• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pressure-Induced Superconducting and Topological Phase Transitions in the RuX2 (X=P,As,Sb) Family Compounds

    2023-01-07 07:02:38CHENQunWUJuefeiWANGXiaomengDINGChiHUANGTianhengLUQingSUNJian
    物理學(xué)進(jìn)展 2022年6期

    CHEN Qun ,WU Jue-fei ,WANG Xiao-meng ,DING Chi ,HUANG Tian-heng ,LU Qing ,SUN Jian ,3

    1.National Laboratory of Solid State Microstructures,School of Physics,Nanjing University,Nanjing 210093,China

    2.School of Physical Science and Technology,ShanghaiTech University,393 Middle Huaxia Road,Shanghai 201210,China

    3.Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Abstract: RuSb2,as a sister material of thermoelectric material FeSb2,has been extensively studied focusing on the comparisons with FeSb2,however,the properties of RuSb2 under pressure have not been surveyed thoroughly yet.In this work,we studied the properties of RuSb2 under pressure and explored the similarities and differences of crystal and electronic structures between the Ru-pnictides partners RuP2 and RuAs2.Using the crystal structures search method together with first-principles calculations,we found that this family undergoes a serial of structural phase transitions: (I) For RuSb2: Pnnm →I4/mcm →I4/mmm;(II)for RuP2: Pnnm →I41/amd →Cmcm;(III) for RuAs2: Pnnm →P-62m.The newly found five phases are all energetically and dynamically stable at high-pressure and exhibit metallic properties.The four high pressure phases of RuSb2 and RuP2 can be quenched to zero pressure.The superconducting transition temperatures of I4/mcm and I4/mmm phases of RuSb2 and I41/amd and Cmcm phase of RuP2 are predicted to be approximately 7.3 K,10.9 K,13.0 K,and 10.1 K at 0 GPa,respectively.In addition,the I4/mcm and I4/mmm phases of RuSb2 and the I41/amd phase of RuP2 exhibit non-trivial topological properties.Our studies illustrate that pressure is an effective way to tune the structural,electronic,and superconducting behavior of the Ru-pnictides compounds.

    Key words: high-pressure;crystal structures search method;phase transition;superconductor;topological materials

    I.INTRODUCTION

    In recent decades,transition-metal pnictides have drawn lots of attention due to their unique physical properties,such as high-performance thermoelectricity in antimonides[1–6],unconventional superconductivity in arsenides[7–10],and topological properties in transition-metal oxypnictide[11–17].Among them,the thermoelectric properties of transition-metal antimonides have been studied intensively.For example,FeSb2was observed to show extremely large thermopower and thermal conductivity at low temperatures[18–21],which was predicted to be originated from strong electron-electron correlation[18,22,23]and the phonon-drag effect[21].In particular,the correlation strength is expected to increase with an increasing hybridization gap[23].

    RuSb2,as a sister material of FeSb2,has been widely studied in recent decades.It is a narrow-gap semiconductor with an estimated gap of 0.26 eV,which is larger than that of FeSb2.Although RuSb2is originally introduced as one of the thermoelectric candidates[24],the recent discovery indicates that its thermoelectric power is relatively small,which is one order of magnitude less than that of FeSb2at low temperatures.Nevertheless,the distinct Seebeck patterns of RuSb2and FeSb2draw lots of attention,with a particular Seebeck peak located at about 10 K,whereas the Seebeck coefficient of other thermoelectric materials usually decreases monotonically with increasing temperature[19].Moreover,they have a different magnetic response[18].Despite RuSb2being often used as a reference to study the multiple disparities with FeSb2,focusing on the magnetic properties[25,26],not much work has been done on RuSb2itself.

    As a fundamental thermodynamic parameter,pressure can be employed to control various properties of materials.It can cause a structural phase transition without contaminating materials with impurities[27–33],or synthesize new materials with exciting properties[34–41].Pressure-driven structural phase transitions often reshape electronic structures accompanied by exotic physical properties.For instance,pressure can induce superconductivity transition in topological materials[42,43],and change the superconducting transition temperature of unconventional superconductors[44,45].The transition-metal pnictides also exhibit novel properties under high pressure.For instance,FeSb2undergoes a phase transition from insulator to metal[46];the thermoelectric properties of CoSb3can be enhanced by pressure[47].

    Among thermoelectric materials,RuSb2has received little attention and deserves further studies.Given the similarities in crystal and electronic structures in other Ru-pnictides partners RuP2and RuAs2,they can also be used for comparison.In this work,we employed pressure conditions up to 120 GPa to systematically study RuSb2,RuP2,and RuAs2compounds by crystal structure search method and firstprinciples calculations.We found that the RuX2(X=P,As,Sb)family compounds undergo a series of structural phase transitions.For RuSb2:Pnnm →I4/mcm →I4/mmm;for RuP2:Pnnm →I41/amd →Cmcm;and for RuAs2:Pnnm →P-62m.These newly predicted phases are energetically and dynamically stable at high pressure and even at ambient pressure.Then we studied their structural,electronic,and superconducting properties.When the spin-orbit coupling (SOC)effects were included,theI4/mcm,I4/mmmphases of RuSb2,and theI41/amdphase of RuP2are identified to be topologically non-trivial.Moreover,theI4/mcm,I4/mmmphases of RuSb2and theI41/amd,Cmcmphases of RuP2exhibit superconductivity at zero pressure.

