• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Customer Churn Prediction Model Based on User Behavior Sequences

    2023-01-11 03:14:56ZHAICuiyan翟翠艷ZHANGManman張嫚嫚XIAXiaoling夏小玲MIAOYiwei繆藝瑋CHENHao

    ZHAI Cuiyan(翟翠艷), ZHANG Manman(張嫚嫚), XIA Xiaoling(夏小玲), MIAO Yiwei(繆藝瑋), CHEN Hao(陳 豪)

    College of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: Customer churn prediction model refers to a certain algorithm model that can predict in advance whether the current subscriber will terminate the contract with the current operator in the future. Many scholars currently introduce different depth models for customer churn prediction research, but deep modeling research on the features of historical behavior sequences generated by users over time is lacked. In this paper, a customer churn prediction model based on user behavior sequences is proposed. In this method, a long-short term memory (LSTM) network is introduced to learn the overall interest preferences of user behavior sequences. And the multi-headed attention mechanism is used to learn the collaborative information between multiple behaviors of users from multiple perspectives and to carry out the capture of information about various features of users. Experimentally validated on a real telecom dataset, the method has better prediction performance and further enhances the capability of the customer churn prediction system.

    Key words: multi-headed attention mechanism; long-short term memory (LSTM); customer churn prediction

    Introduction

    In recent years, with the major operators in marketing, technology promotion and development, the customer growth rate in e-market has become significantly slower[1]. At the same time, there is few differences in the way that each operator runs, and it will not have a significant advantage in the competition for new customers. Therefore, reducing the churn of on-net customers is an important means to protect the overall customer base of the operator. The current main method is to collect information about the features of churn customers, analyze and learn from the customers currently on the network through relevant algorithms and models, identify customers who will terminate their contracts with operators, and realize the prediction of churn customers. In the actual production environment, a large amount of human and material resources needs to be employed to remedy the identified churn customers, so the accuracy of model prediction becomes critical and has attracted the attention of academia and industry.

    Early research focused on traditional machine learning to learn user behavior and basic feature information to achieve customer churn prediction. Verbekeetal.[2]and Kimetal.[3]both based on logistic regression models for customer churn prediction. Coussementetal.[4]introduced support vector machine (SVM) for customer churn prediction and also compared it with two algorithms based on interaction verification and grid search. Huangetal.[5]applied random forest algorithm to churn prediction of customers. De Caignyetal.[6]used decision tree algorithms and a logistic regression model algorithm to predict churn customers.

    Later on, with the wide application of deep learning in telecommunication research, more and more studies started to introduce neural network models in customer churn prediction models, which achieved better results compared with traditional machine learning. Hungetal.[7]performed customer churn prediction by introducing back-propagation neural(BPN) networks, and the proposed method had outperformed machine learning models such as decision trees in terms of accuracy. Tsaietal.[8]combined two neural network techniques, namely the back-propagation artificial neural network (ANN) and self-organizing mapping (SOM), to perform customer churn prediction. Agrawaletal.[9]built a multilayer neural network for modeling learning by means of a nonlinear model. Huetal.[10]proposed a product-based recurrent neural network (RNN) to predict the churn of telecommunication customers. Pustokhinaetal.[11]used long-short term memory (LSTM) and stacked autoencode (SAE) models for customer churn prediction. Mitrovicetal.[12]and Almuqrenetal.[13]introduced social network analysis algorithms and social media mining models to churn analysis in telecommunications, respectively.

    Current research in customer churn prediction has tried to introduce many deep models, but the current research is based on basic feature data for modeling analysis, without mining from the perspective of the overall user behavior sequences. To address the above issues, we propose a customer churn prediction model on user behavior sequences. For simplicity, we name the proposed multi-headed attention and long-short term memory network model as MALSTMN. We explore the interaction and correlation between multiple user behaviors, focus on the long- and short-term interest changes of each user, capture long- and short-term interests, and extract multi-angle feature information by introducing LSTM networks and multi-headed attention to user behavior sequences. All the learned feature representations and the user base information are combined by neural networks to obtain the final user representation and realize the customer churn prediction. The main contributions of this work are as follows.

