• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improving terahertz imaging by light field processing

    2023-01-07 05:41:44XINTaoPENGShuoDONGLiquanZHANGShaohuiZHANGCunlin
    中國光學(xué) 2022年6期

    XIN Tao ,PENG Shuo ,DONG Li-quan,ZHANG Shao-hui ,ZHANG Cun-lin

    (1. College of Career Technology, Hebei Normal University, Shijiazhuang 050024, China;2. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;3. Department of Physics, Capital Normal University, Beijing 100048, China)

    Abstract: Terahertz (THz) technology becomes increasingly important nowadays, especially in testing and security applications. Extending the field of view and increasing the imaging quality are both vital challenges for THz imaging. To address these problems, we build a THz light field imaging system based on a singlecamera scanning configuration, which utilizes the 4D information of the spatial and angular distribution of THz waves. Based on the 4D plenoptic function and the parameterization method with two parallel planes,the intensity consistency of THz propagation is used for refocusing calculation, then a series of refocused images can be obtained by integrating original light field images corresponding to different imaging distances and views. Compared with the original THz imaging, the field of view and the imaging quality of the THz light field imaging are effectively improved. In our experiment, the field of view was enlarged by a factor of 1.84 and the resolution increased from 1.3 mm to 0.7 mm. Furthermore, information on some obscured targets could also be retrieved by defocusing the obstructions. This method could improve the imaging quality of THz imaging as well as expand its functions, which inspires a new way for THz nondestructive testing (NDT) and security inspection.

    Key words: terahertz imaging; light field imaging; THz nondestructive testing

    1 Introduction

    Terahertz (THz) waves are located between the millimeter-wave band and the infrared band, with advantages that include low energy consumption,strong penetration and no ionizing effect on organisms[1]. It can transmit through some objects opaque in visible wavelengths such as paper and cloth, thus providing great potential for nondestructive testing(NDT)[2]. With tremendous progress of sources and detectors[3-6], THz technology has been applied to security apparatus based on millimeter waves in airports[1,7-8]and imaging systems for medical detection[9-10]. However, compared with x-ray imaging, the wavelength of the THz band is relatively long, which limits the performance of THz imaging[11]and induces many problems such as a narrow field of view and a low resolution.

    Light field imaging is a computational imaging method that could record the spatial and angular distribution of light at the same time[12]. Acquisition approaches of the light field can be divided into three categories[13]: time-sequential capture, multisensor capture and multiplexed imaging. Current research of light field imaging is mainly focused on the visible light band[14-15]and has made plentiful achievements, such as light field imaging theories[16-18],numerical measurement[19], denoising methods[20],parallax estimation, depth estimation[21]and imaging of obscured objects[12]. Some researchers have studied the light field imaging of the THz band, and the results show that direction-based light field mapping is feasible for THz frequencies[22-24].

    In this paper, we construct a THz light field imaging system using a movable THz camera. According to our experiment’s results, the field of view was enlarged by a factor of 1.84 time, and the resolution was increased from 1.3 mm to 0.7 mm. In addition, by refocusing with proper parameters, we got clear images corresponding to different imaging distances and views, and restored the information of obscured parts of the target. Therefore, we have shown that this method improved the imaging quality, indicating good application potential in nondestructive testing (NDT), non-contact measurement and security inspection.

    2 Experiment

    2.1 THz light field imaging system

    We implement the time-sequential capture mode for a THz light field with a single-camera scanning imaging system. The camera is mounted on a two-dimensional translation stage. The principal planes of the translation platform, the lens and the detector of the camera are parallel with each other.The controller can precisely locate the exact position of the camera to take photos at different sampling points. During this acquisition process, the settings of the camera are fixed. Thus, a series of THz sub-images with their 2D positions can be taken by the camera. The schematic diagram of the system is shown in Fig. 1, which consists of a continuous wave (CW) terahertz source (SIFIR-50 THz), a beam expander collimation system, a two-dimensional translation platform, a filter plate(designed in-house) and a camera (INO IRXCAMTHz-384i).