    II.COMPUTATIONAL METHOD

    To search for the most stable structures at a given pressure for RuSb2,RuAs2,and RuP2,we used the machine-learning accelerated random structure searching code called Magus (machine learning and graph theory assisted universal structure searcher)[48,49]combined with theab-initiocalculations at 20,40,80,100,and 120 GPa respectively.The Magus code has successfully predicted many high-pressure structures in different systems[41,50–54].The maximum number of atoms in the simulation cell is up to 18.Structural optimizations and electronic structure calculations were carried out using the projector augmented wave (PAW)[55]method as implemented in the Viennaab-initiosimulation package (VASP)[56].We employed the generalized gradient approximation(GGA) exchange-correlation density functional parameterized by Perdew-Burke-Ernzerhof (PBE)[57].Electronic localization functions(ELF)calculated by VASP were displayed by Visualization for Electronic Structural Analysis (VESTA)[58].The valence electrons of the pseudopotentials are 4d105s25p1,5s25p3,3s23p3,and 4s24p3for Ru,Sb,P,and As,respectively.Structures were relaxed with high accuracy with the planewave basis energy cutoffof 400 eV.Brillouin zone was meshed using the Monkhorst-Pack method with a spacing of 2π×0.25nm-1(the equivalent grid forPnnm,I4/mcm,I4mmm,I41/amd,Cmcm,P-62mphase at the highest pressure are 9×12×10,19×19×6,16×16×8,9×12×10,12×12×14,and 14×14×10,respectively).In our atomic optimization,the tolerance of atomic force was set to 0.01 eV/nm.Phonon modes and frequencies of the structures were calculated by the VASP code,combining the PHONOPY code[59]which the phonon calculations were carried out with the finite-displacement method.We applied 2×2×2 supercells to calculate all structure’s force constants.Quantum Espresso (QE) code[60]is used to calculate the electron-phonon coupling (EPC) constants andTcusing an energy cutoffof 120 Ry.The PBE exchangecorrelation functional and norm-conserving pseudopotentials are used.We adopted 8×8×8k-point mesh for charge self-consistent calculation,16×16×16k-point mesh for electron-phonon coupling (EPC) linewidth integration,and 4×4×4q-point mesh for the dynamical matrix ofI4/mcmandI4/mmmphase.The surface states were obtained by constructing the maximally localized Wannier functions(MLWFs)[61]and using the surface Green function approach[62],as implemented in the WANNIERTOOLS package[63].

    III.RESULTS AND DISCUSSIONS

    A.Predicted structures under high pressure

    We performed structure searches of the RuX2(X=P,As,Sb) family at 20,40,80,100,and 120 GPa,respectively.After tens of generations with more than three thousand structures are assessed at each pressure,we picked out five structures of the RuX2family,as shown in Fig.1(b)-(f).The predicted crystal structures of the RuX2family under high pressure are in Table A1.The enthalpy-pressure relations of the RuX2family are plotted in Fig.1(g)-(i).For RuSb2in Fig.1(g),the phase transition from thePnnmto the predictedI4/mcm(No.140),as shown in Fig.1(b)is predicted to occur around 30 GPa,followed by a phase transition to the predictedI4/mmm(No.139),as shown in Fig.1(c),at about 105 GPa.The calculated volume-pressure (V–P) curve shows that the volume collapse is about 5.6%and 1.2%at≈30 GPa and≈105 GPa,respectively.These are first-order phase transitions.Compared with thePnnmphase,the predicted tetragonal phaseI4/mcmandI4/mmmare stacked in Ru and Sb layers along thec-axis.The stacking sequence of theI4/mcmphase is Sb-Ru-Sb,while the sequence of theI4/mmmphase is Ru-Sb-Sb.

    For RuAs2in Fig.1(h),thePnnmtransforms to the predictedP-62min Fig.1(d),at around 62 GPa,accompanying a volume collapse of about 4.8%.The predictedP-62mis hexagonal.Six As atoms surround Ru atoms and form hexagons.

    For RuP2in Fig.1(i),it undergoes two phase transitions.The transition from thePnnmto the predictedI41/amd(No.141) in Fig.1(e) at around 49 GPa,following the transition to the predictedCmcm(No.63) in Fig.1(f) at around 118 GPa.The volume collapse is about 5.6 % and 1.2 % at≈49 GPa and≈118 GPa,respectively.The high-pressure phaseI41/amdis tetragonal andCmcmis orthorhombic.The P atoms are zig-zag patterns in both of the predicted structures.The zig-zag patterns form quasi-onedimensional chains along theaorc-axis in the predictedI41/amdin Fig.1(e),and the Ru atoms are interspersed among these chains.Moreover,the zig-zag patterns form P atom layers in the predictedCmcm,as shown in Fig.1(f),sandwiching the Ru atoms.

