• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of soil and elevation on roadside cryptogam diversity in the tropical Andes

    2023-01-05 12:37:02PulSlinsMrinMzonViniioCrrionPlinesNixonCumiusPtriioGuzmPoloGiorniAngelBentez
    Forest Ecosystems 2022年5期

    Pul Slins,Mrin Mz′on,Viniio Crri′on-Plines,Nixon Cumius,Ptriio Guzm′n,Polo Giorni,′Angel Benítez,,*

    a Maestría en Biología de la Conservaci′on y Ecología Tropical,Universidad T′ecnica Particular de Loja,San Cayetano Alto s/n,Loja,1101608,Ecuador

    b Centro de Investigaciones Tropicales del Ambiente y Biodiversidad–CITIAB,Universidad Nacional de Loja,Ciudadela Universitaria,sector La Argelia,EC 110101,Loja,Ecuador

    c Biodiversidad de Ecosistemas Tropicales-BIETROP,Herbario HUTPL,Departamento de Ciencias Biol′ogicas y Agropecuarias,Universidad T′ecnica Particular de Loja,San

    Cayetano Alto s/n,Loja,1101608,Ecuador

    d Departament of Pharmacy,University of Genoa,Viale Cembrano 4,16148,Genoa,Italy

    Keywords:Bryophytes Indicator species Beta diversity Lichens Richness Ecuador

    A B S T R A C T Background:The deforestation caused by road construction is one of the main drivers for both biodiversity and function loss in tropical ecosystems.Terricolous cryptogams are pioneers in colonizing roadside and they are limited by environmental and edaphic factors,thus,cryptogams may act as pioneers for ecosystem rehabilitation at roadside.

    1.Introduction

    Anthropic disturbances related to deforestation,such as agricultural expansion,mining activites and the creation of road infrastructure,are causing ecosystem services loss related with composition,structure and processes(Wallace,2007),having a significant impact on tropical areas(Lamb et al.,2005;Laurance et al.,2009;Wentink,2015).Road construction has been identified as an important driver of deforestation in tropical areas(Fearnside,2005;Perz et al.,2007;Laurance et al.,2009;Ahmed et al.,2013;Baraloto et al.,2015),since it causes multiple ecological impacts by altering the biotic and abiotic conditions that affect both the structure and functioning of ecosystems from local to regional scale(Forman and Lauren,1998;L′azaro-Lobo and Ervin,2019).For instance,roadside vegetation is the result of landscape fragmentation,where the original plant cover has been transformed and often replaced by exotic or invasive species that may cause adverse effects on ecosystem functions(Maynard et al.,2016;L′azaro-Lobo and Ervin,2019)related with reducing water retention,increasing soil compaction,inducing changes in the nutrient cycle and causing soil loss due to sedimentation which makes them highly vulnerable to erosion(Coffin,2007;García--Palacios et al.,2011)and might lead to landslides and soil desestabilization.

    Vegetation restoration at roadsides to avoid landslides should consider native species,as well as the successional stages(Arenas et al.,2017).For doing so,it is important to know the native plant species and their relationship to environmental variables(Van Diggelen et al.,2001;Wentink,2015),which will allow for,in the long term,the land rehabilitation and consequently the soil estabilization(Jackson and Hobbs,2009).At large scales,elevation has been identified as a determinant factor on plant diversity at roadside,where diversity of both native and exotic plant species did not follow a common pattern with elevation(Ar′evalo et al.,2005;Lembrechts et al.,2014;Bacaro et al.,2015;Haider et al.,2018).On the other hand,the physicochemical properties of soils have also been recorded as potent drivers of vegetation diversity at roadside.For instance,some studies have shown that fertility of the upper soil layer accelerates biotic assemblages and ecosystems’functional recovery,and favors the establishing of native plant species(Arenas et al.,2017;L′azaro-Lobo and Ervin,2019).Other factors that determine plant diversity are the type,age,total area and topography of the roadside,the surrounding vegetation and the management and maintenance activities of the roads(Deckers et al.,2005;Arenas et al.,2017;L′azaro-Lobo and Ervin,2019).

    Most research dealing with vegetation diversity at roadside and their relationship with environmental variables have been carried out in temperate areas(Ar′evalo et al.,2005;Fekete et al.,2017,2020).In tropical zones,these kind of studies are relatively scarce(Maynard et al.,2016),with most focusing on vascular plants(Bernes et al.,2017).For instance,in Ecuador studies evaluated changes in plant diversity on roadside in northern and southern related to elevation and soil physicochemical properties,however,these insights may not be equally extrapolated to terricolous cryptogams(bryophytes and lichens),due to its peculiar characteristic.Bryophytes and lichens are the pioneers in colonizing disturbed areas,and thus they are commonly found growing along roadside(Concostrina-Zubiri et al.,2019),depending on the soil properties,elevation and surrounding vegetation(Concostrina-Zubiri et al.,2013).These organisms are keystones at roadside,acting as a seedbed for vascular plants and as a soil stabilizer,reducing nutrient loss and water overflow,which,together with bacterias,are known as biological soil crusts or biocrusts(Groeneveld et al.,2007;Concostrina-Zubiri et al.,2019).Therefore,cryptogams may act as pioneers for ecosystem rehabilitation at roadside,a function that has been relatively well documented in temperate areas,including biocrusts(Groeneveld et al.,2007;García-Palacios et al.,2011;Concostrina-Zubiri et al.,2019;Monteiro et al.,2020),but not so well studied in tropical ecosystems.In this context,indicator species analysis with cryptogams,including biocrusts has been used widely in previous studies related with forests succession(D′eleg et al.,2021),disturbance(Holz and Gradstein,2005),fragmentation(Gignac and Dale,2005)and climatic changes(Qian et al.,1999;Ponzetti and McCune,2001).