    Fig. 1 Schematic diagram of the system. (a) The THz camera and the two-dimensional translation stage; (b) the light filter.

    2.2 Light field imaging and refocusing

    Similar to the visible light band, the spatial and angular distribution of the intensity of THz waves through the samples can be parametrized asL(u,v,x,y) based on two arbitrary reference planes parallel with each other, as shown in Fig. 2(a),whereLrepresents the light intensity, and (u,v) and(s,t) represent the coordinates of the intersections of the light ray and the two planes, respectively. To parameterize our light field, we choose two virtual planes: the original object plane and the principal plane of the camera lens. All sub-images of our system are conjugate with the object plane but captured separately and correspond to different imaging coordinate systems. We choose a reference sub-image (u0,v0) and stipulate the coordinates of points in the object plane to be identical to their corresponding pixels on the reference sub-image. The sampling position of the optical center of the camera is represented by angular coordinates (u,v),while the coordinates of points in the object plane are represented by (s,t), as shown in Fig. 2(b).Without loss of generality, we use the 2D simplificationL(u,s) for our demonstration.

    As the intensity of the THz waves along every light ray in the light field is consistent, we can calculate the imaging result of an arbitrary virtual object plane parallel with the original object plane by refocusing based on a chosen reference sub-image(u0,v0). During the refocusing process, for a pixel of the reference sub-image with coordinates (u0,v0,s,t),we calculate the spatial coordinate (sα,tα) of its corresponding pixel on the sub-image with spatial coordinate (u,v) following equation (1), while the angular coordinates of all points remain unchanged, as shown in Fig.3.

    Fig. 2 Parametrization of the light field. (a) Pairs of points on two parallel planes; (b) parameterization of our system

    Fig. 3 The resampling diagram of refocusing process.When changing the object distance, the spatial coordinate S of the reference sub-image u0 are constant, while the corresponding object point moves from P to Pα. According to the geometric principles,we can calculate the new coordinate Sα of sub-image u, which is different from the coordinate S1 corresponding to P

    In the refocusing process, the coordinates calculated by equation (1) for resampling are generally not integers, so the corresponding intensity valueL(u,v,sα,tα) is generated by the inverse distanceweighted linear interpolation of four adjacent pixels’values.

    where,Du,Dv,dsanddtare the unit lengths of the angular coordinates and the spatial coordinates respectively.Landlare the original object distance and imaging distance respectively.αis the ratio of the new object’s distance from the original one. For a specific light field,Dul/dsLandDvl/dtLare constant parameters, thus the resampling is determined byα, and the imaging resultLαcan be represented as the integration ofuandvafter resampling:

    The magnificationMαof the refocused result can be calculated by:

    3 Results and discussion

    We choose a series of samples to verify the performance of our system. The focal lengthfof the camera is 44 mm, the original object distanceLis 750 mm, and the pixel sizeds×dtis 35 μm×35 μm.In our experiments, the sampling positions of the THz camera are distributed on a grid on theu-o-vplane. The size of the grid and the distances of adjacent points in theu-direction andv-direction are arbitrary chosen. The camera was moved to every position sequentially by the translation stage and recorded a series of sub-images to get the light field information of the target.

    Due to the size and intensity of the THz source,the sub images are only partially visible and unclear.During the refocusing process, all sub-images are mapped on the new imaging plane, thus improving the field of view and the resolution of the synthetic result, as shown in Figs.4~6 (color online).

    According to Fig.4 (d), the gradient values of the refocused image show four prominent peaks corresponding to the edges of the rubber ring while the central sub-image shows an undistinguished result,of which only the peak ofs=208 is clear for identification. The outer diameter and the inner diameter of the rubber ring are 47 pixels and 32 pixels respectively. Based on the refocusing parameters, the estimated diameters are 25.3 mm and 17.2 mm,which shows the potential of using refocused images for measurement. The ratio of the outer and inner diameters is 1.469, which is quite close to the reference truth-value 1.471. The deviation of size may be caused by the transformation of the rubber ring as well as the inaccurate object distance estimation, which can be effectively eliminated by precise calibration and reliable algorithm for focusing evaluation.

