時(shí)降低了棄光率。
2)減少了系統(tǒng)總運(yùn)行成本?;趶?fù)合型需求側(cè)響應(yīng)策略優(yōu)化后的控制日24時(shí)段總成本相較未采用優(yōu)化方案和僅采用自適應(yīng)電價(jià)調(diào)整DR控制未進(jìn)行集中控制的方案分別下降了12.9%和10.5%,明顯降低了系統(tǒng)運(yùn)行成本。
在本文基礎(chǔ)上,還可以進(jìn)一步對(duì)包含電動(dòng)汽車(chē)充電樁、儲(chǔ)能或其他分布式電源的更多源-荷場(chǎng)景下的配電網(wǎng)的經(jīng)濟(jì)運(yùn)行問(wèn)題進(jìn)行建模分析。
[1] 劉蕊,吳奎華,馮亮,等. 含高滲透率分布式光伏的主動(dòng)配電網(wǎng)電壓分區(qū)協(xié)調(diào)優(yōu)化控制[J]. 太陽(yáng)能學(xué)報(bào),2022,43(2):189-197.
Liu Rui, Wu Kuihua, Feng Liang, et al. Voltage partition coordinated optimization control of active distribution network of high penetration distributed PVs[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 189-197. (in Chinese with English abstract)
[2] Luo K, Shi W H. Comparison of voltage control by inverters for improving the PV penetration in low voltage networks[J]. IEEE Access, 2020, 8: 161488-161497.
[3] Muthirayan D, Kalathil D, Poolla K, et al. Mechanism design for demand response programs[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 61-73.
[4] Herath P U, Fusco V, Cáceres M N, et al. Computational intelligence-based demand response management in a microgrid[J]. IEEE Transactions on Industry Applications, 2019, 55(1): 732-740.
[5] Wang S Y, Bi S Z, Zhang Y J. Demand response management for profit maximizing energy loads in real-time electricity market[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6387-6396.
[6] 徐弘升,陸繼翔,楊志宏,等. 基于深度強(qiáng)化學(xué)習(xí)的激勵(lì)型需求響應(yīng)決策優(yōu)化模型[J]. 電力系統(tǒng)自動(dòng)化,2021,45(14):97-103.
Xu Hongsheng, Lu jixiang, Yang Zhihong, et al. Decision optimization model of incentive demand response based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2021, 45(14): 97-103. (in Chinese with English abstract)
[7] 馬春艷,段青,郭宸顯,等. 計(jì)及峰谷分時(shí)電價(jià)的壓縮天然氣加氣母站經(jīng)濟(jì)調(diào)度[J]. 高電壓技術(shù),2021,47(2):584-595.
Ma Chunyan, Duan Qing, Guo Chenxian, et al. Economic dispatch of CNG refueling station considering peak-valley time-of-use electricity price strategy[J]. High Voltage Engineering, 2021, 47(2): 584-595. (in Chinese with English abstract)
[8] 郭曉利,趙瑩,曲楠,等. 基于滿意度的戶用型微電網(wǎng)多屬性需求響應(yīng)策略[J]. 太陽(yáng)能學(xué)報(bào),2021,42(7):21-27.
Guo Xiaoli, Zhao Ying, Qu Nan, et al. Multi-attribute demand response strategy of household microgrid based on satisfaction[J]. Acta Energiae Solaris Sinica, 2021, 42(7): 21-27. (in Chinese with English abstract)
[9] Parizy E S, Bahrami H R, Choi S. A low complexity and secure demand response technique for peak load reduction[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3259-3268.
[10] 程樂(lè)峰,楊汝,劉貴云,等. 多群體非對(duì)稱演化博弈動(dòng)力學(xué)及其在智能電網(wǎng)電力需求側(cè)響應(yīng)中的應(yīng)用[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2020,40(S1):20-36.
