• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Review of Short-term Prediction Techniques for Ship Motions in Seaway

    2014-03-16 08:14:20HUANGLiminDUANWenyangHANYangCHENYunSai
    船舶力學(xué) 2014年12期

    HUANG Li-min,DUAN Wen-yang,HAN Yang,CHEN Yun-Sai

    (College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150001,China)

    1 Introduction

    Six degrees of freedom ship swaying motions occur through lifetime due to the ocean environmental disturbances including sea waves,wind and ocean current,etc.,which are dangerous in ship related maritime operations such as aircraft landing in carriers,ship-borne helicopter recovery,float over,launch and recovery of submarines,and cargo transfer between ships,and so on,especially in harsh conditions.

    First studies on ship motion prediction were based on the analysis of ship motion records.And of course data obtained along hours provide information on sea state,in terms of statistical parameters including probability distribution,mean,deviation,etc.However,the more important thing is to forecast the ship motions 5 to 10 seconds ahead of time.As it is very useful for the above offshore operations in both operational safety and efficiency aspects.For example,the prediction information is critical in the motion compensation which may prevent crash of cargo in cargo transfer,improving the fire accuracy of the ship-borne weapon systems and performance of the motion control systems.Besides,another important application of ship motion prediction is to extend the operational limits by forecasting the quiescent periods where the ship motions are within acceptable limits to perform a desire maritime activity.Classical prediction approaches employ statistical data to assess whether a task can be exe-cuted,and at present ship motions are estimated through human observation.However,this may result in the outcome that an operation is never executed,whereas quiescent periods do exist.

    In this paper,definitions of short term,middle term and long term prediction of ship motions are distinguished in Section 2 while Section 3 gives the various classifications of shortterm prediction techniques for ship motions.In Section 4,development of short-term prediction methods are reviewed and assessments on prediction approaches are made.Finally,concluding remarks and recommendations are given in Section 5.

    2 Definition of short-term prediction of ship motion

    Generally,ship motion prediction includes long term prediction,middle term prediction and short term prediction with various prediction durations,applications and prediction approaches.The long term prediction is also designated as the design limits prediction[1]forecasting the possible extreme responses encountered in few months,years or even the entire life time of the ship using fluid dynamic theory and statistical means.Similar to the pre-mentioned long term prediction,middle term prediction uses fluid dynamic techniques like strip theory,2D+t,three dimensions potential theory,and probability analysis to forecast the response characteristics including the significant values,slamming times and green water possibility,and so forth.Long term prediction is mainly employed in the preliminary design while the middle term prediction is more widely applied in the optimal design and understanding of ship’s performance in the ocean waves.

    Fig.1 Cargo transfer[2]

    Fig.2 Launch and recovery of Rigid Hulled Inflatable Boats[2]

    Unlike long term and middle term prediction of the ship motion,the short term prediction adopts information on what the ship is doing right now and what it has been doing in the recent past to forecast what it may be doing in the very near future using short term prediction theories consisting of time series analysis,nonlinear system identification theory and artificial intelligent methods.With various applications from long term and middle term prediction,short term prediction is always used in compensation control and decision making for the maritime special operations such as cargo transfer between ships(as shown in Fig.1),the launch and recovery operation of Rigid Hulled Inflatable Boats(RHIBs),submarines and ship-borne helicopters(as shown in Figs.2-4,respectively),floater motion to assist motion critical offshore operations and platforms,LNG-offloading connect,automatic UAV landing,etc.

    Fig.3 Launch and recovery of submarine[2]

    Fig.4 Launch and recovery of ship-borne helicopter[2]

    3 Categorization and difficulties in the short-term prediction of ship motion

    Short term prediction of the ship motion is widely studied for its great engineering application value,so far,enormous number of forecast models have been studied,where some of them were already carried out in marine trial.Traditionally,the short term prediction models are simply categorized into frequency domain methods and time domain methods[3].This categorization method failed to describe prediction models concern with both frequency domain and time domain aspects.Therefore,new classifications of short-term prediction techniques according to the characteristics of ship response and prediction theories are introduced.

    The first solution for classification is to summarize the short term prediction models into four kinds of prediction theories including linear prediction theory,nonlinear prediction theory,intelligent prediction theory and hybrid prediction theory according to differences of their theoretical categories.Among approaches mostly used in short-term prediction study,Autoregressive(AR)model and Kalman filter are involved in linear prediction theory,while wavelet analysis based and chaotic theory based prediction models belong to nonlinear prediction theory.Intelligent prediction theory usually includes artificial neural network(ANN),support vector regression(SVR),etc.And hybrid prediction theory consists of coupled forecast models such as empirical mode decomposition based radial basis function neural network(EMD-RBFNN),empirical mode decomposition based least mean square support vector machines(EMDLMSSVM),empirical mode decomposition based autoregressive(EMD-AR)model,and so on.