    Fig. 4 A rubber ring in an envelope (grid size 9×3, Du=Dv=10 mm). (a) The rubber ring (outer diameter is 25 mm; inner diameter is 17 mm) and the envelope;(b) the reference sub-image (u=4, v=2); (c) the refocused image (αL=720 mm); (d) normalized gradient image of the labelled regions of (b) and (c), respectively and their gradient values of labelled horizontal lines corresponding to t=197

    Fig. 5 A steel board with hollowed parts in a plastic box(grid size 9×1, Du=10 mm). (a) The steel board(length is 68 mm; width is 45 mm) and the plastic box; (b) the reference sub-image (u=5, v=1); (c) the refocused image (αL=730 mm); (d) intensity of labelled horizontal lines corresponding to t=174

    In Fig. 5 (b) and Fig. 5 (c), the ratio of the widths of their field of views (intensity thresh: 0.25)is 106 pixels to 195 pixels, which is an expansion by a factor of 1.84. Fig.6(b) and Fig.6(c) show the improvement of resolution from 1.3 mm to 0.7 mm,which are the diameters of the finest wrenches that could be recognized.

    To verify the flexibility of our method, we perform an experiment of the same sample with Fig.6,in which we move the sample rather than the camera for sub-image acquisition. The refocusing process shows similar results, as shown in Fig.7. This mode could be more applicable to some cases where the camera needs to be fixed. We can see the difference of noise in Fig.6 and Fig.7. There may be two reasons: first, the relative sample positions of two experiments are not identical; second, the movement of the target of Fig.7 also changes its relative position with the THz source, while the target of Fig.6 is relatively still with the THz source.

    Fig. 6 Metal wrenches fixed on a polyvinyl chloride(PVC)board by tape. (grid size 9×7, Du=Dv=10 mm) (a)the wrenches (from left to right the diameters are 0.7 mm, 0.9 mm, 1.3 mm and 1.5 mm) and the PVC board; (b) the reference sub-image (u=3, v=4); (c)the refocused image (αL=680 mm); (d) the refocused image after histogram equalization.

    With different sub-image as the reference view,the imaging position of the sample correspondingly changes, as shown in Fig.8(color online). According to Table.1, the mean parallax values per mm the camera moves are 1.825 pixel and 1.850 pixel foruandvdirections, respectively. Thus the corresponding estimations of the object distance are 731.8 mm and 721.9 mm, which conform well with the refocusing data. The parallax values generated from these different views could be used for specific 3D measurement with further calibration of the system.

    Fig. 7 Metal wrenches (fixed camera and moving target,grid size 9×5, Du=Dv=10 mm). (a) The wrenches and the PVC board; (b) the reference sub-image(u=5, v=3); (c) the refocused image (αL=700 mm);(d) the refocused image after histogram equalization

    Fig. 8 Refocusing images of different sub-views (two PVC bottles with liquid fixed by tape in a high-density polyethylene plastic box, grid size 9×2, Du=10 mm,Dv=20 mm). (a) The bottles (length is 50 mm; diameter is 13 mm; thickness is 2 mm) and the plastic box;(b) one primitive sub-image; (c)(d)(e)(f) are the refocused images with angular coordinates (4,1),(4,2), (1,1) and (9,1) respectively (αL=720 mm).

    Tab. 1 Coordinates of sample pixels in different subviews

    Fig.9 shows two imaging results with different refocusing depths. In Fig. 9 (a), the plastic bottles are in focus and the mark on the plastic box are unclear due to defocusing. While in Fig. 9 (b), the mark on the plastic box is in focus and the bottles become blurry. The refocusing results of different object distances expanded the depth of field and could also be used for depth estimation.