Cheng Lefeng, Yang Ru, Liu Guiyun, et al. Multi-population asymmetric evolutionary game dynamics and its applications in power demand-side response in smart grid[J]. Proceedings of the CSEE, 2020, 40(S1): 20-36. (in Chinese with English abstract)
[11] 劉麗軍,羅寧,吳桐,等. 基于混合整數(shù)二階錐規(guī)劃的考慮需求側(cè)響應(yīng)虛擬電廠優(yōu)化調(diào)度[J]. 太陽(yáng)能學(xué)報(bào),2021,42(8):96-104.
Liu Lijun, Luo Ning, Wu Tong, et al. Optimal scheduling of virtual power plant considering demand side response based on mixed integer second-order cone programming[J]. Acta Energiae Solaris Sinica, 2021, 42(8): 96-104. (in Chinese with English abstract)
[12] 李志浩,趙波,林達(dá),等. 面向配電網(wǎng)彈性提升的需求響應(yīng)優(yōu)化配置策略[J]. 電力自動(dòng)化設(shè)備,2022,42(7):143-149.
Li Zhihao, Zhao Bo, Lin Da, et al. Decision optimization model of incentive demand response based on deep reinforcement learning[J]. Automation of Electric Power Systems, 2022, 42(7): 143-149. (in Chinese with English abstract)
[13] 祁兵,鄭順林,孫毅,等. 考慮需求側(cè)動(dòng)態(tài)及耦合特性的激勵(lì)型綜合需求響應(yīng)優(yōu)化建模[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2022,42(5):1783-1799.
Qi Bing, Zheng Shunlin, Sun Yi, et al. A model of incentive-based integrated demand response considering dynamic characteristics and multi-energy coupling effect of demand side[J]. Proceedings of the CSEE, 2022, 42(5): 1783-1799. (in Chinese with English abstract)
[14] 郭昆健,高賜威,林國(guó)營(yíng),等. 現(xiàn)貨市場(chǎng)環(huán)境下售電商激勵(lì)型需求響應(yīng)優(yōu)化策略[J]. 電力系統(tǒng)自動(dòng)化,2020,44(15):28-35.
Guo Kunjian, Gao Ciwei, Lin Guoying, et al. Optimization strategy of incentive based demand response for electricity retailer in spot market environment[J]. Automation of Electric Power System, 2020, 45(15): 28-35. (in Chinese with English abstract)
[15] 范宏,魯家陽(yáng),陸驍霄,等. 考慮激勵(lì)型需求響應(yīng)的多區(qū)域綜合能源系統(tǒng)協(xié)同規(guī)劃[EB/OL]. 電測(cè)與儀表,(2021-5-8)[2022-10-06]. http: //kns. cnki. net/kcms/detail/ 23. 1202. th. 20210508. 1013. 004. html.
Fan Hong, Lu Jiayang, Lu Xiaoxiao, et al. Coordinated planning of multi-region integrated energy system considering incentive demand response[EB/OL]. Electrical Measurement & Instrumentation, (2021-5-8)[2022-10-06]. http: // kns. cnki. net/k cms/detail/23. 1202. th. 20210508. 1013. 004. html. (in Chinese with English abstract)
[16] 鄭若楠,李志浩,唐雅潔,等. 考慮居民用戶參與度不確定性的激勵(lì)型需求響應(yīng)模型與評(píng)估[J]. 電力系統(tǒng)自動(dòng)化,2022,46(8):154-162.
Zheng Ruonan, Li Zhihao, Tang Yajie, et al. Incentive demand response model and evaluation considering uncertainty of residential customer participation degree[J]. Automation of Electric Power Systems, 2022, 46(8): 154-162. (in Chinese with English abstract)
[17] 李偉,韓瑞迪,孫晨家,等. 基于用電偏好的可平移負(fù)荷參與需求響應(yīng)最優(yōu)激勵(lì)合同與激勵(lì)策略[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2021,41(S1):185-193.