    Based on the differences of mathematical tools applied in prediction models,the second way for categorization divides the prediction methods into two categories.One category is classic statistical theory,calculus and methods of mathematical physics based prediction techniques containing classic time series analysis models,Kalman filter,minor component analysis(MCA)prediction model,etc.Another category is prediction models where the very recent developed techniques are used,including wavelet theory related prediction method,artificial neural network prediction model and its extensions.

    Besides,the basis of different modeling principles,the third approach for classifying the short term prediction models is to categorize them into three types of models:hydrodynamic based prediction models,classical time series prediction models and nonlinear and artificial theories based on short term prediction models.In this point of view,convolution predictor and Kalman filter are included in hydrodynamic based prediction models.And for classical time series prediction models,AR model,ARMA model and ARIMA model etc.are included.Nonlinear and artificial theories based on short term prediction models is likely to conclude artificial neural network(ANN),fuzzy theory related prediction models and chaotic theory based on prediction models.

    The final feasible categorization method is depending on the foundation of the signal characteristics existing in ship motion time history.In general,characteristic natures to describe a stochastic process including stationarity,non-stationarity,linearity and non-linearity.Prediction methods are concluded into four categories:stationary and linear prediction methods,stationary and nonlinear prediction methods,non-stationary and linear prediction models,nonstationary and nonlinear prediction methods.Details of each category are shown in Fig.5.

    Fig.5 Classification of short-term prediction approaches

    4 Development of short-term prediction methods for ship motions

    Short term prediction of the ship motion was widely studied for its great engineering application value in the past decades,so far,enormous number of forecast models had been studied,where some of them were already carried out to marine trial.

    4.1 Hydrodynamic based predictor

    The early efforts on short term prediction were related to hydrodynamics.Kaplan(1965)[4]developed a predictor by using the wave height measurements at the bow serving as input data which was then convoluted with the ship response kernel function to obtain the motion estimation in the coming seconds.Whereas,the ship response kernel function was derived out under the consumption of linear hydrodynamic theory.However,accurate response function and wave inputs are necessary to ensure desired prediction accuracy,which are always limited in engineering application.Later in(Kaplan,1969),the Wiener filter was proposed for linear prediction of ship motions[5],which estimated the prediction results depending on statistical parameters like ship motion power spectral densities.It was successfully applied to a carrier,obtaining 5~6 seconds of prediction horizon.But the implementation was complicated and the time was consumed.

    Short term prediction using state-space approaches has been studied in a considerable number of papers.Triantafyllou et al(1981;1982;1983)addressed Kalman filtering techniques[6-8]for the prediction of six-degree-freedom motions using a precise state-space model.Numerical simulation results of DD-963 destroyer show that the prediction precision of Kalman filter greatly depends on the ocean wave frequencies,and estimation results of 8-10 seconds advance obtained for the roll while 5 seconds with respect to pitch without noise condition.On the contrast,for the noise condition,prediction horizon can reach 6-8 seconds for roll and 2-3 seconds with respect to pitch.However,Kalman filter is still difficult to be applied to forecast ship motions in the real world for its shortcomings.First of all,accurate state-space equations and noise statistics are necessary in implementing Kalman filter,which are hard to obtain in the real engineering problems.Besides,tremendous computational efforts required to solve the ship hydrodynamic coefficients for the state-space equations,result in difficulty to real time implementation.

    4.2 Classical time series prediction model

    Time series analysis is another possible solution accomplishing the short term prediction of ship motions,which only requires time history of the ship motions or with ocean waves for modeling.Practical limitations of requiring accurate state-space and noise estimation in the Kalman filter and precise response kernel function in the convolution predictor are avoided.

    There are three classic time series models for short term prediction,i.e.autoregressive(AR)model,moving average(MA)model and autoregressive moving average(ARMA)model.Among these models,AR model has been widely studied in a large number of papers for its advantages:low computation cost,convenient in real-time identification,high adaptive nature.Research works involving identification techniques for determining the model order and estimating the corresponding coefficients have been extensively surveyed.For order determination of AR model,Akaike Information Criterion(AIC)is the mostly adopted way for this problem,however,the prediction performance was not always satisfied.To improve the performance of AR model,Peng et al(2006)[9]developed an order selection technique based on corner condition,and simulation results showed that the computational complexity was shortcut with the prediction precision increased more than AR algorithm according to AIC criterion order selection.There are many algorithms for parameter estimation of AR model,such as recursive least square(RLS)[10-11]algorithm,lattice recursive least square(LRLS)algorithm[12],etc.