    Then we calculated the phonon dispersions of these predicted structures both at high pressures and ambient pressure.The phonon dispersion of the predictedI4/mcmandI4/mmmof RuSb2and the predictedI41/amdandCmcmof RuP2have no imaginary curves within 120 GPa,suggesting their dynamical stability.But the predictedP-62mof RuAs2is stable above≈40 GPa.Our results indicate that the predicted structures of RuSb2and RuP2are likely to be synthesized after the pressure release.

    B.Electronic structures

    Fig.1.The ground Pnnm structure.The predicted structures (b) I4/mcm and (c) I4/mmm of RuSb2,(d) P-62m of RuAs2,(e)I41/amd and(f)Cmcm of RuP2.The silver,brown,purple,and green spheres denote Ru,Sb,P,and As atoms,respectively.The pressure-dependent enthalpy difference of (g) RuSb2 (relative to the I4/mcm),(h) RuAs2 (relative to the P-62m),and (i) RuP2 (relative to the I41/amd).The insets are the corresponding pressure-volume relation.

    Fig.2.The band structure of (a) I4/mcm phase at 40 GPa with SOC,(b) I4/mcm phase at 0 GPa with SOC.The surface state of (c) I4/mcm phase at 0 GPa with SOC.The band structure of (d) I4/mmm phase at 110 GPa with SOC,(e) I4/mmm phase at 0 GPa with SOC.The surface state of (f) I4/mmm phase at 0 GPa with SOC.

    As displayed in Fig.2,we calculated the band structure and the projected density of states(PDOS)of the predictedI4/mcmat 40 GPa [Fig.2(a)] and 0 GPa[Fig.2(b)]and the predictedI4/mmmat 110 GPa[Fig.2(d)] 0 GPa and [Fig.2(e)] for RuSb2with SOC.The band structures of the predictedI4/mcmandI4/mmmhave metallic features.The PDOS results indicate that the d electrons of the Ru atoms play a dominant role around the Fermi level.Comparing the PDOS at ambient pressure and high pressure of both predicted structures,the distribution of the d electrons is more localized around the Fermi level,such as the dominant peaks of the predictedI4/mcmandI4/mmmat ambient pressure,as shown in Fig.2(b)and (e).The increase of the DOS at the Fermi level may cause the elevation in superconductivity,which we will discuss in part III.C.

    Besides,the band structures of both predicted phases at ambient pressure,as shown in Fig.2(b) and(e),open up the energy gap on the high symmetry path.Thus,we performed the calculation of the topological invariance with the help of MLWFs.The symmetry indicators for theI4/mcmphase areZ2w,i=1,2,3=1,Z2=1,Z4=1,Z8=1,and the symmetry indicators for theI4/mmmphase areZ2w,i=1,2,3=1,Z2=0,Z4=2,Z8=2,indicating that both phases are topologically non-trivial.For further confirmation,we calculated their surface states with SOC,as shown in Fig.2(c)forI4/mcmand Fig 2(f)forI4/mmm.The red regions indicate the projected bulk band structure.We projected the band structures alongk-pathfor theI4/mcm.Dirac-type surface states appear at the energy≈0.4 eV below the Fermi level around thepoint.Analogous to theI4/mcmphase,we projected the band structures along thek-point pathand find surface states around thepoint,confirming that theI4/mcmandI4/mmmphases are topologically non-trivial at ambient condition.

    As for RuAs2,the band structures and the PDOS for the predictedP-62maround the transition point are in Fig.A1.It is topologically trivial and the d electrons of the Ru atoms make the main contribution around the Fermi level.

    The band structure and the PDOS of theI41/amdphase at 50 GPa and 0 GPa with SOC are plotted in Fig.3(a) and (b).It has metallic features within 50 GPa,and the d electrons of the Ru atoms are dominant for the density of states around the Fermi level.The density of states near the Fermi level has a similar feature to the RuSb2phases.We also computed the symmetry indicators for theI41/amdphase at ambient conditions,with theZ2=1 andZ4=1.Then we projected the band structures along thek-point pathand observe the topologically protected gapless surface states in Fig.3(c).Dirac-type surface band appears at the energy of≈0.4 eV above the Fermi level atpoint,confirming that theI41/amdphase is topologically non-trivial.The band structures of the predicted phases without SOC are plotted in Fig.A3.

    C.Superconductivity

    To study the potential superconductivity of the predicted phases of the RuX2family,we performed the EPC calculations at different pressures.Phonon dispersions,phonon density of states (PDOS),the corresponding Eliashberg spectral functionα2F(ω) and the EPC parameterλare calculated.The superconducting transition temperatureTcwas estimated according to the Allen-Dynes modified McMillan formula:

    with the typical Coulomb pseudopotentialμ*=0.1.The logarithmic averaged phonon frequencies (ωlog),and frequency-dependent EPCλ(ω) are obtained from the Eliashberg formalism.

