• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter optimization of control system design for uncertain wireless power transfer systems using modified genetic algorithm

    2022-12-31 03:44:44XudongGaoWenjieCaoQiangYangHonglinWangXiaoleiWangGuangJinJunZhang

    Xudong Gao|Wenjie Cao|Qiang Yang|Honglin Wang|Xiaolei Wang|Guang Jin|Jun Zhang

    1School of Artificial Intelligence/School of Future Technology,Nanjing University of Information Science and Technology,Nanjing,China

    2School of Electronic and Information,Zhongyuan University of Technology,Zhengzhou,China

    3Graduate School of Engineering,Tokyo University of Agriculture and Technology,Koganei,Tokyo,Japan

    Abstract The closed‐loop wireless power transfer(WPT)system can realize constant voltage output in the presence of perturbation.However,the parameter design of the controller is a difficult problem.The traditional trial‐and‐error method is time‐consuming and difficult to find optimal parameters.A parameter optimization strategy of control systems for uncertain WPT systems using the modified genetic algorithm(MGA)is proposed.Firstly,because the system has different characteristics at different periods,the simulation process is divided into three stages.The first one is the start‐up stage,in which we mainly consider the overshoot and the rate of the voltage rise.The second one is the tracking stage,in which the tracking time and switching loss are mainly considered.The third one is the stabilisation stage,in which the steady‐state error and switching loss are mainly considered.Secondly,three cost functions are designed according to the characteristics of the three stages,and then the optimal controller parameters of each stage are obtained by using MGA.Finally,the effectiveness of the proposed method is verified by simulation.The optimization results show that compared with the previous parameter optimization method,the optimal controller parameters obtained by the proposed method make the WPT system achieve better performance.

    1|INTRODUCTION

    Wireless power transfer(WPT),as a new energy transfer method,has changed the way we use energy and has the characteristics of flexibility,position‐free,and movability.It has been widely used in undersea applications[1,2],implanted medical devices[3–5],electric vehicles[6,7],Internet of Things(IoT)devices[8],and so forth.However,there are still many problems to be solved before WPT technology can achieve leapfrog development,such as displacement flexibility,electromagnetic interference,and output voltage fluctuation[9],where the variation of the output voltage will degrade the system performance,such as the decrease of voltage will cause the increase of equipment loss and serious heating[10].

    In order to achieve output voltage regulation,a lot of research studies have been done,such as utilising primary and secondary communication to regulate output voltage[11],using the voltage and current of the primary side to adjust the output voltage[12],and using the DC‐DC converter in the treceiving side to manage the final output voltage[13].Among them,the DC‐DC converter used in the receiving circuit is a common method because of its simple topology,modelling does not require complex mathematical derivation and ability to continuously tune the parameters in WPT systems.

    Many control schemes are used in WPT systems with the DC‐DC circuit,such as the tneural network method[14,15],the model predictive control method[16–18],the sliding mode control(SMC)method[19–22],and so on.Sliding mode control is considered as a promising control method because of its fast response,simple design,and insensitivity to disturbance.However,how to obtain the optimal controller parameter combination is an open and challenging problem.

    In[23],Komurcugil presented a non‐singular terminal sliding mode control method for DC‐DC buck converters and compared it with sliding‐mode implementation of proportional integral derivative control(SM‐PID)method and conventional SMC method.The steady‐state error obtained by these three methods was 3.2mV,4.5,and 9mV,respectively.Although it is improved to a certain extent compared with SMC and SM‐PID control methods,the parameters of the controller are obtained by observing experimental phenomena,so the search process of optimal parameters is time‐consuming and inaccurate.Moreover,only the robustness of the controller itself is used,and there is no special robust algorithm to maintain the stability of the system.