    Considering the scarcity of the information on cryptogam colonization of roadside in tropical areas,we proposed this research aimed to:1)analyze the relationship of elevation and soil properties with the diversity and species composition of terricolous cryptogams at roadside,and 2)establish indicator species for early successional stages in these ecosystems as a tool for monitoring ecological processes.We hypothesize that changes in soil properties at every altitudinal level will determine the alpha and beta diversity of cryptogams at roadsides.

    2.Methods

    2.1.Study area

    The study was carried out along the Loja-Zamora road,located in southern Ecuador,the asphalt road(ca.10–12 years)has large volumes of traffic(e.g.heavily trucks).We selected five areas within an altitudinal range(Table 1),from 2700 to 1000 m a.s.l.,with two replicates for every area(Fig.1).Vegetation corresponds to the Evergreen low montane forest from the southeastern Andes mountains in the high-elevation areas(E1,E2 and E3),and Evergreen low piedmontane forest from the southeastern Andes in the low-elevation areas(E4 and E5).The most predominant species in both vegetation types areAlchornea grandiflora,

    Table 1Description of the soil variables in every altitudinal gradient(E1?E5).Mean values and the standard deviation are given.SOM=soil organic matter;SOC=soil organic carbon;Bd=bulk density.

    Calyptranthes pulchella,Cedrela montana,Ceroxylon parvifrons,Cinchona mutisii,Clethra ovalifoliaandClusia alata(Ministerio del Ambiente del Ecuador,2013).The field phase was conducted from November 2019 to May 2020.The bioclimatic data of annual temperature(°C)and annual total precipitation(mm)were extracted from Worldclim(Hijmans et al.,2005).

    2.2.Sampling design and data collecting

    Along the studied area,five zones with different elevations were considered(hierarchical experimental design),which were separated±400 m a.s.l.from one zone to another(2600,2200,1800,1400,1000 m a.s.l.).The selected roadsides are characterized by moderately steep slopes(20%–30%),that were measured with a clinometer(PM-5/360 PC Clinometer,Suunto,Finland).In each area,two replicas were considered,where for each replicate,one 10 m2(2 m×5 m)transects were established perpendicular to the road(Vittoz et al.,2010;Guzm′an et al.,2022).Each transect was subdivided into 10 nested plots of one square meter,of which five nested plots were considered for sampling(2,4,6,8 and 10).The presence and cover of lichens and bryophytes were estimated using five 20 cm×30 cm grids(250 grids)nested in plots(Castillo-Monroy and Benítez,2015;Castillo-Monroy et al.,2016;Benítez et al.,2019).Additionally,elevation,slope(calculated with a clinometer,PM-5/300 PC clinometer,Suunto,Finland),and vascular plant cover(thecover of the vascular species was quantified in each nested plot,using a 1 m×1 m,divided into 0.10 cm×0.10 cm cell)were recorded.

    Fig.1.Study area in southern Ecuador,with location of the ten transects at five altitudinal gradients(G1?G5)for evaluating the cryptogams at roadside.

    Lichens and bryophytes were identified with a Zeiss PRIMO STAR microscope and a Zeiss Stemi DV4 stereoscope,together with specific taxonomic keys(Churchill and Linares,1995;Gradstein and Costa,2003;Lücking et al.,2013;Gradstein,2021).The identified samples were placed in the HUTPL herbarium(Universidad T′ecnica Particular de Loja).For the nomenclature of the species,we mainly followed,for bryophytes,the Liverworts and Hornworts of Colombia and Ecuador(Gradstein,2021),the World Checklist of Hornworts and Liverworts(S¨oderstr¨om et al.,2016)and the Catalogue of the Plants and Lichens of Colombia(Bernal et al.,2016),while the database MycoBank for lichens.

    2.3.Soil sampling and analytical methods

    To determine the bulk density(Bd),three soil samples were taken at a depth of 0–5 cm,using standardized metal cores(5.5 cm in diameter,5 cm high,119 cm3in volume).Thus,6 individual samples were obtained for bulk density analysis at each elevation gradient,obtaining 30 samples in total.In addition,two samples were taken at a depth of 0–10 cm with large standardized metal cylinders(6 cm in diameter,10 cm in height,283 cm3in volume)in each plot,and both were then mixed to obtain a composite sample(one composite sample per transect,two per elevation gradient,ten in total)that were used for the texture and chemical analysis(Munkholm et al.,2002).After collection,the soil samples were packed into separate plastic bags and were properly labeled.