    (1) We delve into modeling user behavior sequences and propose a new model based on multi-headed attention mechanism and LSTM networks.

    (2) For the aspect of temporal feature modeling, we introduce LSTM networks to predict temporal feature data and effectively solve the gradient disappearance and gradient explosion problems. For feature extraction, we introduce attention mechanism to learn collaborative information.

    (3) We carry out the capture of information between different features of users and focus on different information perspectives through multiple self-attention mechanisms.

    (4) We perform experiments on real datasets and the results show that our model achieves better results compared to the underlying neural network model.

    1 Model Method

    In this section, the MALSTMN model is presented in detail. The model consists of five main components. The input layer feeds user data into the model; the embedding layer converts sparse and high-dimensional user behavior data and user base information data into a low-dimensional dense matrix; the feature attention layer learns inter-feature dependencies and temporal relationships; the feature extraction layer is used for final feature extraction from multiple angles; the prediction layer is used for the final results. Figure 1 shows the complete model structure.

    Fig. 1 General architecture of proposed model

    1.1 Input layer

    All user data inputs can be represented asS={S1,S2, …,Si, …,St}, wheretis the number of all users, andSi∈Stis the user data of theith user. Data of each user are composed of user historical behavior characteristic sequence data and user basic characteristic data. For user dataS, this can be specifically expressed asS=[X,P], whereXis the user historical behavior sequence data, andXi∈Xis the historical behavior sequence data of theith feature of the user;Pis the user base characteristic data, andPj∈Pis thejth user base characteristic information data of the user.

    1.2 Embedding layer

    Since both the user historical behavior characteristic sequence data and user basic characteristic data have very sparse and high-dimensional feature representations, we convert the high-dimensional sparse user history feature sequence data and user base information feature data into the corresponding low-dimensional dense matrix by the embedding layer. The specific implementation of the embedding layer is shown in the following equation:

    ei=Embedding(Xi),

    whereEmbeddingdenotes the operation of matrix multiplication between a row vector and its weights.

    1.3 Feature correlation layer

    The input gate is used to control whether the current unit is affected by the input of the current user behavior information, the output gate is used to control whether the output information of the current unit affects the subsequent units, and the forgetting gate is used to control whether the previous user information state is forgotten, so as to dynamically adjust the user behavior data and achieve the mastery of the user’s overall interest preference.

    Fig. 2 Structure of LSTM storage cell

    1.4 Feature extraction layer

    The output obtained from the feature attention layer isH. The feature extraction layer from multi-angle learns user behavior data among multiple features, and to realize the deep mining of user behavior data.

    1.4.1Scaleddot-productattention

    We employ self-attention mechanism to capture the dependencies between multiple user behaviors. In practice, we simultaneously calculate the attention function of a set of user behavior feature queries by transforming the user’s historical behavior sequence dataXthrough the feature embedding layer and the feature association layer, and then multiplying them by the weight matricesWQ,WK, andWV, respectively. We can obtain three matricesQ,K, andV[16].Qcan be understood as the query word;KandVare the information contents. Through Eq. (1), we can get the matching results.

    (1)

    1.4.2Multi-headedattention

    The multi-headed attention mechanism, which enables the model to jointly pay attention to information in different representation subspaces at different locations, captures multi-perspective information among different behavioral features of users.

    The specific implementation is to use key-value attention mechanism to identify the feature combinations and find the valuable forms of feature combinations. Taking as an example, we first define the correlation between featurewand featurebunder a specific attention headhas follows[16]:

    (2)

    (3)

    (4)

    In addition, the same user behavior profile may be combined with multiple other user behavior profiles in distributed interactions. We use multiple heads to create different subspaces by introducing multi-headed attention mechanism to distribute the learning of different feature interaction combinations. The output values of thedmodeldimension are generated by executing the attention function in parallel, and these data are concatenated and projected again[16]to obtain the final values.

    MultiHead(Q,K,V)=Concat(head1,head2, …,headh)WO,

    (5)

    1.5 Prediction layer

    U=MLP(D).