    Fig. 9 Refocusing images of different depths. (a) The image focused on the bottles, αL=720 mm. (b) The image focused on the tape and the plastic box, αL=670 mm

    For some situations where the obstructions could not be penetrated by THz waves, the synthetic process also works. As shown in Fig.10, by defocusing the wire mesh, we can restore the information of our target. In Fig.10 (c), the wire mesh is blurred and the steel holed cube is clearer than Fig.10 (b), especially the hole at the center.

    Fig. 10 A steel holed cube blocked by a piece of wire mesh placed between it and the THz camera. (a)and (b) are two primitive sub-images showing the wire mesh and the obscured target respectively; (c)the refocused image

    4 Conclusion

    Terahertz imaging has many particular advantages for multiple applications. To exceed the limitation of the THz camera’s resolution and field of view as well as expand its functions, we build a THz light field imaging system of time sequential acquisition mode. Experiments show that compared with the original camera, the resolution, the field of view and the depth of field of the system are effectively improved. Besides, the system shows potential in restoration of obscured information, 3D measurement and depth estimation. Moreover, the system implementation and the image acquisition scheme are flexible, which can be modified to adapt different scenarios. Following points can be considered for further improvements based on this system and method: first, the refocusing process can be promoted by optimizing the interpolation and integration algorithm; second, the image acquisition scheme can be more efficient with adaptive design for different targets; third, the measurement function can be effectively developed by applicable calibration approaches.