    In the laboratory,bulk density was first determined using the cylinder method for which the individual samples of Bd were oven-dried for 48 h at 105°C.Samples for textural and chemical analysis were then dried at room temperature for 72 h.Subsequently,all visible roots were removed and the samples were sieved through a 2-mm mesh.Soil texture was determined using the Bouyoucos hydrometer method(Black et al.,1965)while soil pH was measured with a pH meter applying the standard method(Black et al.,1965).Furthermore,soil organic carbon(SOC)and soil organic matter(SOM)were determined using the Walkley and Black method(Page et al.,1982),for which a thermostat at 125°C was inserted for 45 min after the samples were oxidized with a K2Cr2O7/H2SO4solution.Total nitrogen(TN)was determined by the Kjeldahl method,the phosphorus content(mg?kg-1)by the modified Olsen method(Bremner,1966),and the potassium content(mg?kg-1)by atomic absorption spectrophotometry(Tan et al.,2012).

    2.4.Data analysis

    Alpha diversity(i.e.,diversity within every altitudinal area)was analyzed by means of species richness,Shannon-Weaver and Simpson indices(Magurran,2004),and was graphically represented in a violin plot.The effects of altitude on richness,Shannon-Weaver and Simpson indices were analyzed separately using generalized mixed linear models(GLMMs)at grid level.In these models,altitude was used as predictor(fixed factor),whereas locality was included as random source of variation.We assumed Poisson errors for the response variables with the log link function.Effects of random factors were tested using the WaldZ-statistic test,and GLMMs were fit using the“l(fā)me4”R package with the function“glmer”(Bates et al.,2014).We used the Laplace approximation for likelihood estimates(Bolker et al.,2009).For GLMMs,the minimal adequate model was selected based on Akaike's information criterion(AIC).Finally,we used heatmap and Spearman's nonparametric correlation analysis(rho)to test the relationship between soil factors and species richness and diversity(Shannon-Weaver and Simpson indices).Beta diversity(i.e.,the species turnover between altitudinal areas)was evaluated by means of non-metric multidimensional scaling(NMDS)with Bray-Curtis distance and 999 Monte Carlo permutations with the“vegan”statistical package(Oksanen et al.,2019).To analyze the effect of environmental variables on beta diversity,a correlation was run between both axes and the environmental variables using the“envfit”function.Finally,to determine the indicator species for every elevation area,an indicator species analysis(ISA)was performed(Dufr^ene and Legendre,1997),using the IndVal function of the“l(fā)abdsv”package(Roberts,2013).The indicator value ranges from 0(one species was absent from one elevation)to 1 or 100(one species occurred in all grids of one elevation and was absent from other grids).All the analyses were calculated utilizing the statistical software R 3.2.2.(R Core Team,2015).

    3.Results

    3.1.Alpha diversity

    A total of 72 species were recorded,distributed into 44 bryophytes and 28 lichens(Table S1).The violin plot showed that the highest species richness was found in the highest elevations,gradually decreasing as elevation decreased(Fig.2).

    On the one hand,soil factors such as bulk density,silt and nitrogen were greater in the highest elevations(Table 1).Conversely sand and pH were higher at lower elevations(Table 1).

    This relationship was confirmed with the GLMMs,with elevation(E1?E3)positively influencing species richness(p<0.0001)and Shannon-Weaver(p<0.0001)and Simpson indices(p=0.03).Besides,Spearman correaltions(Fig.3),represented by pH and K and sand,significantly and negatively affected cryptogam species richness and Shannon-Weaver index.

    3.2.Beta diversity

    The NMDS analysis showed the cryptogam species grouping according to elevations,with stronger clustering within and greater distance between the highest and lowest elevations(Fig.4).Soil properties and elevation were influencing the cryptogam composition(Table 2).The pH was explaining most variability in species composition(66%),followed by silt content(42%)and elevation(41%).The other variables explained less than 30%(Table 2).In the highest elevation areas(E1 and E2),silt content,bulk density and slope limited the terricolous cryptogam composition,while pH and sand content,which were determinant for the lowest elevation composition.

    3.3.Indicator species

    A total of 25 indicator species were reported,with 16 belonging to bryophytes and 9 to lichens.From the 25,18 species were selected as best suited for indicators by having an indicator value higher than 20(Table 3).

    Table 2Data from the NMDS ordination for environmental factors and roadside cryptogam composition of the Loja-Zamora road.Squared correlation coefficients(R2)for axes 1 and 2,p-value and the contribution of every variable to the variability in every axis are shown.SOM=soil organic matter;Bd=bulk density.

    Table 3Roadside cryptogam species selected as indicators of altitudinal gradients at the Loja-Zamora road.

    Fig.2.Violin plot for species richness and diversity indices(Shannon-Weaver and Simpson)of cryptogams in every elevation level of roadside(E1?E5)along the Loja-Zamora road.Boxes span the first to third quartiles;the horizontal line inside the boxes represents the median.

    4.Discussion

    Our results indicated that elevation and soil properties such as bulk density,sand and silt content,total nitrogen,and pH,were the main properties responsible for the cryptogam diversity along the roadside of this tropical area.Both elevation and soil properties have been proven to influence roadside plant species diversity,not only for cryptogams but also for vascular plants in temperate zones(Ar′evalo et al.,2005;García-Palacios et al.,2011;Haider et al.,2018;Concostrina-Zubiri et al.,2019).