    (6)

    2 Experiments

    In this section, we describe the actual telecom customer dataset, and the relevant settings of the parameters in the experiments, the comparison experiments with the time-series prediction base model, the ablation experiments, and the evaluation methods.

    2.1 Datasets

    In order to evaluate the validity of the MALSTMN model proposed in this paper, we used real telecom data of customers from July, 2019 to July, 2021. This dataset contains customer historical behavior data of temporal type and customer basic information data of non-temporal type (after desensitization). Customer historical behavior sequence data are the stitching of monthly behavior data generated by customers from July, 2019 to July, 2021 in the order of time size. The total current dataset is 1.05 million. Among them, customer behavior data mainly include: monthly_rent, arpu(average revenue per user), dou(dataflow of usage: average data flow per one month per one user), all_voice(user monthly voice allowance), sms_count(number of user sms per month), and call_voice(user monthly call voice volume). Customers base information data mainly include age, sex, and basic information on the network.

    2.2 Experimental setup

    The hyperparameters set for the experiments are lr: 0.001, batch_size: 200, hidden_units: 128, where lr is the learning rate, batch_size is the batch size, and hidden_units is the hidden layer unit size. We use Adam as the model optimizer in the experiments.

    2.3 Evaluation metrics

    To evaluate the effectiveness of the proposed MALSTMN model, the specific performance metrics to measure the model are the area under the receiver operating characteristic curve AUC, accuracy, precision, and F1_score. F1_score is a statistical indicator used to measure the accuracy of dichotomy models. It combines both the precision and recall of the classification model. The F1-score can be viewed as a harmonic average of the model precision and recall, with a maximum of 1 and a minimum of 0.

    2.4 Comparison methods

    We compare the model on the dataset with the following models.

    (1) BaseModel[16]. It only uses the most basic self-attentive mechanism to model the user historical behavior characteristic sequence data for learning.

    (2) Recurrent neural network(RNN)[17]. It is the most primitive RNN, which is essentially a fully connected network. Just to consider the past information, the output depends not only on the current input but also on the previous information. That is, the output is determined by the previous information (that is the state) and the input at this time.

    (3) LSTM[14]. To solve problems such as gradient disappearance and explosion, and to get better prediction and classification of sequence data, RNN is gradually transformed into LSTM.

    (4) Gate recurrent unit(GRU)[18]. GRU is also very popular because the training speed of LSTM is slow. GRU can be much faster with a slight modification on it, and the accuracy remains basically the same.

    From the experimental results in Table 1, our proposed model is the best result among all methods. It can be seen that the proposed MALSTMN model achieves the best overall performance, and the effects such as AUC and accuracy ACC improve about 7.0% compared to those of the base attention model, and also about 0.2% compared to those of LSTM. Our model digs deeper into the customer behavior feature data than other models. On the basis of the RNN focused on temporal order, combined with the multi-headed attention mechanism to capture the impact of the overall behavior from multiple perspectives separately, the most suitable results are obtained.

    In addition, it can be found that in terms of user behavior sequence modeling, RNN has better results.

    Table 1 Experimental results of different models on real telecom user datasets

    Also to further validate and gain insight into the proposed model, we performed an ablation study and compared the following variants of MALSTMN.

    (1) MALSTMN-M. The effectiveness of the multi-headed attention mechanism module is demonstrated by removing the multi-headed attention mechanism and modeling the user behavior sequence using LSTM and self-attentive mechanism.

    (2) MALSTMN-L. The effectiveness of the LSTM module is demonstrated by removing the LSTM module and modeling the user behavior sequence using only the multi-headed attention mechanism.

    (3) MARNNN. The LSTM superiority is demonstrated by replacing the LSTM module with an RNN module to model the user behavior sequence.

    (4) MAGRUN. The LSTM superiority is demonstrated by replacing the LSTM module with the GRU module to model the user behavior sequence.

    The specific ablation experimental results are shown in Table 2. By removing the multi-headed attention module and LSTM module by MALSTMN-M and MALSTMN-L, respectively, the effect decreases compared to the complete MALSTMN model, which proves the effectiveness of the multi-headed attention module and LSTM module. By comparing the actual effect of MARNNN, MAGRUN, and MALSTMN, the experiments prove the effectiveness of LSTM in comparison to other RNNs.