    黄片播放在线免费| 亚洲一码二码三码区别大吗| 18禁国产床啪视频网站| 日韩三级视频一区二区三区| 久久久水蜜桃国产精品网| 在线天堂中文资源库| 成在线人永久免费视频| 久久99一区二区三区| 久久99一区二区三区| 日日干狠狠操夜夜爽| 午夜福利,免费看| 亚洲熟妇中文字幕五十中出 | 丰满人妻熟妇乱又伦精品不卡| 亚洲欧洲精品一区二区精品久久久| 丁香六月欧美| 国产高清视频在线播放一区| 女生性感内裤真人,穿戴方法视频| 国产成人影院久久av| √禁漫天堂资源中文www| 757午夜福利合集在线观看| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合久久99| 咕卡用的链子| 亚洲少妇的诱惑av| 亚洲精品中文字幕一二三四区| 老司机午夜十八禁免费视频| 国产亚洲精品一区二区www| 婷婷精品国产亚洲av在线| 亚洲精品粉嫩美女一区| 国产成人av教育| 亚洲成a人片在线一区二区| 两个人看的免费小视频| 欧美 亚洲 国产 日韩一| 日韩中文字幕欧美一区二区| 99精品欧美一区二区三区四区| 在线观看午夜福利视频| 人人妻人人添人人爽欧美一区卜| 成人av一区二区三区在线看| 免费高清视频大片| bbb黄色大片| 亚洲 欧美一区二区三区| 久久久久久免费高清国产稀缺| 他把我摸到了高潮在线观看| 波多野结衣一区麻豆| 欧美久久黑人一区二区| 久久久久久人人人人人| 精品久久久久久久毛片微露脸| 免费在线观看黄色视频的| xxxhd国产人妻xxx| 97碰自拍视频| 少妇裸体淫交视频免费看高清 | 老汉色∧v一级毛片| 黄片小视频在线播放| 国产精品久久视频播放| 天堂影院成人在线观看| 欧美日韩黄片免| 一二三四社区在线视频社区8| 久久九九热精品免费| xxx96com| 12—13女人毛片做爰片一| 亚洲熟妇中文字幕五十中出 | 亚洲国产精品sss在线观看 | 老司机深夜福利视频在线观看| 亚洲自拍偷在线| 大陆偷拍与自拍| 成人国语在线视频| 欧美人与性动交α欧美软件| 久久精品aⅴ一区二区三区四区| 啪啪无遮挡十八禁网站| 精品第一国产精品| 在线观看免费视频日本深夜| 亚洲熟妇中文字幕五十中出 | 啦啦啦免费观看视频1| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 久久精品亚洲精品国产色婷小说| 黄色女人牲交| 国产精品偷伦视频观看了| xxx96com| 国产av在哪里看| 大陆偷拍与自拍| 亚洲成国产人片在线观看| 一本大道久久a久久精品| 亚洲成人免费av在线播放| 日本a在线网址| 成熟少妇高潮喷水视频| 妹子高潮喷水视频| 精品久久久久久久毛片微露脸| 女人精品久久久久毛片| 国产精品1区2区在线观看.| 在线永久观看黄色视频| 欧美人与性动交α欧美精品济南到| 欧美最黄视频在线播放免费 | 桃红色精品国产亚洲av| 丁香六月欧美| av在线播放免费不卡| 日韩av在线大香蕉| 精品国内亚洲2022精品成人| 999精品在线视频| 亚洲中文av在线| 久久久精品国产亚洲av高清涩受| 国产精品国产高清国产av| 国产高清激情床上av| 91av网站免费观看| 国产国语露脸激情在线看| 久久人人97超碰香蕉20202| 人人澡人人妻人| 99国产精品99久久久久| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av| 国产成人啪精品午夜网站| 在线十欧美十亚洲十日本专区| 亚洲欧美一区二区三区久久| 成人手机av| 狂野欧美激情性xxxx| 看免费av毛片| 在线十欧美十亚洲十日本专区| 丝袜在线中文字幕| 黄色女人牲交| 国产一区二区三区在线臀色熟女 | 午夜精品在线福利| 亚洲精品中文字幕一二三四区| 国产精品av久久久久免费| 啦啦啦免费观看视频1| 宅男免费午夜| 国产三级黄色录像| 视频在线观看一区二区三区| 最新在线观看一区二区三区| 男女高潮啪啪啪动态图| 精品国产一区二区久久| 中出人妻视频一区二区| 桃色一区二区三区在线观看| 中文字幕最新亚洲高清| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美激情在线| 自线自在国产av| 国产真人三级小视频在线观看| 精品国产超薄肉色丝袜足j| 99国产精品99久久久久| 热re99久久精品国产66热6| 国产主播在线观看一区二区| 久久久精品欧美日韩精品| 亚洲五月天丁香| 在线观看免费日韩欧美大片| 精品一区二区三区四区五区乱码| 婷婷丁香在线五月| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 老汉色∧v一级毛片| 午夜福利一区二区在线看| 国产黄a三级三级三级人| 十八禁人妻一区二区| 亚洲欧美激情综合另类| 欧美日韩亚洲国产一区二区在线观看| 