    Usually,vascular plants species richness on roadside decreases with increasing elevation,or shows the highest values at mid-elevations(Ar′evalo et al.,2005;Haider et al.,2018),with only a few exceptions(Haider et al.,2018).However,our results were the opposite,with species richness being higher with higher elevation,a common trend recorded for terricolous cryptogams and biocrusts(Austrheim,2002;Bruun et al.,2006;Ah-Peng et al.,2007;Castillo-Monroy et al.,2016).In our study,species richness and diversity(Shannon-Weaver and Simpson indices)were positively correlated not only with elevation but also with silt content,and negatively with sand content.The establishment of non-vascular plant that benefit from silt content can be explained by two reasons:1)fine particles provide a nutrition source(Danin et al.,1989;Kidron et al.,2008)and 2)silt can absorb more moisture(Lan et al.,2015),creating a more favorable environment for them.

    The composition of cryptogam communities being limited by elevation and soil properties,has also been found by other authors(Castillo-Monroy et al.,2016;Concostrina-Zubiri et al.,2019).In our study,species from the generaSyzygiella,Gongylanthus,HerbertusandStereocaulonwere abundant in soils with a higher bulk density,silt and nitrogen content,but with less sand content.Conversely,lower elevation composition,such as those consisting ofPlagiochilaandCorawere more commonly found in soils with a lower bulk density and higher values of sand content and pH.The pH is the most important variable to define plant species composition(Old′en et al.,2016),as seen in our study,since pH determines if a species can or can not grow and also affects their competitive abilities(Dupr′e and Ehrl′en,2002;L¨obel et al.,2016).Soil bulk density was also one of the more influential variables affecting the composition and establishment in the higher elevations,where density was lower.A higher bulk density implies a higher soil compaction,and soil compaction has a significant effect on plant growth by modifying the water and solute movement,as well as biological activity and soil airing(Atkinson et al.,2009).Nitrogen content also showed a relationship with cryptogam composition.According to several authors,some lichen(e.g.Stereocaulon)and bryophyte communities are able to fix tropospheric nitrogen and therefore can significantly increase the available nitrogen content(Gunther,1989;Gordon et al.,2001;Sottocornola et al.,2007;Pouliot et al.,2009;Hugron et al.,2013).Thus,Evans and Ehleringer(1993)and Lange et al.(1994)found that biocrusts can be an important sink aiding in the accumulation of nitrogen,which greatly contributes to soil stabilization(e.g.dune stabilization).

    On the other hand,Zhang and Nie(2011)and Tavili et al.(2017)showed that a cover of cryptogams produces a direct effect on soil fertility in terms of constant increases towards optimal amounts of nutrients such as N,K,Ca,Mg and P,which leads to better seed germination,seedling emergence and initial growth.In addition,lichens and mosses have a great capacity to absorb elements from the soil due to their metabolic processes(Szczepanika and Biziuk,2003).Therefore,the species identified in this study have a potential use in restoration projects on the roadsides of southern Ecuador.

    Cryptogams help in stabilizing soils(Arenas et al.,2017;Austrheim,2002),promoting soil fertility and improving microbial activity(García-Carmona et al.,2020),and reducing impacts of climate warming on soil properties(García-Carmona et al.,2020).They constitute a biological crust,which are currently being used as a promising tool for rehabiliting soils,especially in drylands,by translocation or by inoculation from laboratory(García-Palacios et al.,2011;Ballesteros et al.,2017;Antoninka et al.,2020;Rosentreter,2020).Lichens and bryophytes are important pioneer species,they play an essential role in the early stages of succession(Concostrina-Zubiri et al.,2019),which also help in the establishment of vascular plants(Hawkes,2004;Ah-Peng et al.,2007).Therefore,cryptogams should be further considered for ecological rehabilitation strategies(Lorite et al.,2020)especially among roadside in tropical areas,since these ecosystems are highly vulnerable to landslides,both natural and anthropic.This research helps in providing a combination of indicator species(both of bryophytes and lichens)with specific elevation and soil requirements,which may help in roadside stabilization.For instance,Syzygiella rubricaulis,Gongylanthus granatensis,Campylopus richardii,Isotachis multicepsandStereocaulon ramulosum

    Fig.3.Correlation matrix(heatmap)of the richenss and diversity(Shannon-Weaver and Simpson indices)and soil factors.

    Fig.4.Non-metric multidimensional scaling analysis of roadside cryptogam species composition and environmental variables in the five studied elevations(E1–E5).

    might be established in of high-elevation areas with a higher bulk density and silt as well as nitrogen content.However,for the study area,it is recommended that further research be applied to determine the development of these species through the evaluation of natural succession stages(over time)as developed in recent research(e.g.,Concostrina-Zubiri et al.,2019).In addition,future research should evaluate the effect of lichens and bryophytes in improving the physical-chemical properties of the topsoil,such as texture,nutrient content,and evaluate the interactions between the biological soil crust and vascular plants over time.