    Fig.4(a) and (b) are the EPC calculation results of the predictedI4/mcmof RuSb2at 0 GPa and 40 GPa,respectively.The EPC parameterλfor the predictedI4/mcmat 40 GPa is 0.56 andTc=3.4 K,while the EPC parameterλenhances to 0.94 andTc=7.3 K at ambient pressure.The Fermi surface of theI4/mcmphases at 0 GPa is shown in Fig.A4.We can see that several electron pockets and hole pockets are distributed along with the high symmetry points,where the electron pocket around the Γ point and the hole pocket wrapped around the M point are mainly composed of 4d electrons in Ru atoms.Although we can observe the phonon softening behavior around M and Z points,as shown in Fig.4(a),this part does not make enough contribution to the EPC parameterλ.As mentioned in part III.B,the DOS is more localized around the Fermi level for the predictedI4/mcmat ambient pressure.This may suggest that the electron distribution contributes more to the enhancement ofTcthan the softening behavior at M and Z points.

    Fig.4(c) and (d) are the EPC results of the predictedI4/mmmof RuSb2at 0 GPa and 110 GPa,respectively.The EPC parameterλis 1.46 at 0 GPa and 0.32 at 110 GPa,and the correspondingTcis 10.9 K and 0.2 K,respectively.Its Fermi surface is plotted in Fig.A4.ForI4/mmmphase,there is an electron pocket around the Γ point and several electron pockets along the X-P path.Different from theI4/mcmphase,phonon softening behavior is along the Brillouin path,such as Γ-X and P-N.There is a sharp increase of EPC parameterλbetween 50 cm-1and 75 cm-1.Meanwhile,there is a localized peak in DOS at ambient pressure,while the DOS has little dispersion at 110 GPa,as shown in Fig.2(e) and (f).Therefore,the enhancement ofTcis the comprehensive interactions between phonons and electrons.Theλ,ωlog,andTcresults for the predicted structures of RuSb2are collected in Table I.

    Fig.3.The band structure of I41/amd phase at (a) 40 GPa and at (b) 0 GPa with SOC.(c) The surface state of I41/amd phase at 0 GPa with SOC.

    Fig.4.Phonon dispersion curves,Eliashberg spectral functions α2F(ω) together with the electron-phonon integral λ(ω)and phonon density of states (PHDOS) for I4/mcm phase at (a) 0 GPa,and (b) 40 GPa;and for I4/mmm phase at (c) 0 GPa,and (d) 110 GPa,respectively.

    The EPC calculations of the predicted structures for RuP2are in Fig.5 and their Fermi surface results are in Fig.A4.There are several electron and hole pockets distributed along the high symmetry points.FortheI41/amdphase,there are several electron pockets around the Γ point,A point,and S point.These electron pockets are mainly composed ofdyz,dxz,anddx2-y2electrons in Ru atoms.The EPC results of the predictedI41/amdat 0 GPa and 40 GPa are plotted in Fig.5 (a) and (b).The EPC parameterλis elevated from 0.43 at 40 GPa to 0.87 at ambient pressure,and theTcis 2.4 K at 40 GPa and 13.0 K at ambient pressure.The phonon dispersions are analogous to the predictedI4/mmmof RuSb2.The phonon bands are in general softened along the Brillouin path,such as N-Γ-P,while the DOS around the Fermi level at ambient pressure is similar to that at 40 GPa,as shown in Fig.3(a) and (b).Hence,we propose that phonons make more contributions to EPC.

    TABLE I.The electron-phonon coupling constant (λ),logarithmic average of phonon frequencies (ωlog),and estimated superconducting critical temperature (Tc) with the Coulomb potential (μ*) of 0.1 for I4/mcm and I4/mmm phase of RuSb2.

    Fig.5.Phonon dispersion curves,Eliashberg spectral functions α2F(ω) together with the electron-phonon integral λ(ω)and phonon density of states(PHDOS)for the I41/amd phase of RuP2 at(a)0 GPa and(b)50 GPa,and the Cmcm phase of RuP2 at (c) 0 GPa and (d) 125 GPa,respectively.

    As for the predictedCmcmphase,the EPC results at ambient pressure and 125 GPa are depicted in Fig.5(c)and(d).The EPC parameterλis 1.0 at ambient pressure and 0.38 at 125 GPa,withTc=10.1 K at ambient pressure andTc=1.2 K at 125 GPa.In analogous to the EPC results from the predictedI4/mcmof RuSb2,the softening behavior at ambient pressure along the Brillouin path Y-C and T-Y below 50 cm-1does not have enough contribution to the EPC parameter.Moreover,the DOS is more localized around the Fermi level at ambient pressure than 125 GPa,as shown in Fig.A2.We assume that the electron distribution contributes more to the enhancement ofTc.Theλ,ωlog,andTcresults for the predicted structures of RuP2are collected in Table II.

    TABLE II.The electron-phonon coupling constant(λ),logarithmic average of phonon frequencies (ωlog),and estimated superconducting critical temperature (Tc) with the Coulomb potential(μ*)of 0.1 for I4/mcm and Cmcm phase of RuP2.