多毛熟女@视频| 在线观看www视频免费| 亚洲中文av在线| 麻豆国产av国片精品| 国产精品秋霞免费鲁丝片| 亚洲片人在线观看| 日韩欧美国产一区二区入口| 亚洲自拍偷在线| 久热这里只有精品99| 天堂影院成人在线观看| 久久九九热精品免费| 午夜久久久在线观看| 一级毛片高清免费大全| 夜夜看夜夜爽夜夜摸 | 国产精品国产av在线观看| 香蕉国产在线看| 国产激情欧美一区二区| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| a级毛片在线看网站| 怎么达到女性高潮| 午夜a级毛片| 成年人黄色毛片网站| 黑人操中国人逼视频| 国产免费av片在线观看野外av| 国产精华一区二区三区| 欧美不卡视频在线免费观看 | 久久国产亚洲av麻豆专区| 国产精品久久久av美女十八| 男人操女人黄网站| 激情在线观看视频在线高清| 成人免费观看视频高清| 婷婷丁香在线五月| 亚洲精品在线观看二区| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 国产高清激情床上av| av福利片在线| 亚洲欧美精品综合一区二区三区| 久久久久久大精品| 久久草成人影院| 曰老女人黄片| 18禁国产床啪视频网站| 欧美在线一区亚洲| 亚洲色图综合在线观看| 午夜激情av网站| 久久久久久免费高清国产稀缺| 美女高潮喷水抽搐中文字幕| 制服诱惑二区| 91大片在线观看| 日韩国内少妇激情av| 午夜影院日韩av| 交换朋友夫妻互换小说| 91麻豆av在线| 老司机在亚洲福利影院| 精品国产美女av久久久久小说| 又大又爽又粗| 91国产中文字幕| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 久久久久九九精品影院| av国产精品久久久久影院| 日本黄色视频三级网站网址| 日本 av在线| 日韩人妻精品一区2区三区| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 老司机在亚洲福利影院| 国产xxxxx性猛交| 亚洲人成77777在线视频| 99在线视频只有这里精品首页| 在线观看免费午夜福利视频| 首页视频小说图片口味搜索| 亚洲午夜理论影院| 亚洲精品国产区一区二| 啦啦啦 在线观看视频| 国产精品综合久久久久久久免费 | 俄罗斯特黄特色一大片| 亚洲精品中文字幕一二三四区| 色精品久久人妻99蜜桃| 精品欧美一区二区三区在线| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 国内毛片毛片毛片毛片毛片| 精品国产一区二区久久| 欧美乱码精品一区二区三区| 日韩欧美三级三区| 免费久久久久久久精品成人欧美视频| 在线视频色国产色| 黄色片一级片一级黄色片| 久久国产精品影院| 亚洲av第一区精品v没综合| 看免费av毛片| 在线免费观看的www视频| 国产成人欧美在线观看| 自线自在国产av| 18禁裸乳无遮挡免费网站照片 | 久久精品国产99精品国产亚洲性色 | 波多野结衣一区麻豆| 欧美日韩精品网址| 免费观看人在逋| 黄色怎么调成土黄色| 精品一品国产午夜福利视频| 亚洲欧美精品综合久久99| 老熟妇仑乱视频hdxx| 亚洲欧美一区二区三区黑人| 国产麻豆69| 亚洲人成电影观看| 国产精品久久电影中文字幕| 久久 成人 亚洲| 免费在线观看影片大全网站| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出 | 黄色怎么调成土黄色| 午夜成年电影在线免费观看| 免费日韩欧美在线观看| 欧美+亚洲+日韩+国产| 99精国产麻豆久久婷婷| www国产在线视频色| 手机成人av网站| 亚洲激情在线av| 后天国语完整版免费观看| 看黄色毛片网站| 亚洲欧美日韩无卡精品| 精品久久久久久久毛片微露脸| 欧美性长视频在线观看| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 一区二区三区精品91| 久久国产精品人妻蜜桃| 天堂俺去俺来也www色官网| 国产欧美日韩精品亚洲av| 欧美乱妇无乱码| 欧美日韩瑟瑟在线播放| 国产精品av久久久久免费| 午夜免费鲁丝| 黄片小视频在线播放| av网站在线播放免费| 亚洲专区中文字幕在线| 如日韩欧美国产精品一区二区三区| 女性被躁到高潮视频| 大陆偷拍与自拍| 50天的宝宝边吃奶边哭怎么回事| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 欧美精品亚洲一区二区| 叶爱在线成人免费视频播放| 黑人操中国人逼视频| 亚洲熟妇中文字幕五十中出 | 波多野结衣高清无吗| 国产av又大| 精品福利观看| а√天堂www在线а√下载| 成人精品一区二区免费| 亚洲国产看品久久| 99riav亚洲国产免费| 黄色片一级片一级黄色片| 亚洲五月天丁香| 欧美中文综合在线视频| 国产精品1区2区在线观看.