    Several studies have been conducted on the role of biocrusts in enhancing the structural stability of soils in temperate zones(Issa et al.,2001;Li et al.,2002).However,cryptogams,and biocrusts in general,despite their potential,have been poorly studied in tropical areas(Castillo-Monroy et al.,2016;Antoninka et al.,2020).The lichen and bryophyte species that should be used as biological crust for ecological rehabilitation purposes should be site-appropriate(Rosentreter,2020),and for this reason more research,such as that presented here,is needed in order to understand the ecological variables that may favor cryptogam species establishment and to stabilize tropical roadside.

    5.Conclusions

    Our study provides new evidence for the drivers(elevation and soil properties)of cryptogamic diversity in Andean roadside that harbor a high diversity.Cryptogam diversity and composition were influenced by elevation and soil properties such as bulk density,pH,silt,sand and nitrogen content.We obtained a group of terricolous cryptogam species indicators for every set of environmental and soil conditions at roadsides,which may be used as a baseline for monitoring ecological processes in tropical areas.Cryptogam diversity could be an effective indicator for environmental and soil changes in roadsides,thus this study will be useful for supporting the management and stabilization of roadside.

    Author contributions

    PS,AB,VCP,PAG,NC,conceptualization,methodology,validation,investigation,data curation;′AB,PG analyzed the data;PS,AB,VCP,PAG,NC,MM,PG,writing–original draft,writing–review and editing.

    Funding

    This research was funded by Universidad T′ecnica Particular de Loja(UTPL-PROY_INV_CCBIO_2020_2773 and research scholarship I-II-III CONV).

    Ethics approval and consent to participate

    All the authors have approved the manuscript and agreed with submission to your esteemed journal.

    Consent for publication

    Not applicable.

    Declaration of competing interest

    There are no conflicts of interest to declare.

    Acknowledgements

    We thank the Ministerio del Ambiente y Agua del Ecuador for providing access to the study areas and anonymous reviewers for constructive comments on the manuscript.Special thanks to Gregory Gedeon for English text revision on the manuscript.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.i.org/10.1016/j.fecs.2022.100061.