    Table 2 Comparative study of ablation performance of MALSTMN modules

    3 Conclusions

    In this paper, we propose a user off-grid prediction model based on user behavior sequences. We fully model and analyze the behavioral data generated by the user over a long period of time, and do not just replace the overall features of the user with the behavioral feature data at a certain time, taking into account the long-term data of the user and mining more information about the user compared to traditional prediction models. Specifically, we learn the modeling of interest evolution of user behavior sequence data through the LSTM networks in the temporal prediction model to master users’ long short-term interest preferences as a whole, and then capture information from multiple perspectives across multiple user features through the multi-headed attention mechanism to find the similarity among users and user feature data. An extensive experimental analysis confirms the superiority of our proposed model MALSTMN over traditional timing prediction methods. In future work, we plan to fully model user base information, mine more user base information, and explore more similarities between user behaviors and between users so that the model can learn more useful information and improve the accuracy of the user off-grid prediction system.

    日韩中文字幕欧美一区二区| 麻豆国产97在线/欧美 | 欧美日韩亚洲国产一区二区在线观看| 亚洲精品中文字幕在线视频| 午夜久久久久精精品| 日本三级黄在线观看| 热99re8久久精品国产| 19禁男女啪啪无遮挡网站| 久久久久久国产a免费观看| 欧美一区二区国产精品久久精品 | 禁无遮挡网站| 国产熟女午夜一区二区三区| 别揉我奶头~嗯~啊~动态视频| 1024视频免费在线观看| 人成视频在线观看免费观看| 免费搜索国产男女视频| 俺也久久电影网| 亚洲国产欧美一区二区综合| 在线观看免费视频日本深夜| 91大片在线观看| 成人国语在线视频| 欧美丝袜亚洲另类 | 亚洲欧美日韩高清在线视频| 久久性视频一级片| av超薄肉色丝袜交足视频| 亚洲av熟女| 亚洲狠狠婷婷综合久久图片| 日本免费a在线| 久久久久久国产a免费观看| 久久久水蜜桃国产精品网| 午夜免费成人在线视频| 亚洲av成人不卡在线观看播放网| 午夜福利高清视频| 国产亚洲精品第一综合不卡| 午夜免费成人在线视频| 国产成年人精品一区二区| 丁香六月欧美| 丁香欧美五月| 国产v大片淫在线免费观看| 国产精品一及| 欧美精品亚洲一区二区| 可以在线观看的亚洲视频| 久久精品国产亚洲av香蕉五月| 