    IV.CONCLUSIONS

    In summary,using a machine-learning and graph theory accelerated crystal structure search package(Magus),we have investigated the pressure-induced phase transitions of the RuSb2family.It is found that the RuSb2family undergoes a series of transitions from the ambient (Pnnm) phase to several high-pressure phases: (I) For RuSb2,fromPnnmphase to a tetragonalI4/mcmphase,then to a tetragonalI4/mmmphase;(II) For RuP2,fromPnnmphase to a tetragonalI41/amdphase,then to a tetragonal Cmcm phase;(III) For RuAs2,fromPnnmphase to a tetragonalP-62mphase.Our calculations indicate that these phases are all stable at high-pressure.Except for the RuAs2,all these phases can be recovered to ambient pressure.TheI4/mcmandI4/mmmphases of RuSb2and theI41/amdphase of RuP2are predicted to be topological metals,taking into acount the SOC effect.The superconducting transition temperatureTcof RuSb2and RuP2shows a tendency of decreasing with increasing pressure.At 0 GPa,the maximumTcofI4/mcmandI4/mmmphases of RuSb2are 7.3 K and 10.9 K,and theTcof theI41/amdandCmcmphases of RuP2is 13.0 K and 10.1 K,respectively.We hope that this work will stimulate experimental efforts to realize them in the laboratory.

    ACKNOWLEDGMENTS

    J.S.gratefully acknowledges the financial support from the National Key R&D Program of China (grant nos.2022YFA1403201),the National Natural Science Foundation of China (grant no.12125404,11974162,and 11834006),and the Fundamental Research Funds for the Central Universities.The calculations were carried out using supercomputers at the High Performance Computing Center of Collaborative Innovation Center of Advanced Microstructures,the high-performance supercomputing center of Nanjing University.

    APPENDIX

    Fig.A1.RuAs2 P-62m band structure and PDOS at 65 GPa,phonon calculation at 65 GPa.

    Fig.A2.RuP2 Cmcm band structure and PDOS at 0 GPa and 120 GPa.

    TABLE A1.The crystal structure of the predicted RuX2 (X=Sb,As,P) family.