    AR model shows good prediction performance in stationary process,however,prediction accuracy in non-stationary and non-linear situation is out of expectation.To improve the prediction performance,Yumori(1981)[13]developed a novel ARMA model based on leading indicator method using a statistical way that finds a time domain model which best fits an input wave sensor time history to the ship response time history.It showed good predictions of phase and amplitude for 2 to 4 seconds in advance and phase for 8 to 10 seconds in 8 second waves.Simulation results by Zhao(2003)[14]using ship model testing data showed that ARMA model performances were better than AR model in prediction accuracy.But satisfactory prediction results only are obtained if it can sense waves at a distance from the ship which is not always available in the real situation.

    Among classic time series forecast models,linear prediction models are mostly focused for advantages like less computational complexity and memory demands,convenient for real-time realization.However,prediction results are far from expected in harsh sea conditions and the real motions of the ship and ocean waves are always non-stationary that conflicts with the stationary assumptions in time series analysis models.

    4.3 Nonlinear and intelligent based prediction model

    To overcome the nonlinearity and non-stationarity involved in the real-life ship motions,nonlinear theory and artificial intelligent identification methods are employed to short term prediction.

    Zhou and Zhao[15]proposed a nonlinear linear autoregressive(NAR)model by using Orthogonalization to identify NAR model,and multi-step forward prediction was also derived.Simulation results of NAR model showed better prediction precision than AR model.

    Artificial neural network(ANN)is widely preferred in processing non-linear and non-stationary problem for its intelligent ability.Investigations into the application of artificial neural network methods for short term prediction of ship motion by Khan[16]show that the artificial neural network produces excellent predictions and the ship motion may be satisfactorily predicted for up to 7 seconds.Aiming at making good prediction for non-stationry and non-linear ship motion,Weng et al[17]addressed a prediction technique based on second-order adaptive Volterra series.Further,to deal with the chaos characteristic in the ship motion,prediction model based on chaotic time series theory and radial basis function(RBF)artificial neural net-work are implemented for short term prediction[18].Simulation results show that it is able to predict ship motion acceptably up to 10 seconds with a precision rate of 85%.

    Though the above nonlinear and intelligent models perform well in data fitting,their applications in real engineering problem are still constrained because of disadvantages such as high computational cost,demanding substantial samples,non-adaptive in model identification,and so forth.

    Hybrid estimation methods are possible solutions,and attempts are carried out.In which,empirical mode decomposition[19](EMD)method was widely used to be coupled with various prediction models.Zhou et al[20]invented an empirical mode decomposition method(EMD)based on least mean square support vector machines(LSSVM)for the prediction issue.In previous study,Hou et al[21]developed an empirical mode decomposition based on radial basis function neural network(EMD-RBFNN)model to deal with the nonlinearity and non-stationarity of the ship swaying motions.But further research works in adaptive algorithms for radial function determination are still needed.Compared with the above hybrid prediction models,empirical mode decomposition autoregressive(EMD-AR)model proposed by Duan et al[22]required less computational complexity with better adaptation.Non-stationary and nonlinear characteristics of the ship motion are overcome thorough adaptive empirical mode decomposition,where simple intrinsic mode functions(IMFs)produced.After that,each component is predicted by a fitting AR model.But for all EMD based on prediction models,end effects in real-time EMD algorithm are major challenges.

    5 Conclusions and recommendations

    A review of short term prediction has been presented.Firstly,differences between short term prediction and traditional prediction of ship motions were distinguished.Then application and categorization of the short term were then introduced.Development and research challenges of short-term prediction techniques were discussed in detail.

    Linear system theory based on prediction approaches are always easy to operate,demanding low computation cost and convenient for real-time identification.However,their prediction performances are not satisfactory,especially for non-linear and non-stationary ship motions.Nonlinear and intelligent theories based on the prediction methods show good predictions for nonlinear and non-stationary ship motions when the training data are sufficient.But it is still difficult for real-time/on-line implementation of those prediction techniques as large computational complexities are involved and selection of the model parameters is not always adaptive.Therefore,Efficiency,adaptation and accuracy of non-stationary and nonlinear prediction techniques for ship motions are the key parts of future research.

    Acknowledgement

    This work was financially supported by he National Natural Science Foundation of China(No.11272097).