    日产精品乱码卡一卡2卡三| 久久免费观看电影| 成人午夜精彩视频在线观看| 久久人人爽人人片av| 国产在线免费精品| 黑人巨大精品欧美一区二区蜜桃 | 成人国产av品久久久| 日本欧美国产在线视频| 一级毛片电影观看| 日韩av不卡免费在线播放| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 国产极品粉嫩免费观看在线 | 各种免费的搞黄视频| 国产黄频视频在线观看| 亚洲人成77777在线视频| 日韩欧美一区视频在线观看| 亚洲av不卡在线观看| 一本大道久久a久久精品| 国产成人av激情在线播放 | av国产久精品久网站免费入址| 国产亚洲最大av| 日韩伦理黄色片| 男女边摸边吃奶| .国产精品久久| 在线播放无遮挡| 免费黄频网站在线观看国产| 国产视频内射| 大香蕉97超碰在线| 久久久久久久精品精品| 亚洲综合色网址| 国产极品粉嫩免费观看在线 | 欧美国产精品一级二级三级| 日韩不卡一区二区三区视频在线| 欧美精品人与动牲交sv欧美| 久久久久久久久久久免费av| 伊人久久精品亚洲午夜| 十八禁网站网址无遮挡| 天天操日日干夜夜撸| 人人妻人人澡人人看| 精品久久久久久电影网| 亚洲欧洲精品一区二区精品久久久 | 3wmmmm亚洲av在线观看| av免费观看日本| 日韩av免费高清视频| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线不卡| 精品少妇内射三级| 国产成人a∨麻豆精品| 毛片一级片免费看久久久久| 精品久久国产蜜桃| 激情五月婷婷亚洲| 日本色播在线视频| 2022亚洲国产成人精品| 午夜福利网站1000一区二区三区| 两个人免费观看高清视频| 国产乱人偷精品视频| 国模一区二区三区四区视频| 精品一区在线观看国产| 久久午夜综合久久蜜桃| 成人18禁高潮啪啪吃奶动态图 | 日韩av免费高清视频| 国产国拍精品亚洲av在线观看| 国产精品免费大片| 国产男女内射视频| 国产 一区精品| 又大又黄又爽视频免费| 日韩制服骚丝袜av| 99久久中文字幕三级久久日本| 九九久久精品国产亚洲av麻豆| 精品久久久久久久久亚洲| 国产片内射在线| 国产高清国产精品国产三级| 国产欧美另类精品又又久久亚洲欧美| 日本vs欧美在线观看视频| 爱豆传媒免费全集在线观看| av免费在线看不卡| 亚洲国产精品专区欧美| 26uuu在线亚洲综合色| 男女边摸边吃奶| a级毛片在线看网站| 国产成人freesex在线| 免费看不卡的av| 亚洲欧美精品自产自拍| 久久久午夜欧美精品| 亚洲av国产av综合av卡| 黄片无遮挡物在线观看| 在线观看免费日韩欧美大片 | 久久精品夜色国产| 成年人午夜在线观看视频| 伊人久久国产一区二区| 国产视频内射| 亚洲欧美中文字幕日韩二区| 美女内射精品一级片tv| 高清不卡的av网站| 久久99热这里只频精品6学生| 美女xxoo啪啪120秒动态图| 狂野欧美激情性xxxx在线观看| 高清av免费在线| 亚洲精品乱久久久久久| .国产精品久久| 国产高清三级在线| 熟女人妻精品中文字幕| 国产精品嫩草影院av在线观看| 春色校园在线视频观看| 精品久久久精品久久久| videossex国产| 能在线免费看毛片的网站| 美女内射精品一级片tv| 国产精品女同一区二区软件| 美女xxoo啪啪120秒动态图| 国产亚洲最大av| 黄色毛片三级朝国网站| 日日爽夜夜爽网站| 最近手机中文字幕大全| 欧美丝袜亚洲另类| 精品亚洲成国产av| 亚洲精品美女久久av网站| 国产成人精品一,二区| 亚洲国产最新在线播放| 天美传媒精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 欧美日韩av久久| 欧美 亚洲 国产 日韩一| 最近手机中文字幕大全| 能在线免费看毛片的网站| 好男人视频免费观看在线| av卡一久久| 黄色毛片三级朝国网站| 欧美日韩国产mv在线观看视频| 韩国高清视频一区二区三区| 一边摸一边做爽爽视频免费| 亚洲人与动物交配视频| 亚洲精品第二区| 天堂俺去俺来也www色官网| 久久久精品区二区三区| 欧美3d第一页| 久热久热在线精品观看| 啦啦啦啦在线视频资源| 三级国产精品片| 另类精品久久| 嘟嘟电影网在线观看| 特大巨黑吊av在线直播| 飞空精品影院首页| 亚洲精品国产av蜜桃| 亚洲美女搞黄在线观看| 99热这里只有精品一区| 精品亚洲乱码少妇综合久久| 亚洲少妇的诱惑av| 国产亚洲av片在线观看秒播厂| 在线观看人妻少妇| 夜夜爽夜夜爽视频| 日韩欧美一区视频在线观看| 蜜桃在线观看..| 十八禁网站网址无遮挡| videosex国产| .国产精品久久| 欧美日韩综合久久久久久| 久久国产精品大桥未久av| 久久国产精品大桥未久av| 色网站视频免费| 熟女电影av网| 高清黄色对白视频在线免费看| 高清黄色对白视频在线免费看| 欧美精品人与动牲交sv欧美| 亚洲精品自拍成人| 久久99精品国语久久久| av免费观看日本| 国产伦精品一区二区三区视频9| 99热网站在线观看| 成人国产av品久久久| 男女国产视频网站| 日韩强制内射视频| 综合色丁香网| 亚洲,一卡二卡三卡| 毛片一级片免费看久久久久| av国产久精品久网站免费入址| 一本久久精品| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 在线免费观看不下载黄p国产| 一边摸一边做爽爽视频免费| 蜜桃国产av成人99| 国产爽快片一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 日本欧美视频一区| 五月天丁香电影| 久久久久久久精品精品| 亚洲婷婷狠狠爱综合网| 免费观看的影片在线观看| av不卡在线播放| 在线免费观看不下载黄p国产| 婷婷色av中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲国产精品国产精品| 国产精品麻豆人妻色哟哟久久| 成年女人在线观看亚洲视频| 亚洲精华国产精华液的使用体验| 亚洲性久久影院| 亚洲中文av在线| 在线天堂最新版资源| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久久久按摩| 国产精品偷伦视频观看了| 欧美日韩精品成人综合77777| 色婷婷av一区二区三区视频| 日本猛色少妇xxxxx猛交久久| 校园人妻丝袜中文字幕| 最后的刺客免费高清国语| 少妇 在线观看| 久久久久久久国产电影| 青春草视频在线免费观看| 久久av网站| 高清午夜精品一区二区三区| 亚洲精品乱码久久久久久按摩| 日韩伦理黄色片| 有码 亚洲区| 日本爱情动作片www.