    小蜜桃在线观看免费完整版高清| 另类亚洲欧美激情| 欧美成人一区二区免费高清观看| 国产黄频视频在线观看| 国产精品国产av在线观看| 国产一级毛片在线| av卡一久久| 大片电影免费在线观看免费| 交换朋友夫妻互换小说| 伦理电影大哥的女人| 国产精品麻豆人妻色哟哟久久| 国产免费一区二区三区四区乱码| 午夜激情久久久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲av二区三区四区| 亚洲av不卡在线观看| 一级毛片我不卡| 国产黄a三级三级三级人| 久久久午夜欧美精品| av在线亚洲专区| 高清毛片免费看| 好男人视频免费观看在线| 亚洲精品乱久久久久久| 久久99蜜桃精品久久| 欧美区成人在线视频| 麻豆成人av视频| 亚洲国产成人一精品久久久| 在现免费观看毛片| 青青草视频在线视频观看| 菩萨蛮人人尽说江南好唐韦庄| 国产男女超爽视频在线观看| 一级爰片在线观看| 成人二区视频| 国产在视频线精品| 精品一区在线观看国产| 欧美日韩在线观看h| 国产高清不卡午夜福利| 97超碰精品成人国产| 女的被弄到高潮叫床怎么办| 久久97久久精品| 精品久久久久久久久av| 成人国产麻豆网| 欧美日韩综合久久久久久| 又黄又爽又刺激的免费视频.| 国产美女午夜福利| 亚洲高清免费不卡视频| 有码 亚洲区| 日日撸夜夜添| 亚洲自拍偷在线| 制服丝袜香蕉在线| 特级一级黄色大片| 一级毛片aaaaaa免费看小| 国产精品久久久久久久久免| 国内精品宾馆在线| 久久久久久久精品精品| 日韩大片免费观看网站| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 国模一区二区三区四区视频| 国国产精品蜜臀av免费| 精品一区二区免费观看| 街头女战士在线观看网站| 国产精品一区二区性色av| 国产白丝娇喘喷水9色精品| 午夜免费男女啪啪视频观看| 在线观看人妻少妇| 亚洲国产成人一精品久久久| 热re99久久精品国产66热6| 亚洲精品第二区| 水蜜桃什么品种好| 国产 精品1| 亚洲成人久久爱视频| 国产 精品1| 色视频www国产| 极品教师在线视频| 少妇 在线观看| 国产片特级美女逼逼视频| 国产老妇伦熟女老妇高清| 大片免费播放器 马上看| 亚洲综合色惰| 少妇被粗大猛烈的视频| 黄色配什么色好看| 波野结衣二区三区在线| 久久久久久久久久人人人人人人| 内射极品少妇av片p| 欧美高清成人免费视频www| 亚洲在线观看片| 99热这里只有精品一区| 女的被弄到高潮叫床怎么办| 香蕉精品网在线| 又爽又黄无遮挡网站| 51国产日韩欧美| 在线 av 中文字幕| 一级毛片我不卡| 18禁在线无遮挡免费观看视频| 毛片一级片免费看久久久久| 国产av国产精品国产| 久久久久久久精品精品| 午夜免费鲁丝| 国产高清国产精品国产三级 | 亚洲av欧美aⅴ国产| 亚洲经典国产精华液单| 国产av码专区亚洲av| 久久久久久久久久人人人人人人| 我的老师免费观看完整版| 日本黄大片高清| 国产精品福利在线免费观看| 国产成人免费观看mmmm| 亚洲成人中文字幕在线播放| 亚洲自拍偷在线| 免费看a级黄色片| 欧美亚洲 丝袜 人妻 在线| 22中文网久久字幕| 久久久久国产网址| 亚洲欧美日韩东京热| 免费大片黄手机在线观看| 免费看不卡的av| 国产探花在线观看一区二区| 成人综合一区亚洲| 亚洲久久久久久中文字幕| 成年av动漫网址| 晚上一个人看的免费电影| 欧美丝袜亚洲另类| 插阴视频在线观看视频| 午夜免费鲁丝| 亚洲国产欧美人成| 久久久成人免费电影| 2021天堂中文幕一二区在线观| freevideosex欧美| 男女啪啪激烈高潮av片| 插逼视频在线观看| av在线亚洲专区| 久热这里只有精品99| 中文字幕久久专区| 亚洲av成人精品一区久久| 老女人水多毛片| 亚洲精品一区蜜桃| av线在线观看网站| 国产v大片淫在线免费观看| 国产美女午夜福利| 最近2019中文字幕mv第一页| 日韩亚洲欧美综合| 国产亚洲精品久久久com| 大片免费播放器 马上看| 日日撸夜夜添| 国产成人免费观看mmmm| 26uuu在线亚洲综合色| 看非洲黑人一级黄片| 3wmmmm亚洲av在线观看| 久久99精品国语久久久| 高清欧美精品videossex| 欧美性感艳星| 一级a做视频免费观看| 在线观看三级黄色| 一级片'在线观看视频| 亚洲欧美成人综合另类久久久| freevideosex欧美| av在线蜜桃| 国产免费一级a男人的天堂| 国产精品久久久久久久电影| 国产男女超爽视频在线观看| 亚洲国产精品999| 老女人水多毛片| 欧美丝袜亚洲另类| 午夜激情福利司机影院| 五月天丁香电影| 丝袜脚勾引网站| 超碰97精品在线观看| 亚洲精品国产av蜜桃| 极品少妇高潮喷水抽搐| 99热这里只有精品一区| 久久精品国产a三级三级三级| 又爽又黄无遮挡网站| 狠狠精品人妻久久久久久综合| 亚洲天堂国产精品一区在线| 涩涩av久久男人的天堂| 别揉我奶头 嗯啊视频| 中文字幕免费在线视频6| 国产欧美日韩一区二区三区在线 | 久久久久久久精品精品| 色视频在线一区二区三区| 欧美zozozo另类| 国模一区二区三区四区视频| 日本爱情动作片www.在线观看| 一二三四中文在线观看免费高清| 日韩av免费高清视频| 亚洲av.av天堂| 亚洲一级一片aⅴ在线观看| 亚洲av免费在线观看| 高清日韩中文字幕在线| 日本-黄色视频高清免费观看| 国产男女超爽视频在线观看| 亚洲成人av在线免费| 九草在线视频观看| 99精国产麻豆久久婷婷| 色综合色国产| 久久鲁丝午夜福利片| 国产白丝娇喘喷水9色精品| 国产白丝娇喘喷水9色精品| 久久久久久久久久久免费av| 你懂的网址亚洲精品在线观看| av.