    [1]Shen Zhenbang,Liu Yingzhong.Theory of ship[M].Shanghai:Shanghai Jiao Tong University Press,2004:337-450.

    [2]Henry G,Cox I,Crossland P,Duncan J.Virtual ships:NATO standards development and implementation[C].United Kingdom,2009:1-16.

    [3]Zhao Xiren,Peng Xiuyan,Shen Yan,Xie Meiping.Study status quo of extremely short-time modeling and predicting of ship motion[J].Ship Engineering,2002:4-8.

    [4]Kaplan P,Sargent T P.A preliminary study of prediction techniques for aircraft carrier motions at sea[J].Oceanics,Inc.Rpt.,1965:65-23.

    [5]Kaplan P.A study of prediction techniques for aircraft carrier motions at sea[J].Journal of Hydronautics,1969,3(3):121-131.

    [6]TriantafyIlou M,Athans M.Real time estimation of the heaving and pitching motions of a ship using a Kalman filter[C]//Proc.Oceanics 81,Sept 1981.Boston MA,1981.

    [7]TriantafylIou M.and Bodson M.Real time prediction of marine vessel motion using Kalman filtering techniques[C]//Proc.OTC.Houston,Texas,1982.

    [8]TriantafylIou M,Athans M.Real time estimation of motions of a destroyer using KaIman filtering techniques[R].Laboratory for Information and Decision Systems Rep,MIT Cambridge,1983.

    [9]Peng Xiuyan,Zhao Xiren,Xu Linlin.Real-time prediction algorithm research of ship attitude motion based on order selection with corner condition[C]//1st International Symposium on Systems and Control in Aerospace and Astronautics(ISSCAA),IEEE.Harbin,2006:1070-1075.

    [10]Yang Xilin.Displacement motion prediction of a landing deck for recovery operations of rotary UAVs[J].International Journal of Control,Automation,and Systems,2013,11(1):58-64.

    [11]Peng Xiuyan,Zhao Xiren,Gao Qifen.Research on real-time prediction algorithm of ship attitude motion[J].Journal of System Simulation,2007,19(2):268-271.

    [12]Peng Xiuyan,Liu Changde.Extreme short time prediction of ship motion based on lattice recursive least square[J].Journal of Ship Mechanics,2012,16(1-2):44-51.

    [13]Yumori I R.Real time prediction of ship response to ocean waves using time series analysis[C].IEEE Oceans,1981.

    [14]Zhao Xiren,Peng Xiuyan,Lu Suping,Wei Naxin.Extreme short prediction of big ship motion having wave survey[J].Journal of Ship Mechanics,2003,7(2):39-44.

    [15]Zhou Shuqiu,Zhao Xiren.A nonlinear method of extreme short time prediction for warship motions at sea[J].Journal of Harbin Engineering University,1992,17(4):1-7.

    [16]Khan A,Bil C,Marion K E.Ship motion prediction for launch and recovery of air vehicles[J].OCEANS,2005,Proceeding of MTS/IEEE,2005,3:2795-2801.

    [17]Weng Zhenping,Gu Min,Liu Changde.Extreme short-term prediction of ship motion based on second-order adaptive Volterra series[J].Journal of Ship Mechanics,2010,14(7):732-740.

    [18]Gu Min,Liu Changde,Zhang Jinfeng.Extreme short-term prediction of ship motion based on chaotic theory and RBF neural network[J].Journal of Ship Mechanics,2013,17(10):1147-1152.

    [19]Huang N E,Shen Z,Long S,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J].Proceedings of the Royal Society of London Series A,1998,454:903-995.

    [20]Zhoubo,Shi Aiguo.Empirical mode decomposition based LSSVM for ship motion prediction[J].Advance in Neural Networks.Lecture Notes in Computer Science.2013,7951:319-325.

    [21]Hou Jianjun,Qi Yansheng.On the prediction in time domain of ship non-stationary swaying motions[C]//Proceedings of International Conference on Information Technology and Computer Science.New York,2011:230-234.