Li Wei, Han Ruidi, Sun ChenJia, et al. An optimal incentive contract and strategy of shiftable loads participation in demand response based on user electricity preference[J]. Proceedings of the CSEE, 2021, 41(S1): 185-193. (in Chinese with English abstract)
[18] 魏震波,張海濤,魏平桉,等. 考慮動(dòng)態(tài)激勵(lì)型需求響應(yīng)的微電網(wǎng)兩階段優(yōu)化調(diào)度[J]. 電力系統(tǒng)保護(hù)與控制,2021,49(19):1-10.
Wei Zhenbo, Zhang Haitao, Wei Ping'an, et al. Two-stage optimal dispatching for microgrid considering dynamic incentive-based demand response[J]. Power System Protection and Control, 2021, 49(19): 1-10. (in Chinese with English abstract)
[19] 胡蓉,魏震波,郭毅,等. 現(xiàn)貨市場(chǎng)下計(jì)及用戶需求響應(yīng)彈性差異的微電網(wǎng)優(yōu)化運(yùn)營(yíng)分析[J]. 高電壓技術(shù),2022,48(4):1393-1402.
Hu Rong, Wei Zhenbo, Guo Yi, et al. Analysis of optimal operation of microgrid considering the differences in user demand response elasticity in spot market[J]. High Voltage Engineering, 2022, 48(4): 1393-1402. (in Chinese with English abstract)
[20] 齊先軍,程橋,吳紅斌,等. 激勵(lì)型需求響應(yīng)對(duì)配電網(wǎng)運(yùn)行可靠性的影響[J]. 電工技術(shù)學(xué)報(bào),2018,33(22):5319-5326.
Qi Xianjun, Cheng Qiao, Wu Hongbin, et al. Impact of incentive-based demand response on operational reliability of distribution network[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5319-5326. (in Chinese with English abstract)
[21] 王守相,陳建凱,王洪坤,等. 綜合考慮電動(dòng)汽車(chē)充電與儲(chǔ)能及可中斷負(fù)荷調(diào)度的配電網(wǎng)兩階段靈活性提升優(yōu)化方法[J]. 電力自動(dòng)化設(shè)備,2020,40(11):1-10.
Wang Shouxiang, Chen Jiankai, Wang Hongkun, et al. Two-stage flexibility improvement optimization method of distribution network considering EV charging and scheduling of energy storage and interruptible loads[J]. Electric Power Automation Equipment, 2020, 40(11): 1-10. (in Chinese with English abstract)
[22] 陳正,楊建華,靳開(kāi)元,等. 基于能源區(qū)塊鏈的設(shè)施農(nóng)業(yè)負(fù)荷時(shí)移與光伏就地消納控制策略[J]. 電力自動(dòng)化設(shè)備,2021,41(2):47-55.
Chen Zheng, Yang Jianhua, Jin Kaiyuan, et al. Control strategy of time-shift facility agriculture load and photovoltaic local consumption based on energy blockchain[J]. Electric Power Automation Equipment, 2021, 41(2): 47-55. (in Chinese with English abstract)
[23] 曾捷,童曉陽(yáng),范嘉樂(lè). 計(jì)及需求響應(yīng)不確定性的電-氣耦合配網(wǎng)系統(tǒng)動(dòng)態(tài)分布魯棒優(yōu)化[J]. 電網(wǎng)技術(shù),2022,46(5):1877-1888.
Zeng Jie, Tong Xiaoyang, Fan Jiale. Dynamic distributionally robust optimization of integrated electric-gas distribution system considering demand response uncertainty[J]. Power System Technology, 2022, 46(5): 1877-1888. (in Chinese with English abstract)
[24] Mendoza J E, Morales D A, Lopez R A, et al. Multi-objective location of automatic voltage regulators in a radial distribution network using a micro genetic algorithm[J]. IEEE Transactions on Power Systems, 2007, 22(1): 404-412.
[25] 孔繁鋼,石勇. 傳統(tǒng)鄉(xiāng)村供電服務(wù)的升級(jí)轉(zhuǎn)型[J]. 農(nóng)電管理,2020(9):9-11.