亚洲 欧美一区二区三区| tocl精华| 午夜两性在线视频| 国产精品永久免费网站| 亚洲av第一区精品v没综合| 久久婷婷人人爽人人干人人爱| 亚洲精品在线美女| 国产亚洲精品一区二区www| 色尼玛亚洲综合影院| 嫁个100分男人电影在线观看| 99在线人妻在线中文字幕| 人人妻人人澡欧美一区二区| 久久国产精品影院| 久久午夜综合久久蜜桃| 国产成人一区二区三区免费视频网站| av在线天堂中文字幕| 男女下面进入的视频免费午夜| 天天躁夜夜躁狠狠躁躁| 午夜精品一区二区三区免费看| 国产熟女午夜一区二区三区| 久久久久久大精品| 国产主播在线观看一区二区| 好看av亚洲va欧美ⅴa在| 成人手机av| 黄片小视频在线播放| 免费看a级黄色片| 国产1区2区3区精品| 日韩有码中文字幕| 99在线人妻在线中文字幕| 亚洲真实伦在线观看| 国产亚洲精品一区二区www| 色av中文字幕| 美女 人体艺术 gogo| 久久99热这里只有精品18| 白带黄色成豆腐渣| 国产精品永久免费网站| 1024视频免费在线观看| 国产一区二区激情短视频| 久久婷婷成人综合色麻豆| 老司机福利观看| 久久天堂一区二区三区四区| 国产免费男女视频| 桃红色精品国产亚洲av| 亚洲国产欧洲综合997久久,| av中文乱码字幕在线| 亚洲国产高清在线一区二区三| 国产激情偷乱视频一区二区| 国产在线精品亚洲第一网站| 两人在一起打扑克的视频| 18美女黄网站色大片免费观看| 免费高清视频大片| 成人三级黄色视频| 欧美日本亚洲视频在线播放| 黄色成人免费大全| 黑人欧美特级aaaaaa片| 亚洲国产精品久久男人天堂| 亚洲欧美精品综合久久99| x7x7x7水蜜桃| 丝袜人妻中文字幕| 亚洲人成77777在线视频| 18禁国产床啪视频网站| 欧美黑人精品巨大| 国产av在哪里看| 午夜福利高清视频| 国产视频一区二区在线看| 国产又黄又爽又无遮挡在线| 精品欧美一区二区三区在线| 这个男人来自地球电影免费观看| 成在线人永久免费视频| 香蕉丝袜av| 琪琪午夜伦伦电影理论片6080| 精品国产超薄肉色丝袜足j| 最新美女视频免费是黄的| 亚洲人与动物交配视频| 两性夫妻黄色片| 免费搜索国产男女视频| 叶爱在线成人免费视频播放| 日本精品一区二区三区蜜桃| 中文字幕人成人乱码亚洲影| 亚洲av成人不卡在线观看播放网| 欧美精品啪啪一区二区三区| 99热这里只有是精品50| 亚洲第一电影网av| 亚洲人与动物交配视频| 国产亚洲av嫩草精品影院| 麻豆av在线久日| 久久精品影院6| 国内精品久久久久精免费| 男女视频在线观看网站免费 | www.熟女人妻精品国产| 九色国产91popny在线| 可以在线观看的亚洲视频| 在线观看午夜福利视频| 免费观看人在逋| 国产精品九九99| 免费av毛片视频| 亚洲av美国av| 国产免费av片在线观看野外av| 天天躁狠狠躁夜夜躁狠狠躁| 美女大奶头视频| 久久亚洲精品不卡| 精品人妻1区二区| 我的老师免费观看完整版| 老司机靠b影院| 亚洲中文字幕日韩| 欧美绝顶高潮抽搐喷水| 欧美一级a爱片免费观看看 | 熟女电影av网| 午夜精品久久久久久毛片777| 亚洲欧美日韩无卡精品| 亚洲av成人不卡在线观看播放网| 国产爱豆传媒在线观看 | 日本 欧美在线| 国产黄色小视频在线观看| 亚洲狠狠婷婷综合久久图片| 欧美性猛交╳xxx乱大交人| 日韩欧美免费精品| 变态另类丝袜制服| 长腿黑丝高跟| 国产精品一区二区三区四区久久| 国产av一区二区精品久久| 亚洲美女视频黄频| 日韩欧美一区二区三区在线观看| 亚洲成人国产一区在线观看| 国产不卡一卡二| 男女下面进入的视频免费午夜| 午夜a级毛片| 88av欧美| 国产三级黄色录像| 欧美日韩中文字幕国产精品一区二区三区| 两个人免费观看高清视频| 91麻豆精品激情在线观看国产| 哪里可以看免费的av片| 大型av网站在线播放| 精品久久久久久久末码| 怎么达到女性高潮| 午夜成年电影在线免费观看| 欧美极品一区二区三区四区| 天堂影院成人在线观看| 9191精品国产免费久久| 国产黄片美女视频| 日韩免费av在线播放| 99re在线观看精品视频| 黄片小视频在线播放| or卡值多少钱| 男人的好看免费观看在线视频 | 精品不卡国产一区二区三区| 一进一出抽搐gif免费好疼| 午夜福利18| 草草在线视频免费看| www.999成人在线观看| 