| 久热这里只有精品99| av超薄肉色丝袜交足视频| 中文字幕最新亚洲高清| 成人av一区二区三区在线看| 99精国产麻豆久久婷婷| www.精华液| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 久久久国产一区二区| 日韩欧美国产一区二区入口| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 99热国产这里只有精品6| 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| 一区二区三区激情视频| tocl精华| 日韩免费av在线播放| 久久精品成人免费网站| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 一二三四在线观看免费中文在| 日韩av在线大香蕉| 一级a爱视频在线免费观看| 亚洲黑人精品在线| 午夜激情av网站| 免费人成视频x8x8入口观看| 国产精品免费视频内射| a在线观看视频网站| 欧美成人午夜精品| 香蕉国产在线看| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 亚洲熟女毛片儿| 久久精品成人免费网站| 在线观看www视频免费| 国产精品成人在线| 国产99白浆流出| 久久九九热精品免费| 精品一区二区三区视频在线观看免费 | 国产成人影院久久av| 在线观看免费视频日本深夜| 中文欧美无线码| 热re99久久精品国产66热6| 男人的好看免费观看在线视频 | 在线av久久热| 久久国产精品男人的天堂亚洲| 大码成人一级视频| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 亚洲精品久久成人aⅴ小说| 欧美一级毛片孕妇| 免费少妇av软件| 久久久久国产一级毛片高清牌| 免费看十八禁软件| 欧美日韩黄片免| 成人黄色视频免费在线看| 悠悠久久av| 欧美日韩一级在线毛片| 嫩草影视91久久| 精品无人区乱码1区二区| 午夜免费成人在线视频| 久久久久国产一级毛片高清牌| 天天影视国产精品| 日本三级黄在线观看| 精品国产美女av久久久久小说| 搡老乐熟女国产| 欧美黄色片欧美黄色片| 啦啦啦在线免费观看视频4| 在线天堂中文资源库| 一级毛片高清免费大全| 精品国产乱码久久久久久男人| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 女同久久另类99精品国产91| 男人操女人黄网站| 人人妻,人人澡人人爽秒播| 美女 人体艺术 gogo| 亚洲伊人色综图| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 制服人妻中文乱码| 免费高清视频大片| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 成年版毛片免费区| 日韩高清综合在线| 国产高清视频在线播放一区| 两人在一起打扑克的视频| 成人三级黄色视频| www.熟女人妻精品国产| 亚洲精品美女久久久久99蜜臀| 中文字幕av电影在线播放| av有码第一页| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清 | 香蕉丝袜av| 欧美激情久久久久久爽电影 | 久久人妻av系列| 国产成年人精品一区二区 | 狠狠狠狠99中文字幕| 亚洲色图av天堂| 1024视频免费在线观看| 亚洲成人久久性| 日本一区二区免费在线视频| 亚洲自拍偷在线| 美女扒开内裤让男人捅视频| 午夜福利,免费看| 一级毛片精品| 男女之事视频高清在线观看| 欧美精品亚洲一区二区| 欧美色视频一区免费| 黑人巨大精品欧美一区二区蜜桃| 欧美一级毛片孕妇| 亚洲成人国产一区在线观看| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 欧美日韩av久久| 嫁个100分男人电影在线观看| 妹子高潮喷水视频| aaaaa片日本免费| 亚洲国产精品sss在线观看 | 一a级毛片在线观看| 国产高清国产精品国产三级| 日本黄色日本黄色录像| 久久精品国产综合久久久| 满18在线观看网站| 精品国产超薄肉色丝袜足j| 99热国产这里只有精品6| 午夜影院日韩av| 国产精品久久电影中文字幕| 日本精品一区二区三区蜜桃| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 亚洲专区国产一区二区| 日韩有码中文字幕| 少妇 在线观看| 国产精品1区2区在线观看.