在线观看| 好男人视频免费观看在线| 久久精品夜色国产| 丝瓜视频免费看黄片| 秋霞伦理黄片| 女性生殖器流出的白浆| 国产女主播在线喷水免费视频网站| 欧美精品一区二区免费开放| 在线观看免费高清a一片| 能在线免费看毛片的网站| 狂野欧美激情性bbbbbb| 自线自在国产av| 99re6热这里在线精品视频| 欧美精品一区二区大全| 桃花免费在线播放| 国产高清国产精品国产三级| 久久午夜福利片| 亚洲精品第二区| 亚洲少妇的诱惑av| 国产伦理片在线播放av一区| 亚洲成人av在线免费| 汤姆久久久久久久影院中文字幕| 极品人妻少妇av视频| 成人18禁高潮啪啪吃奶动态图 | 国产一级毛片在线| 亚洲av成人精品一区久久| 精品少妇黑人巨大在线播放| 天堂中文最新版在线下载| 观看av在线不卡| 男女边吃奶边做爰视频| 王馨瑶露胸无遮挡在线观看| 少妇人妻精品综合一区二区| 国产亚洲精品第一综合不卡 | 国产成人一区二区在线| 插逼视频在线观看| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 亚洲精品久久午夜乱码| 下体分泌物呈黄色| 亚洲av在线观看美女高潮| 中国美白少妇内射xxxbb| 日本免费在线观看一区| 欧美精品一区二区免费开放| 在线观看三级黄色| 久久韩国三级中文字幕| 久久人人爽人人片av| 又黄又爽又刺激的免费视频.| 91精品三级在线观看| 国产永久视频网站| 一级毛片 在线播放| av在线播放精品| 人妻系列 视频| 男女无遮挡免费网站观看| 免费av不卡在线播放| 黄片无遮挡物在线观看| 九色成人免费人妻av| 一区二区三区免费毛片| 日本黄色片子视频| 精品视频人人做人人爽| 欧美日韩综合久久久久久| 欧美人与性动交α欧美精品济南到 | 国产精品免费大片| 能在线免费看毛片的网站| 亚洲国产欧美日韩在线播放| 久久毛片免费看一区二区三区| 中文字幕人妻丝袜制服| 久久精品久久久久久噜噜老黄| 亚洲av电影在线观看一区二区三区| 免费日韩欧美在线观看| 极品少妇高潮喷水抽搐| 亚洲性久久影院| 日韩av不卡免费在线播放| 久久久久视频综合| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| 日韩在线高清观看一区二区三区| 天天操日日干夜夜撸| 久久久久视频综合| 日本vs欧美在线观看视频| 一级二级三级毛片免费看| 久久久久精品性色| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 蜜臀久久99精品久久宅男| 午夜激情久久久久久久| 99九九在线精品视频| 亚洲国产成人一精品久久久| 国产毛片在线视频| 亚洲一区二区三区欧美精品| 2018国产大陆天天弄谢| 99久久精品国产国产毛片| 亚洲精品一区蜜桃| 国产亚洲av片在线观看秒播厂| 日日摸夜夜添夜夜添av毛片| 欧美+日韩+精品| 亚洲欧美精品自产自拍| av免费在线看不卡| 亚洲高清免费不卡视频| 中文字幕亚洲精品专区| 精品少妇黑人巨大在线播放| 在线观看免费日韩欧美大片 | 男人添女人高潮全过程视频| 高清午夜精品一区二区三区| 国产一区二区在线观看av| 高清不卡的av网站| 欧美亚洲日本最大视频资源| 欧美激情 高清一区二区三区| 亚洲精品日韩在线中文字幕| 免费av中文字幕在线| av女优亚洲男人天堂| 日韩视频在线欧美| 国产成人精品无人区| 国产成人精品婷婷| 五月天丁香电影| 中文字幕久久专区| 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 午夜老司机福利剧场| av在线app专区| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 精品酒店卫生间| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 如何舔出高潮| 国产在线视频一区二区| 精品久久久久久久久亚洲| 日日爽夜夜爽网站| 免费黄网站久久成人精品| 国产白丝娇喘喷水9色精品| 少妇丰满av| 精品少妇内射三级| 亚洲国产精品国产精品| 色网站视频免费| 日韩大片免费观看网站| 最近手机中文字幕大全| 国产成人精品一,二区| 国产免费一级a男人的天堂| 有码 亚洲区| 亚洲精品成人av观看孕妇| 国产精品不卡视频一区二区| av在线观看视频网站免费| 久久综合国产亚洲精品| 国产69精品久久久久777片| 欧美人与善性xxx| 日韩伦理黄色片| 一区二区三区免费毛片| 日本91视频免费播放| 大话2 男鬼变身卡| 精品久久久久久久久av| 国产日韩欧美视频二区| 国产精品99久久久久久久久| 日韩中字成人| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 我的老师免费观看完整版| 男女边吃奶边做爰视频| 人妻系列 视频| 久久久久国产网址| 亚洲怡红院男人天堂| 亚洲欧美清纯卡通| 欧美97在线视频| 日韩人妻高清精品专区| 欧美性感艳星| 亚洲国产成人一精品久久久| 黑丝袜美女国产一区| 日韩中文字幕视频在线看片| 精品人妻熟女av久视频| 久久亚洲国产成人精品v| 制服诱惑二区| 精品少妇内射三级| 日本欧美视频一区| 男女边摸边吃奶| 精品少妇久久久久久888优播| 亚洲不卡免费看| 永久网站在线| 日韩强制内射视频| 国产精品蜜桃在线观看| 亚洲成人av在线免费| 亚洲综合色网址| 国产日韩欧美视频二区| 国产在线免费精品| 爱豆传媒免费全集在线观看| 国产黄色视频一区二区在线观看| 国产精品99久久久久久久久| 亚洲美女视频黄频| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄| 春色校园在线视频观看| 日韩欧美一区视频在线观看| 午夜av观看不卡| 国产精品久久久久久av不卡| 欧美一级a爱片免费观看看| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 在线观看人妻少妇| 亚洲精品自拍成人| 日日爽夜夜爽网站| 午夜影院在线不卡| 国产黄频视频在线观看| 