亚洲精品美女久久久久99蜜臀| 日本免费a在线| tocl精华| 国产精品亚洲av一区麻豆| 伦理电影免费视频| 老司机福利观看| 丰满人妻熟妇乱又伦精品不卡| 可以在线观看毛片的网站| 又黄又爽又免费观看的视频| 国产黄片美女视频| 人妻夜夜爽99麻豆av| 巨乳人妻的诱惑在线观看| 欧美午夜高清在线| 亚洲熟妇中文字幕五十中出| 听说在线观看完整版免费高清| 嫁个100分男人电影在线观看| 1024手机看黄色片| 精品日产1卡2卡| 久久 成人 亚洲| 亚洲电影在线观看av| 美女大奶头视频| 天堂√8在线中文| 国产黄色小视频在线观看| 无人区码免费观看不卡| 久久精品国产亚洲av香蕉五月| 丰满人妻熟妇乱又伦精品不卡| 亚洲 欧美一区二区三区| 国产精品乱码一区二三区的特点| 久久婷婷成人综合色麻豆| 亚洲真实伦在线观看| 国产精品av视频在线免费观看| 色综合亚洲欧美另类图片| 亚洲国产欧美人成| www.www免费av| 老司机福利观看| 中文字幕高清在线视频| 久久久久久免费高清国产稀缺| 成人三级黄色视频| 亚洲18禁久久av| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 黄色成人免费大全| av中文乱码字幕在线| 国产高清激情床上av| 亚洲国产欧洲综合997久久,| 免费看美女性在线毛片视频| 在线观看日韩欧美| 婷婷丁香在线五月| 丁香六月欧美| 亚洲电影在线观看av| 亚洲欧美日韩无卡精品| 久久久水蜜桃国产精品网| 一个人观看的视频www高清免费观看 | 操出白浆在线播放| 日韩欧美在线二视频| 国产成人精品久久二区二区免费| 白带黄色成豆腐渣| 此物有八面人人有两片| 88av欧美| 日韩高清综合在线| 国产激情久久老熟女| 国产激情偷乱视频一区二区| 一级黄色大片毛片| 免费看a级黄色片| 国产精品久久久人人做人人爽| 丝袜美腿诱惑在线| 麻豆国产av国片精品| 老司机午夜十八禁免费视频| 在线播放国产精品三级| 国产探花在线观看一区二区| 欧美乱码精品一区二区三区| 免费无遮挡裸体视频| 精品电影一区二区在线| 国产一区在线观看成人免费| 美女免费视频网站| 国产精品久久久久久精品电影| 视频区欧美日本亚洲| 久久精品成人免费网站| 可以在线观看的亚洲视频| 99久久精品国产亚洲精品| 免费在线观看日本一区| 在线观看舔阴道视频| 精品福利观看| 亚洲成人免费电影在线观看| 亚洲自拍偷在线| 日本精品一区二区三区蜜桃| 亚洲人成77777在线视频| 一个人观看的视频www高清免费观看 | 黄色a级毛片大全视频| netflix在线观看网站| 变态另类成人亚洲欧美熟女| 一级a爱片免费观看的视频| 亚洲熟妇中文字幕五十中出| 久久亚洲真实| 日韩高清综合在线| 久久久国产成人精品二区| xxx96com| 婷婷亚洲欧美| 久久人人精品亚洲av| АⅤ资源中文在线天堂| 俺也久久电影网| svipshipincom国产片| 中文字幕高清在线视频| 久久精品91蜜桃| 国产1区2区3区精品| 日本熟妇午夜| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 免费人成视频x8x8入口观看| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 人妻久久中文字幕网| 窝窝影院91人妻| 亚洲最大成人中文| 99国产极品粉嫩在线观看| 岛国视频午夜一区免费看| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 人妻夜夜爽99麻豆av| 亚洲,欧美精品.| 给我免费播放毛片高清在线观看| 亚洲欧美日韩高清在线视频| 又黄又爽又免费观看的视频| 国产男靠女视频免费网站| or卡值多少钱| 成人av在线播放网站| 看黄色毛片网站| 一级黄色大片毛片| 亚洲欧美日韩无卡精品| 国产亚洲精品久久久久5区| 成人三级黄色视频| 亚洲,欧美精品.