| 99riav亚洲国产免费| 12—13女人毛片做爰片一| 香蕉国产在线看| 99国产精品一区二区三区| 国产精品98久久久久久宅男小说| 国内毛片毛片毛片毛片毛片| www.熟女人妻精品国产| 搡老岳熟女国产| 色婷婷av一区二区三区视频| 夜夜看夜夜爽夜夜摸 | 黄色片一级片一级黄色片| 悠悠久久av| 成人黄色视频免费在线看| 亚洲精品在线美女| av网站免费在线观看视频| 热99国产精品久久久久久7| 日韩欧美免费精品| 久久精品亚洲精品国产色婷小说| 国产精品 国内视频| 丝袜在线中文字幕| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 精品第一国产精品| 热re99久久国产66热| 国产又色又爽无遮挡免费看| 国产成人av教育| 999久久久精品免费观看国产| 交换朋友夫妻互换小说| 中文字幕高清在线视频| 久久精品aⅴ一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美av亚洲av综合av国产av| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| 国产日韩一区二区三区精品不卡| 大陆偷拍与自拍| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 啦啦啦免费观看视频1| 9色porny在线观看| 丝袜美腿诱惑在线| 变态另类成人亚洲欧美熟女 | 亚洲第一欧美日韩一区二区三区| 久久精品国产清高在天天线| 国产日韩一区二区三区精品不卡| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片 | 精品一区二区三区av网在线观看| 日韩精品免费视频一区二区三区| 午夜老司机福利片| 三上悠亚av全集在线观看| 国产熟女午夜一区二区三区| 亚洲国产欧美日韩在线播放| 欧美乱妇无乱码| 999精品在线视频| 久久久国产成人免费| 亚洲成人久久性| 日韩有码中文字幕| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看| 日韩三级视频一区二区三区| 日韩精品中文字幕看吧| 麻豆国产av国片精品| 啦啦啦免费观看视频1| 亚洲精品久久午夜乱码| 性色av乱码一区二区三区2| 国产99白浆流出| 狂野欧美激情性xxxx| 亚洲成av片中文字幕在线观看| 中文字幕精品免费在线观看视频| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 黄色怎么调成土黄色| 日日干狠狠操夜夜爽| 99久久久亚洲精品蜜臀av| 久久久国产一区二区| 黄色视频不卡| 97人妻天天添夜夜摸| 人人妻人人澡人人看| 80岁老熟妇乱子伦牲交| 91在线观看av| 91国产中文字幕| 美女大奶头视频| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 老司机靠b影院| 精品欧美一区二区三区在线| 在线天堂中文资源库| 手机成人av网站| 人人妻人人澡人人看| 一级片'在线观看视频| 久久久水蜜桃国产精品网| 亚洲av五月六月丁香网| 操出白浆在线播放| 两个人免费观看高清视频| 一区二区三区国产精品乱码| 又大又爽又粗| 天天躁狠狠躁夜夜躁狠狠躁| 看免费av毛片| 电影成人av| 久久人人97超碰香蕉20202| 亚洲精品国产色婷婷电影| 亚洲九九香蕉| 在线观看www视频免费| 欧美一级毛片孕妇| 国产精品日韩av在线免费观看 | 午夜福利一区二区在线看| 精品国产国语对白av| 久久精品亚洲av国产电影网| 亚洲国产毛片av蜜桃av| 夜夜躁狠狠躁天天躁| 51午夜福利影视在线观看| 丝袜在线中文字幕| 日本三级黄在线观看| 国产av精品麻豆| 亚洲一区二区三区色噜噜 | 亚洲成人精品中文字幕电影 | 欧美老熟妇乱子伦牲交| 日韩国内少妇激情av| 操出白浆在线播放| 91麻豆精品激情在线观看国产 | 99riav亚洲国产免费| 日韩成人在线观看一区二区三区| 国产99久久九九免费精品| 最近最新免费中文字幕在线| 波多野结衣高清无吗| xxx96com| 日韩av在线大香蕉| 精品人妻1区二区| 亚洲欧美日韩高清在线视频| 久久亚洲真实| 国产三级在线视频| av国产精品久久久久影院| 一级,二级,三级黄色视频| 久久国产乱子伦精品免费另类| 国产精品电影一区二区三区| 中国美女看黄片| 国产在线观看jvid| 中文字幕高清在线视频| 中文欧美无线码| 国产主播在线观看一区二区| 香蕉久久夜色| 亚洲人成电影免费在线| 久久精品国产清高在天天线| 不卡av一区二区三区| 国产成人一区二区三区免费视频网站| 免费在线观看完整版高清| 曰老女人黄片| 国产97色在线日韩免费| 国产午夜精品久久久久久| 久久香蕉精品热| av网站在线播放免费| 大陆偷拍与自拍|