    [22]Duan Wenyang,Huang Limin,et al.EMD-AR based short-term prediction model for non-stationary ship motions[J].Journal of Harbin Engineering University,2014.(Submitted)

    黑人巨大精品欧美一区二区mp4| 少妇熟女aⅴ在线视频| 久久人妻av系列| 脱女人内裤的视频| 狂野欧美激情性xxxx| 午夜激情欧美在线| 国产成人一区二区三区免费视频网站| 毛片女人毛片| 最近视频中文字幕2019在线8| 色在线成人网| 色哟哟哟哟哟哟| 亚洲熟女毛片儿| 国产精品一区二区三区四区免费观看 | 精品久久久久久久久久久久久| 色视频www国产| 国产97色在线日韩免费| 三级毛片av免费| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 在线观看日韩欧美| 18美女黄网站色大片免费观看| 青草久久国产| 国产日本99.免费观看| 成人三级做爰电影| 最近视频中文字幕2019在线8| www.999成人在线观看| 久久中文字幕一级| 一个人观看的视频www高清免费观看 | 国产精品爽爽va在线观看网站| or卡值多少钱| а√天堂www在线а√下载| 桃红色精品国产亚洲av| 免费在线观看亚洲国产| 欧美中文日本在线观看视频| 成人18禁在线播放| 在线播放国产精品三级| 精品一区二区三区av网在线观看| 国产激情偷乱视频一区二区| 老熟妇乱子伦视频在线观看| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| 黄片小视频在线播放| 91av网站免费观看| 天堂√8在线中文| 日韩成人在线观看一区二区三区| 国产熟女xx| 亚洲在线观看片| 国产精品国产高清国产av| 国产精品久久久av美女十八| 99国产精品一区二区蜜桃av| 国产精品永久免费网站| 在线观看66精品国产| 久久精品aⅴ一区二区三区四区| 极品教师在线免费播放| 啪啪无遮挡十八禁网站| 一个人免费在线观看电影 | 成年版毛片免费区| 久久精品国产清高在天天线| 最近最新中文字幕大全免费视频| 国内久久婷婷六月综合欲色啪| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 成年人黄色毛片网站| 制服人妻中文乱码| 色哟哟哟哟哟哟| 深夜精品福利| 国产一区二区在线av高清观看| 巨乳人妻的诱惑在线观看| 国产成人系列免费观看| 国产私拍福利视频在线观看| 国产精品九九99| 男女之事视频高清在线观看| 天天躁日日操中文字幕| 中国美女看黄片| 桃色一区二区三区在线观看| 最新美女视频免费是黄的| 一本综合久久免费| 成人av一区二区三区在线看| 日本与韩国留学比较| 99久久精品热视频| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区91| 青草久久国产| 非洲黑人性xxxx精品又粗又长| 国内久久婷婷六月综合欲色啪| 国产精品野战在线观看| 欧美日韩精品网址| 999久久久国产精品视频| 国产一区在线观看成人免费| 欧美黑人欧美精品刺激| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 男人的好看免费观看在线视频| 久久久国产成人精品二区| 黄色丝袜av网址大全| 国产欧美日韩精品一区二区| 91在线观看av| 黑人巨大精品欧美一区二区mp4| 999久久久国产精品视频| 美女大奶头视频| 国产成人福利小说| a在线观看视频网站| 性色av乱码一区二区三区2| 99国产极品粉嫩在线观看| 国产精品久久久久久精品电影| 久久精品综合一区二区三区| 亚洲av日韩精品久久久久久密| 久久久久九九精品影院| 一级作爱视频免费观看| 在线看三级毛片| 国产日本99.免费观看| 精品久久久久久久久久久久久| 欧美三级亚洲精品| 琪琪午夜伦伦电影理论片6080| 国产成人一区二区三区免费视频网站| 亚洲专区字幕在线| 亚洲av免费在线观看| 国产淫片久久久久久久久 | 亚洲欧美日韩卡通动漫| 看免费av毛片| 91av网一区二区| 嫩草影院入口| 成人精品一区二区免费| 日本 av在线| 性色avwww在线观看| 亚洲在线自拍视频| 男人舔奶头视频| 91av网站免费观看| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 制服丝袜大香蕉在线| 亚洲国产精品久久男人天堂| 国产极品精品免费视频能看的| 九色成人免费人妻av| 狂野欧美白嫩少妇大欣赏| 好看av亚洲va欧美ⅴa在| av国产免费在线观看| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 国产黄片美女视频| 亚洲国产欧美人成| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线 | 