| 在线观看免费日韩欧美大片| 欧美极品一区二区三区四区| 午夜激情av网站| 国产欧美日韩一区二区三| 亚洲狠狠婷婷综合久久图片| 免费在线观看亚洲国产| 色综合婷婷激情| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 婷婷丁香在线五月| 岛国在线观看网站| 在线观看一区二区三区| 亚洲五月天丁香| 亚洲天堂国产精品一区在线| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 欧美乱色亚洲激情| 18禁黄网站禁片免费观看直播| 麻豆av在线久日| 黄色丝袜av网址大全| 一边摸一边做爽爽视频免费| 1024香蕉在线观看| 好男人在线观看高清免费视频| 日韩国内少妇激情av| www.999成人在线观看| 最近最新免费中文字幕在线| 精华霜和精华液先用哪个| 岛国在线免费视频观看| 看片在线看免费视频| 亚洲全国av大片| 欧美日韩乱码在线| 中出人妻视频一区二区| 欧美日韩亚洲国产一区二区在线观看| 成人av一区二区三区在线看| 亚洲av成人av| 国产激情久久老熟女| 欧美乱码精品一区二区三区| 天堂动漫精品| 大型av网站在线播放| 成人一区二区视频在线观看| 成人av一区二区三区在线看| 床上黄色一级片| 在线播放国产精品三级| 一边摸一边做爽爽视频免费| 久久人妻福利社区极品人妻图片| 欧美中文综合在线视频| 亚洲真实伦在线观看| 精品欧美国产一区二区三| 亚洲欧美精品综合一区二区三区| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 欧美日韩黄片免| 国产精品爽爽va在线观看网站| 91老司机精品| 欧美日本亚洲视频在线播放| 最近最新中文字幕大全免费视频| 午夜福利成人在线免费观看| 久久香蕉精品热| 一个人免费在线观看的高清视频| 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 成人国产综合亚洲| 欧美日本视频| 在线视频色国产色| 51午夜福利影视在线观看| 成人亚洲精品av一区二区| 熟女电影av网| 哪里可以看免费的av片| 搡老岳熟女国产| videosex国产| 国产97色在线日韩免费| 超碰成人久久| 国产精品,欧美在线| 久久久精品国产亚洲av高清涩受| 国产精品亚洲美女久久久| 久久亚洲精品不卡| 一个人观看的视频www高清免费观看 | 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 午夜免费成人在线视频| 叶爱在线成人免费视频播放| 精品欧美一区二区三区在线| 亚洲中文日韩欧美视频| 久久婷婷成人综合色麻豆| 制服丝袜大香蕉在线| 91大片在线观看| 久久欧美精品欧美久久欧美| 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲乱码一区二区免费版| 最近在线观看免费完整版| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 国产av不卡久久| 国产亚洲欧美98| 九色国产91popny在线| 亚洲国产精品sss在线观看| 黄片大片在线免费观看| 精品久久久久久久人妻蜜臀av| 日韩欧美精品v在线| 夜夜爽天天搞| 在线看三级毛片| 亚洲成人久久性| 成在线人永久免费视频| 国产成人啪精品午夜网站| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 欧美日韩亚洲国产一区二区在线观看| 日韩中文字幕欧美一区二区| 中文字幕熟女人妻在线| 91大片在线观看| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 免费观看人在逋| 高潮久久久久久久久久久不卡| 三级国产精品欧美在线观看 | 国产91精品成人一区二区三区| 一本久久中文字幕| 日韩欧美在线乱码| 久久中文看片网| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 免费观看精品视频网站| 国产成人系列免费观看| 久9热在线精品视频| 真人做人爱边吃奶动态| 国产蜜桃级精品一区二区三区| 99久久综合精品五月天人人| 国产精品99久久99久久久不卡| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 欧美黄色片欧美黄色片| 国内精品久久久久久久电影| 国产精品98久久久久久宅男小说| 成人av一区二区三区在线看| 久久久久久大精品| 黄色毛片三级朝国网站| 国产精品,欧美在线| 特大巨黑吊av在线直播| 99国产极品粉嫩在线观看| 日韩欧美免费精品| 在线播放国产精品三级| 99久久久亚洲精品蜜臀av| 黄频高清免费视频| 国产精品一区二区免费欧美| 99国产极品粉嫩在线观看| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 午夜激情福利司机影院| 999久久久精品免费观看国产| 久久中文字幕一级| 国产日本99.