在线天堂| 国产欧美亚洲国产| 看免费成人av毛片| 久热这里只有精品99| 免费看不卡的av| 国产伦在线观看视频一区| 久久久久久久久久成人| 国产又色又爽无遮挡免| 日韩在线高清观看一区二区三区| 国产成人一区二区在线| 国产毛片a区久久久久| av福利片在线观看| 22中文网久久字幕| 日本色播在线视频| 我的女老师完整版在线观看| 又粗又硬又长又爽又黄的视频| 国产男人的电影天堂91| 99九九线精品视频在线观看视频| 能在线免费看毛片的网站| 亚洲欧美日韩另类电影网站 | 激情 狠狠 欧美| 日韩欧美精品免费久久| a级毛色黄片| 99热这里只有精品一区| 人妻 亚洲 视频| 成人免费观看视频高清| 国产精品av视频在线免费观看| 18禁在线播放成人免费| 亚洲国产色片| 成人美女网站在线观看视频| 国产精品99久久久久久久久| 午夜福利高清视频| 哪个播放器可以免费观看大片| 欧美日韩精品成人综合77777| 哪个播放器可以免费观看大片| 精品久久国产蜜桃| 久久人人爽人人爽人人片va| 大码成人一级视频| 91久久精品国产一区二区三区| 免费观看性生交大片5| 日韩欧美精品免费久久| 亚洲国产色片| 久久精品夜色国产| 啦啦啦啦在线视频资源| 国产色婷婷99| 搞女人的毛片| 亚洲精品日韩在线中文字幕| 亚洲av福利一区| 丝袜美腿在线中文| 在线亚洲精品国产二区图片欧美 | 天天躁日日操中文字幕| 国产黄色视频一区二区在线观看| 丝瓜视频免费看黄片| 久久久精品免费免费高清| .国产精品久久| 久久久久久九九精品二区国产| www.色视频.com| 国产综合精华液| 老司机影院成人| 亚洲国产成人一精品久久久| 天堂网av新在线| 人人妻人人爽人人添夜夜欢视频 | 国产极品天堂在线| 久久久久精品久久久久真实原创| 777米奇影视久久| 亚洲欧美日韩卡通动漫| 亚洲欧美中文字幕日韩二区| 熟妇人妻不卡中文字幕| 又黄又爽又刺激的免费视频.| 亚洲人成网站在线观看播放| 国产精品一区二区在线观看99| 男的添女的下面高潮视频| 精品国产乱码久久久久久小说| 亚洲欧洲日产国产| 在线观看免费高清a一片| 日韩亚洲欧美综合| 中文字幕制服av| av专区在线播放| 久久女婷五月综合色啪小说 | www.色视频.com| 国产精品女同一区二区软件| 成人无遮挡网站| 日韩 亚洲 欧美在线| 亚洲图色成人| 91精品一卡2卡3卡4卡| 精品酒店卫生间| 男的添女的下面高潮视频| 久久精品久久久久久噜噜老黄| 国产男人的电影天堂91| 亚洲色图综合在线观看| 国产老妇伦熟女老妇高清| 欧美极品一区二区三区四区| 成人午夜精彩视频在线观看| 看十八女毛片水多多多| 只有这里有精品99| 大码成人一级视频| 欧美激情在线99| 久久久久性生活片| 国产综合懂色| 在线精品无人区一区二区三 | 青春草视频在线免费观看| 亚洲欧美日韩东京热| 91午夜精品亚洲一区二区三区| 五月伊人婷婷丁香| 国产精品三级大全| 欧美成人a在线观看| 色视频www国产| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 亚洲av欧美aⅴ国产| 精品久久久久久电影网| 亚洲av一区综合| 2021少妇久久久久久久久久久| 欧美丝袜亚洲另类| 日韩视频在线欧美| 一级毛片黄色毛片免费观看视频| 国产精品国产三级专区第一集| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲av片在线观看秒播厂| 男女无遮挡免费网站观看| 三级经典国产精品| 国产爱豆传媒在线观看| 18禁裸乳无遮挡动漫免费视频 | 一级毛片aaaaaa免费看小| 久久久久久久久久人人人人人人| 亚洲天堂av无毛| 亚洲国产欧美人成| 久久国内精品自在自线图片| 蜜桃久久精品国产亚洲av| av在线亚洲专区| 欧美日韩一区二区视频在线观看视频在线 | 高清欧美精品videossex| 18禁动态无遮挡网站| 国产成人午夜福利电影在线观看| 成人毛片a级毛片在线播放| 国产成人freesex在线| 美女主播在线视频| 色婷婷久久久亚洲欧美| 特级一级黄色大片| 精品午夜福利在线看| 亚洲欧美日韩另类电影网站 | 国产精品女同一区二区软件| 国产成人aa在线观看| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人 | 亚洲av免费在线观看| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 男女边摸边吃奶| 亚洲怡红院男人天堂| 久久韩国三级中文字幕| 国产成人精品一,二区| 亚洲国产高清在线一区二区三| 少妇人妻久久综合中文| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美亚洲二区| 99视频精品全部免费 在线| 亚洲综合色惰| 插阴视频在线观看视频| 在线观看一区二区三区激情| 国产午夜福利久久久久久| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 97在线人人人人妻| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 在现免费观看毛片| 欧美潮喷喷水| 亚洲av中文av极速乱| 欧美日韩视频高清一区二区三区二| 青春草国产在线视频| 搞女人的毛片| 亚洲成人中文字幕在线播放| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 你懂的网址亚洲精品在线观看| 国产成人精品婷婷| 国产黄色视频一区二区在线观看| 国产在线男女| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 国产一区二区在线观看日韩| 少妇猛男粗大的猛烈进出视频 | av播播在线观看一区| av在线播放精品| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 中文乱码字字幕精品一区二区三区| 中文字幕久久专区| 91午夜精品亚洲一区二区三区| 精品一区在线观看国产| 天堂俺去俺来也www色官网| 亚洲最大成人中文| 久久99热这里只有精品18| 久久国内精品自在自线图片| 久久这里有精品视频免费| 一区二区三区精品91| 69人妻影院| 老师上课跳d突然被开到最大视频| 亚洲精品aⅴ在线观看| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 欧美最新免费一区二区三区| 夫妻午夜视频| 天堂俺去俺来也www色官网| 亚洲最大成人中文| 久久久久久伊人网av| 日韩亚洲欧美综合| 人人妻人人看人人澡| 亚洲天堂av无毛| 能在线免费看毛片的网站| 夜夜爽夜夜爽视频| 2022亚洲国产成人精品| 男男h啪啪无遮挡| 国产精品麻豆人妻色哟哟久久| 