国产精品99久久99久久久不卡| 欧美黄色片欧美黄色片| 国产v大片淫在线免费观看| 黄色日韩在线| 国产主播在线观看一区二区| 麻豆国产97在线/欧美| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久毛片微露脸| 免费看美女性在线毛片视频| 午夜精品在线福利| 亚洲国产中文字幕在线视频| 国产伦在线观看视频一区| 12—13女人毛片做爰片一| 久久中文看片网| 最近最新中文字幕大全免费视频| xxxwww97欧美| 美女被艹到高潮喷水动态| 国产一区二区三区视频了| 精品国产美女av久久久久小说| 亚洲av熟女| 欧美中文日本在线观看视频| 国产熟女xx| 亚洲精品一区av在线观看| 天天添夜夜摸| 亚洲人成电影免费在线| 日本撒尿小便嘘嘘汇集6| 久久这里只有精品中国| 老汉色av国产亚洲站长工具| 狠狠狠狠99中文字幕| 国内精品久久久久久久电影| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 国产欧美日韩一区二区三| cao死你这个sao货| 特大巨黑吊av在线直播| 亚洲无线观看免费| 欧美一区二区精品小视频在线| 午夜免费观看网址| 69av精品久久久久久| 久久久国产成人精品二区| 欧美日韩国产亚洲二区| 日本与韩国留学比较| 俄罗斯特黄特色一大片| 久久这里只有精品19| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| x7x7x7水蜜桃| 国内精品美女久久久久久| 叶爱在线成人免费视频播放| 成人18禁在线播放| 成人三级黄色视频| 一进一出抽搐动态| 国产精品亚洲一级av第二区| 极品教师在线免费播放| 两个人看的免费小视频| 亚洲美女黄片视频| 成人性生交大片免费视频hd| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 人人妻人人看人人澡| 国产精品久久久人人做人人爽| 一进一出抽搐动态| 熟女电影av网| 久久久久久久精品吃奶| 国产亚洲精品一区二区www| 国产欧美日韩一区二区三| 午夜激情福利司机影院| 曰老女人黄片| 久久香蕉国产精品| 天堂影院成人在线观看| 日韩欧美精品v在线| 青草久久国产| 日韩精品中文字幕看吧| 舔av片在线| 观看免费一级毛片| 美女免费视频网站| 在线观看免费午夜福利视频| 亚洲国产精品合色在线| 国产av不卡久久| 色综合欧美亚洲国产小说| 国产精品99久久99久久久不卡| 欧美午夜高清在线| 欧美性猛交黑人性爽| 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 波多野结衣巨乳人妻| 亚洲精品一区av在线观看| 观看美女的网站| 欧美中文综合在线视频| 老熟妇乱子伦视频在线观看| 色噜噜av男人的天堂激情| 成人午夜高清在线视频| 久久精品国产99精品国产亚洲性色| 午夜久久久久精精品| 天天一区二区日本电影三级| 美女免费视频网站| 91在线精品国自产拍蜜月 | 露出奶头的视频| 国产成人一区二区三区免费视频网站| 亚洲中文日韩欧美视频| 免费看a级黄色片| 18禁美女被吸乳视频| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人伦免费视频| 久久天堂一区二区三区四区| 两性夫妻黄色片| 中文字幕久久专区| 伊人久久大香线蕉亚洲五| 最近视频中文字幕2019在线8| 99久久综合精品五月天人人| 国产乱人伦免费视频| 亚洲av免费在线观看| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 亚洲av电影在线进入| 久久久久久久久免费视频了| 巨乳人妻的诱惑在线观看| 嫩草影院入口| 手机成人av网站| 午夜福利免费观看在线| 国内精品久久久久精免费| 热99在线观看视频| 欧美极品一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| aaaaa片日本免费| 国内精品美女久久久久久| or卡值多少钱| 免费在线观看日本一区| 国产高清视频在线观看网站| 国产高清三级在线| 午夜a级毛片| 日本黄色片子视频| 久久久久久九九精品二区国产| 成年人黄色毛片网站| 亚洲av五月六月丁香网| 欧美激情在线99| 小蜜桃在线观看免费完整版高清| 亚洲av美国av| 亚洲国产精品久久男人天堂| 午夜a级毛片| 黄色片一级片一级黄色片| 亚洲国产高清在线一区二区三| 99国产精品一区二区蜜桃av| 免费一级毛片在线播放高清视频| 十八禁网站免费在线| 日本三级黄在线观看| 日本与韩国留学比较| 在线观看日韩欧美| 午夜视频精品福利| 精品一区二区三区视频在线 | 久久亚洲精品不卡| 三级毛片av免费| 又黄又粗又硬又大视频| 一a级毛片在线观看| 国产精品 国内视频| 久久热在线av| 伊人久久大香线蕉亚洲五| 成人特级av手机在线观看| 又爽又黄无遮挡网站| 在线观看66精品国产| 19禁男女啪啪无遮挡网站| 