Kong Fangang, Shi Yong. Upgrading and transformation of traditional rural power supply service[J]. Rural Power Management, 2020(9): 9-11. (in Chinese with English abstract)
Compound demand side response control for high proportion distributed photovoltaic absorption in distribution networks
Zhao Fengzhan1, Zhang Qicheng1, Zhang Shuai1, Guo Yangjin1, Wu Ming2, Chen Ming3, Shen Jun4
(1.,,100083,; 2..,.,100192,; 3..,.,314400, China; 4.,314400, China)
Solar energy is one of the most potential renewable sources in most rural areas. Photovoltaic (PV) power generation technology has also been widely applied with abundant solar energy resources. The installed capacity of PV power generation is ever increasing in recent years in China. However, the excess or abandonment of the output has often occurred, due mainly to the mismatch between the total load and energy output curve of PV generation. An optimal control strategy is highly required to absorb the excess PV power for the cost-saving system operation. The regional PV absorption characteristics also vary greatly in some areas, particularly where the traditional time-of-use (TOU) electricity price cannot be suitable for the local load. The incentive demand response (IDR) can be expected to serve as the scheduling strategy from the demand side, according to subsidies and discounts for the flexible load. In this study, a compound strategy of demand side response was proposed for the distribution networks with a high proportion of the distributed PV using the combined IDR and regional centralized regulation (RCR). Among them, one hour was taken as the time interval. The specific control strategy was designed as follows. Firstly, the peak and valley periods of electricity price were divided in the regional dispatching center (such as the load aggregator or the power selling company) using the IDR and original TOU electricity price in the study area. A new TOU electricity price scheme was obtained, according to the local PV output and load time sequence. The difference in electricity price before and after adjustment was selected as the subsidy unit price in the 24 control periods, and then transmitted to the power load in advance. Secondly, the distributed model was optimized by the load user. A power consumption model was then achieved using the user load reference value and the new TOU electricity price. The range of the distributed load was determined to match the power consumption plan and load adjustment range of each period of the day in the regional dispatching center. Thirdly, the PV power prediction was combined with the load plan uploaded by the user and the adjustment range. A centralized control model was established with the distributed calculation as the variables, while the maximum PV consumption and the lowest economic operation cost as the objective. Then, the optimal plan was obtained for the load adjustment. The user load was controlled using the direct load control (DLC) on the control day. A better match was realized for the curve of the load and PV output, in order to maximize the PV consumption for the overall economic operation of the system. Taking a 10 kV distribution network as an example, the model was verified using the MATLAB software. As a result, the total cost of one day after optimization using the compound demand response strategy was reduced by 12.9% and 10.5%, respectively, compared with the traditional TOU electricity price and the user IDR with the new TOU electricity price only without RCR. Consequently, the control strategy of decentralized and regional centralized dispatching can be expected to match the total load curve with the PV output curve for the interaction between the supply and demand, according to the response income of the user demand side. At the same time, the finding can greatly contribute to the consumption capacity of PV power generation and the economy of system operation
photovoltaic; distributed generation; rural distribution network; time-of-use electricity price; compound demand side response; economic operation of distribution network
10.11975/j.issn.1002-6819.2022.16.021
TM 732
A
1002-6819(2022)-16-0190-08
趙鳳展,張啟承,張帥,等. 面向高比例分布式光伏發(fā)電消納的復(fù)合型需求側(cè)響應(yīng)控制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(16):190-197.doi:10.11975/j.issn.1002-6819.2022.16.021 http://www.tcsae.org
Zhao Fengzhan, Zhang Qicheng, Zhang Shuai, et al. Compound demand side response control for high proportion distributed photovoltaic absorption in distribution networks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(16): 190-197. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.16.021 http://www.tcsae.org
2022-07-03
2022-08-14
國(guó)家電網(wǎng)公司科技項(xiàng)目(適應(yīng)高比例分布式資源接入的配電網(wǎng)彈性評(píng)估技術(shù)研究);國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(51707196)
趙鳳展,博士,副教授,研究方向?yàn)橹悄芘潆娋W(wǎng)與微電網(wǎng)分析、控制與評(píng)價(jià)。Email:zhaofz@cau.edu.cn