久久精品人妻少妇| 国产黄片视频在线免费观看| 久久精品国产a三级三级三级| 永久免费av网站大全| 少妇裸体淫交视频免费看高清| 极品少妇高潮喷水抽搐| 男女边摸边吃奶| 亚洲高清免费不卡视频| 美女被艹到高潮喷水动态| 国产 一区精品| 一本久久精品| 在线播放无遮挡| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 少妇人妻久久综合中文| 人妻少妇偷人精品九色| 国产成人精品福利久久| 亚洲av福利一区| 国产精品久久久久久精品古装| 美女脱内裤让男人舔精品视频| 国国产精品蜜臀av免费| 亚洲人成网站在线播| 亚洲av日韩在线播放| 观看美女的网站| av在线老鸭窝| 成人黄色视频免费在线看| 久久国内精品自在自线图片| 亚洲欧美成人精品一区二区| 亚洲美女视频黄频| 狂野欧美白嫩少妇大欣赏| 国产白丝娇喘喷水9色精品| 精品久久久久久久久av| 欧美 日韩 精品 国产| 成年女人看的毛片在线观看| 18禁在线播放成人免费| 涩涩av久久男人的天堂| 国产午夜精品久久久久久一区二区三区| 好男人视频免费观看在线| 日韩电影二区| 亚洲av成人精品一二三区| 中文资源天堂在线| 国产真实伦视频高清在线观看| 男插女下体视频免费在线播放| 亚洲精华国产精华液的使用体验| 久久久久久伊人网av| 国产视频内射| 精品国产一区二区三区久久久樱花 | 97精品久久久久久久久久精品| 岛国毛片在线播放| 国产国拍精品亚洲av在线观看| 亚洲精品456在线播放app| 亚洲电影在线观看av| 搡老乐熟女国产| 极品少妇高潮喷水抽搐| 蜜臀久久99精品久久宅男| 日韩欧美精品免费久久| 人人妻人人爽人人添夜夜欢视频 | 22中文网久久字幕| 91久久精品国产一区二区成人| 精品久久久噜噜| 在线观看一区二区三区| 久久久久精品性色| 成人免费观看视频高清| 一级a做视频免费观看| 精品99又大又爽又粗少妇毛片| 日本黄大片高清| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 亚洲精品日韩av片在线观看| 老司机影院成人| 国产一区二区三区综合在线观看 | 不卡视频在线观看欧美| 午夜亚洲福利在线播放| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 伊人久久国产一区二区| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 久久精品人妻少妇| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 一个人观看的视频www高清免费观看| 不卡视频在线观看欧美| 99九九线精品视频在线观看视频| 国产午夜精品一二区理论片| 国产av不卡久久| 精品久久久噜噜| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 日本午夜av视频| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 久久精品夜色国产| av网站免费在线观看视频| 中文乱码字字幕精品一区二区三区| 亚洲欧美一区二区三区黑人 | 久久精品国产a三级三级三级| 午夜福利在线在线| 午夜爱爱视频在线播放| 免费观看在线日韩| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美日韩东京热| 久久ye,这里只有精品| 美女被艹到高潮喷水动态| 一区二区三区精品91| 能在线免费看毛片的网站| 中文字幕制服av| av国产免费在线观看| 日韩 亚洲 欧美在线| 欧美日本视频| 日本wwww免费看| 香蕉精品网在线| 天堂中文最新版在线下载 | 国产亚洲一区二区精品| 2022亚洲国产成人精品| 99热6这里只有精品| 亚洲成人av在线免费| 免费观看性生交大片5| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区视频9| 色视频www国产| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 永久网站在线| 毛片女人毛片| 精品熟女少妇av免费看| 美女内射精品一级片tv| 免费大片黄手机在线观看| 观看美女的网站| 亚洲国产精品999| 欧美精品国产亚洲| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产久久久一区二区三区| 成人国产麻豆网| 18禁动态无遮挡网站| 免费播放大片免费观看视频在线观看| 美女高潮的动态| 精品人妻视频免费看| 亚洲精品中文字幕在线视频 | 久久ye,这里只有精品| 精品久久久久久久人妻蜜臀av| 亚州av有码| 日韩电影二区| 久久人人爽人人爽人人片va| 日韩视频在线欧美| 中文精品一卡2卡3卡4更新| 男女那种视频在线观看| 一级毛片 在线播放| 一级爰片在线观看| 国产一区亚洲一区在线观看| 日本一本二区三区精品| 777米奇影视久久| 黄色欧美视频在线观看| 欧美精品国产亚洲| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 少妇的逼好多水| 亚洲丝袜综合中文字幕| a级毛片免费高清观看在线播放| 午夜免费观看性视频| 97在线视频观看| 久久久精品免费免费高清| 欧美国产精品一级二级三级 | 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 精品久久久久久电影网| 新久久久久国产一级毛片| 久久久久久伊人网av| 极品少妇高潮喷水抽搐| 久久久成人免费电影| 乱码一卡2卡4卡精品| 各种免费的搞黄视频| 黄色欧美视频在线观看| 在线观看三级黄色| 成人美女网站在线观看视频| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| xxx大片免费视频| 人妻 亚洲 视频| 一级二级三级毛片免费看| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| av一本久久久久| 人人妻人人爽人人添夜夜欢视频 | 狠狠精品人妻久久久久久综合| 最近最新中文字幕免费大全7|