成人鲁丝片一二三区免费| 一级黄色大片毛片| 亚洲熟妇中文字幕五十中出| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| www日本黄色视频网| 午夜免费激情av| 欧美最黄视频在线播放免费| 久久久久亚洲av毛片大全| 最近最新中文字幕大全免费视频| 真实男女啪啪啪动态图| 亚洲av成人不卡在线观看播放网| 成在线人永久免费视频| 亚洲国产中文字幕在线视频| 男女下面进入的视频免费午夜| 免费看日本二区| 最好的美女福利视频网| 日本撒尿小便嘘嘘汇集6| 日韩人妻高清精品专区| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 成人无遮挡网站| 国产精品国产高清国产av| 性色av乱码一区二区三区2| 黑人操中国人逼视频| 国产午夜精品久久久久久| 高潮久久久久久久久久久不卡| 亚洲激情在线av| 日本三级黄在线观看| 一a级毛片在线观看| www国产在线视频色| 国产男靠女视频免费网站| 三级毛片av免费| 999久久久国产精品视频| 国产淫片久久久久久久久 | 久久热在线av| 亚洲熟妇中文字幕五十中出| 免费在线观看日本一区| 久久久久久国产a免费观看| 欧美最黄视频在线播放免费| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 久久精品综合一区二区三区| 欧美高清成人免费视频www| 琪琪午夜伦伦电影理论片6080| 窝窝影院91人妻| 九色成人免费人妻av| 怎么达到女性高潮| 哪里可以看免费的av片| 国产1区2区3区精品| 国产黄a三级三级三级人| 免费在线观看日本一区| 色综合站精品国产| 国产亚洲精品av在线| 久久久国产精品麻豆| 天堂av国产一区二区熟女人妻| 19禁男女啪啪无遮挡网站| 欧美最黄视频在线播放免费| 久久精品综合一区二区三区| 99久久99久久久精品蜜桃| 色综合站精品国产| 国产亚洲精品一区二区www| 俄罗斯特黄特色一大片| 不卡av一区二区三区| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 嫩草影院入口| 欧美三级亚洲精品| 成人av在线播放网站| 亚洲成人久久性| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| e午夜精品久久久久久久| 亚洲美女黄片视频| 一卡2卡三卡四卡精品乱码亚洲| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 天堂动漫精品| 丁香六月欧美| 叶爱在线成人免费视频播放| 欧美日韩瑟瑟在线播放| 18美女黄网站色大片免费观看| 在线观看免费视频日本深夜| 午夜精品在线福利| 又粗又爽又猛毛片免费看| 国内精品久久久久久久电影| 少妇人妻一区二区三区视频| 亚洲国产中文字幕在线视频| 国产精品,欧美在线| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 中文字幕高清在线视频| 黄色视频,在线免费观看| 亚洲一区二区三区不卡视频| 国产高清有码在线观看视频| 色老头精品视频在线观看| 亚洲av熟女| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国内视频| 国内精品美女久久久久久| 在线观看免费午夜福利视频| 国产三级在线视频| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 丰满人妻熟妇乱又伦精品不卡| 丰满人妻一区二区三区视频av | 高潮久久久久久久久久久不卡| 波多野结衣高清作品| 可以在线观看毛片的网站| 露出奶头的视频| 特级一级黄色大片| 久久精品91无色码中文字幕| 久久国产精品影院| 国产淫片久久久久久久久 | 香蕉久久夜色| 色播亚洲综合网| 国产亚洲av高清不卡| 香蕉国产在线看| 18禁观看日本| 老司机午夜福利在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 亚洲av成人一区二区三| 欧美激情在线99| 在线观看免费视频日本深夜| 成人av在线播放网站| 日本五十路高清| 特大巨黑吊av在线直播| 久久中文看片网| 99热精品在线国产| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 国产欧美日韩一区二区精品| 亚洲真实伦在线观看| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站| 久久久久久久精品吃奶| 国产黄片美女视频| 欧美乱妇无乱码| 嫩草影视91久久| 美女高潮的动态| 国产又色又爽无遮挡免费看| 亚洲人成网站高清观看| 狂野欧美激情性xxxx| 黄色女人牲交| 中文字幕久久专区| 精品国产乱码久久久久久男人| 手机成人av网站| 国产亚洲av嫩草精品影院| 91字幕亚洲| 亚洲第一欧美日韩一区二区三区| 最新中文字幕久久久久 | av欧美777| 亚洲天堂国产精品一区在线| 国产精品日韩av在线免费观看| 国产午夜精品论理片| 亚洲黑人精品在线| 黄色 视频免费看| e午夜精品久久久久久久| 午夜a级毛片| 黑人欧美特级aaaaaa片| 亚洲性夜色夜夜综合| 国产毛片a区久久久久| 美女cb高潮喷水在线观看 | 精品日产1卡2卡| 久久亚洲精品不卡| 精品国内亚洲2022精品成人| 波多野结衣高清作品| 男女那种视频在线观看| 久久亚洲精品不卡| 欧美黄色淫秽网站| 99久久久亚洲精品蜜臀av| 嫁个100分男人电影在线观看| 曰老女人黄片| 日日干狠狠操夜夜爽| 一本综合久久免费| 国产精品av久久久久免费| 国产亚洲精品综合一区在线观看| 成人特级av手机在线观看| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 一本精品99久久精品77| 黄色女人牲交| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| 人妻久久中文字幕网| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看| 亚洲自拍偷在线| 免费看日本二区| 国产真人三级小视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲成人中文字幕在线播放| 久久久久国产一级毛片高清牌| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 99在线人妻在线中文字幕| 一个人看视频在线观看www免费 | 男女那种视频在线观看| 俄罗斯特黄特色一大片| 久久香蕉精品热| 免费在线观看成人毛片| 一进一出好大好爽视频| 亚洲午夜理论影院| 久久精品91无色码中文字幕| 此物有八面人人有两片| 熟女少妇亚洲综合色aaa.| 国产av不卡久久| 亚洲最大成人中文| 麻豆成人午夜福利视频| 国产一区二区在线观看日韩 | 在线国产一区二区在线| 国产精品 国内视频| 日韩人妻高清精品专区| 国产成人啪精品午夜网站| 国产精品九九99| 亚洲av五月六月丁香网| 18禁黄网站禁片午夜丰满| 亚洲国产看品久久| 丁香六月欧美| 日本 欧美在线| 好男人电影高清在线观看| 亚洲国产精品久久男人天堂| 久久久国产精品麻豆| 一个人看的www免费观看视频| 亚洲国产色片| 国产一区二区在线观看日韩 | 亚洲国产日韩欧美精品在线观看 | 特大巨黑吊av在线直播| 五月玫瑰六月丁香| 中文资源天堂在线| 十八禁人妻一区二区| 精品人妻1区二区| 国产综合懂色| av在线天堂中文字幕| 亚洲中文字幕日韩| 色视频www国产| 亚洲av免费在线观看| 国产伦在线观看视频一区| 久久性视频一级片| 一级a爱片免费观看的视频| 亚洲人成网站高清观看| 在线观看美女被高潮喷水网站 | 午夜精品一区二区三区免费看| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 成熟少妇高潮喷水视频| 琪琪午夜伦伦电影理论片6080| 亚洲精品一卡2卡三卡4卡5卡| 很黄的视频免费| 丰满人妻一区二区三区视频av | 欧美不卡视频在线免费观看| 成人性生交大片免费视频hd| 草草在线视频免费看| 一级毛片高清免费大全| 色播亚洲综合网| 此物有八面人人有两片| 国产aⅴ精品一区二区三区波| 嫩草影院精品99| 国产精品1区2区在线观看.| 可以在线观看的亚洲视频| 国产又色又爽无遮挡免费看| 一区二区三区国产精品乱码| 欧美成人一区二区免费高清观看 | 精品久久久久久成人av| 久久久水蜜桃国产精品网| 成人国产综合亚洲| 别揉我奶头~嗯~啊~动态视频| 巨乳人妻的诱惑在线观看| 91老司机精品| 最近最新中文字幕大全免费视频| 日韩免费av在线播放| 99久久成人亚洲精品观看| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 日本在线视频免费播放| 免费大片18禁| 国产精品综合久久久久久久免费| 午夜成年电影在线免费观看| 露出奶头的视频| 精品国产超薄肉色丝袜足j| 人妻久久中文字幕网| 亚洲av电影在线进入| 精品一区二区三区视频在线观看免费| 成人三级做爰电影| 淫秽高清视频在线观看| 亚洲熟女毛片儿| 成人三级做爰电影| 亚洲av电影在线进入| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉精品热| 99久久综合精品五月天人人| 成人特级av手机在线观看| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 国产精品爽爽va在线观看网站| 精品一区二区三区视频在线观看免费| 成人亚洲精品av一区二区| 国产一区二区三区在线臀色熟女| 999久久久精品免费观看国产| 国产精品久久电影中文字幕| 天天添夜夜摸| 12—13女人毛片做爰片一| 亚洲欧洲精品一区二区精品久久久| 亚洲av第一区精品v没综合| 此物有八面人人有两片|