免费观看| 国产精品亚洲一级av第二区| 久久久精品欧美日韩精品| 法律面前人人平等表现在哪些方面| 亚洲午夜精品一区,二区,三区| 久久久久久国产a免费观看| 熟女少妇亚洲综合色aaa.| 日韩免费av在线播放| 国产高清有码在线观看视频 | 国产熟女xx| 国产av不卡久久| 91大片在线观看| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 日本a在线网址| www国产在线视频色| 身体一侧抽搐| 99国产综合亚洲精品| 精品第一国产精品| 18禁黄网站禁片免费观看直播| 午夜精品久久久久久毛片777| 波多野结衣巨乳人妻| av欧美777| 桃红色精品国产亚洲av| 一本综合久久免费| 天天躁狠狠躁夜夜躁狠狠躁| 一级作爱视频免费观看| 日韩欧美在线乱码| АⅤ资源中文在线天堂| 午夜成年电影在线免费观看| 欧美又色又爽又黄视频| 欧美黑人巨大hd| 亚洲午夜精品一区,二区,三区| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 妹子高潮喷水视频| 中国美女看黄片| 人人妻人人看人人澡| 18禁国产床啪视频网站| 老司机午夜福利在线观看视频| 国产亚洲av高清不卡| 欧美在线一区亚洲| 国产亚洲精品一区二区www| 亚洲精品美女久久av网站| 在线播放国产精品三级| 午夜福利在线在线| 国产视频内射| 大型黄色视频在线免费观看| 色精品久久人妻99蜜桃| 熟妇人妻久久中文字幕3abv| 国产精品精品国产色婷婷| 国产精品野战在线观看| 日韩欧美三级三区| 亚洲成人久久爱视频| 午夜福利高清视频| 久久久久久久精品吃奶| bbb黄色大片| 少妇粗大呻吟视频| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 午夜免费成人在线视频| 久久久久九九精品影院| 亚洲专区国产一区二区| 香蕉丝袜av| 亚洲av片天天在线观看| 亚洲片人在线观看| aaaaa片日本免费| 日韩中文字幕欧美一区二区| 丝袜美腿诱惑在线| 久久久久久久久中文| 国产精品日韩av在线免费观看| xxxwww97欧美| 亚洲专区中文字幕在线| 中文字幕熟女人妻在线| 日日爽夜夜爽网站| 亚洲国产欧美人成| 成人三级做爰电影| 人人妻人人澡欧美一区二区| 国产v大片淫在线免费观看| 亚洲精品一区av在线观看| 日本一区二区免费在线视频| 男人舔女人的私密视频| 麻豆成人午夜福利视频| 国产精品久久久久久亚洲av鲁大| 美女 人体艺术 gogo| av福利片在线观看| 欧美黑人巨大hd| 国产精品一区二区精品视频观看| 免费观看人在逋| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 亚洲一区二区三区不卡视频| 女生性感内裤真人,穿戴方法视频| 国产探花在线观看一区二区| 床上黄色一级片| 9191精品国产免费久久| 亚洲狠狠婷婷综合久久图片| 成人高潮视频无遮挡免费网站| 母亲3免费完整高清在线观看| 亚洲欧美日韩东京热| 亚洲国产精品成人综合色| 国产精品一区二区精品视频观看| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 国产黄色小视频在线观看| 日韩av在线大香蕉| 亚洲欧美精品综合一区二区三区| 给我免费播放毛片高清在线观看| 人人妻人人澡欧美一区二区| 免费在线观看亚洲国产| 午夜福利在线观看吧| 国产亚洲精品一区二区www| 久久天躁狠狠躁夜夜2o2o| 超碰成人久久| 国产精品久久视频播放| 老熟妇乱子伦视频在线观看| 禁无遮挡网站| 午夜视频精品福利| 很黄的视频免费| 国产成人系列免费观看| 91大片在线观看| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| 日韩欧美免费精品| 99热这里只有是精品50| 国产精品爽爽va在线观看网站| 岛国在线观看网站| 99国产精品一区二区蜜桃av| 久久国产精品影院|