99久久综合免费| 美女中出高潮动态图| 亚洲精品,欧美精品| 亚洲高清免费不卡视频| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 青春草国产在线视频| 日本免费在线观看一区| 成人影院久久| 久久精品国产鲁丝片午夜精品| 成人毛片a级毛片在线播放| 国产成人av激情在线播放 | 精品酒店卫生间| 日韩人妻高清精品专区| av国产精品久久久久影院| 亚洲欧美色中文字幕在线| av在线观看视频网站免费| 好男人视频免费观看在线| 两个人免费观看高清视频| 日韩伦理黄色片| 亚洲国产精品成人久久小说| 91精品三级在线观看| 亚洲国产欧美在线一区| 国产无遮挡羞羞视频在线观看| 你懂的网址亚洲精品在线观看| 国产亚洲最大av| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕| 99久久综合免费| 久久久欧美国产精品| 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 伦理电影大哥的女人| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃 | 精品人妻偷拍中文字幕| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 日本wwww免费看| 国产日韩欧美视频二区| 国产熟女欧美一区二区| 青青草视频在线视频观看| 少妇精品久久久久久久| 午夜av观看不卡| 老司机影院成人| 欧美国产精品一级二级三级| 99热这里只有精品一区| 一级,二级,三级黄色视频| 久久午夜福利片| 午夜福利,免费看| xxx大片免费视频| 国产欧美日韩一区二区三区在线 | 日韩亚洲欧美综合| 国产探花极品一区二区| 高清av免费在线| 丝瓜视频免费看黄片| 亚洲精品久久久久久婷婷小说| 一本久久精品| 日韩,欧美,国产一区二区三区| 高清av免费在线| av线在线观看网站| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 人妻制服诱惑在线中文字幕| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 91aial.com中文字幕在线观看| 婷婷色综合www| 看免费成人av毛片| av一本久久久久| 一级爰片在线观看| 少妇被粗大猛烈的视频| 一级黄片播放器| 天堂中文最新版在线下载| 免费观看无遮挡的男女| 亚洲精品一二三| 欧美精品国产亚洲| 日日啪夜夜爽| 国产 一区精品| 午夜激情av网站| 国产av码专区亚洲av| 国产成人av激情在线播放 | av网站免费在线观看视频| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频| a级毛片免费高清观看在线播放| 天天影视国产精品| 亚洲av成人精品一二三区| 热re99久久精品国产66热6| 22中文网久久字幕| 春色校园在线视频观看| 亚洲中文av在线| 亚洲情色 制服丝袜| 秋霞伦理黄片| 黑人高潮一二区| 丝瓜视频免费看黄片| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 在线看a的网站| 国模一区二区三区四区视频| 国产在线视频一区二区| av天堂久久9| av专区在线播放| 国产一区亚洲一区在线观看| 99久久人妻综合| 少妇被粗大猛烈的视频| 欧美3d第一页| 午夜日本视频在线| 亚洲国产精品成人久久小说| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 欧美国产精品一级二级三级| 日韩视频在线欧美| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久国产电影| 国产精品一国产av| 国产日韩欧美视频二区| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 国产熟女欧美一区二区| 一区二区三区免费毛片| 国产免费现黄频在线看| 黄色毛片三级朝国网站| 欧美日本中文国产一区发布| 国产综合精华液| 亚洲无线观看免费| 搡老乐熟女国产| 考比视频在线观看| 精品久久国产蜜桃| 美女中出高潮动态图| 在线观看三级黄色| 欧美一级a爱片免费观看看| 18禁裸乳无遮挡动漫免费视频| 97在线人人人人妻| 最黄视频免费看| 丝袜在线中文字幕| 欧美日韩在线观看h| 久久久精品区二区三区| 在线观看免费日韩欧美大片 | 国产免费福利视频在线观看| 最近手机中文字幕大全| 99视频精品全部免费 在线| 嫩草影院入口| 欧美最新免费一区二区三区| 亚洲成人手机| 欧美最新免费一区二区三区| 99久久综合免费| 亚洲人成77777在线视频| 嫩草影院入口| 国产精品一区二区在线观看99| 亚洲成人手机| 亚洲成人av在线免费| 日韩欧美精品免费久久| 最近中文字幕2019免费版| 人妻人人澡人人爽人人| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 一本久久精品| 欧美三级亚洲精品| av不卡在线播放| 人妻夜夜爽99麻豆av| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 精品人妻熟女av久视频| 亚洲一区二区三区欧美精品| 人妻系列 视频| 如日韩欧美国产精品一区二区三区 | av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 久久人人爽人人片av| 99久国产av精品国产电影| 大话2 男鬼变身卡| a 毛片基地| 汤姆久久久久久久影院中文字幕| 国产精品国产三级国产专区5o| 69精品国产乱码久久久| 伊人久久国产一区二区| 18禁裸乳无遮挡动漫免费视频| 国产色婷婷99| 欧美国产精品一级二级三级| 97超碰精品成人国产| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 99久久综合免费| 欧美日韩一区二区视频在线观看视频在线| 99久国产av精品国产电影| av网站免费在线观看视频| 99热全是精品| 亚洲美女黄色视频免费看| 久热久热在线精品观看| 国产伦精品一区二区三区视频9| 三上悠亚av全集在线观看| 亚洲一区二区三区欧美精品|