    In order to solve parameter optimization problem,[24]proposed a parameter optimization strategy by using ant colony optimization(ACO).By using ACO to optimise the controller parameters,the switch pressure is relieved and the tracking performance is improved.Although the method has some improvement compared with the observation method,there are still two problems.First,the simulation process is considered as a whole without considering the characteristics of the system at different periods.Second,only the optimization of sliding coefficientαwas considered,and the hysteresis modulation method hysteresis bandhwas not considered.So,previous methods were either time‐consuming[23]or did not consider the characteristics of the WPT system at different periods[24].

    An operator‐based robust right coprime factorization approach could be used to guarantee the bounded input and bounded output stability of nonlinear systems[25–28].Since the approach is useful when dealing with robust stability of the nonlinear system[29–31],it has been adopted in many industrial applications,such as L‐shaped arm,Peltier actuated thermal process,and so on[32–34].In this paper,we use this method to guarantee the robust stability of the WPT system.

    According to the characteristics of each stage of the WPT system,a multi‐stage parameter optimization strategy by using operator theory and modified genetic algorithm(MGA)is proposed in this paper.First,operator‐based right coprime factorization could be used to guarantee the robust stability of the WPT system.Besides,according to the characteristics of the system itself,the simulation process is divided into three stages:start‐up stage,tracking stage,and stabilisation stage.The first stage is the start‐up stage.The moment the equipment is powered on,there will be a large current overshoot.We should try to avoid this phenomenon and at the same time ensure that the rate of voltage rises.The second stage is the tracking stage,in which we ensure the output voltage of the system can quickly reach the reference voltage we set and minimise switching loss.The third stage is the stabilisation stage,after the output voltage of the system reaches the reference voltage,we should try our best to keep the voltage near the reference voltage and reduce the switch vibration.In this way,the system can be guaranteed to achieve optimal performance at every stage.

    The rest of this article is organised as follows.Section 2 introduces the preliminaries and states the problem.Section 3 describes the proposed multi‐stage parameter optimization strategy.Section 4 shows the simulation results.Finally,conclusions are summarised in Section 5.

    2|PRELIMINARIES AND PROBLEM STATEMENTS

    2.1|Modelling of the WPT system with a buck circuit

    The circuit diagram of the open‐loop WPT system is shown in Figure 1,which is composed of three parts:coupling system,full‐bridge rectifier,and DC‐DC buck converter.The mathematical modellingPof the WPT system is as follows.

    whereD1is the duty cycle of switchS,eis the Euler's constant,and

    FIGURE 1 Circuit diagram of the open‐loop wireless power transfer(WPT)system

    The value of each component of the WPT system is shown in Table 1.

    2.2|Sliding mode control

    Sliding mode control is a relatively simple control method.The key of the design of sliding mode controller is to design sliding mode surfacesand the control lawu,and the specific forms are shown in equations(3)and(4).

    TABLE 1 Specification of the wireless power transfer(WPT)system

    whereu+(x)≠u?(x).

    Generally,in the reaching state,the state variables move rapidly to the sliding mode surface under the action of the control lawu.Then,the state variables converge to zero and enter the sliding mode.To keep the error variables along the sliding surface,the inequality(5)needs to be satisfied.

    2.3|Genetic algorithm

    Genetic algorithm is an optimization model that simulates Darwinian evolution,commonly used in image processing,pattern recognition,and combinational optimization problem.It was first proposed by Professor Holland and his students in 1970 and is mainly used for adaptive search and adaptive system design.The genetic algorithm has been proven to be an effective strategy by many users in design of control systems.For example,Yang used the genetic algorithm to obtain the optimal parameters of the H‐Infinite controller[10].Dang used the genetic algorithm to obtain the optimal parameters of fuzzy controller,which can ensure the robust stability of the dynamic positioning system(DPs)and improve the quality of the system even if there is environment influence[35].

    2.4|Operator‐based control system design

    The proposed robust controller based on an operator theory for the uncertain WPT system is shown in Figure 2,whereris the reference signalVref,yis the output voltageVout,andVinis a variable voltage described in(2).

    The mathematical plantP+ΔPof the WPT system considering the uncertainties can be expressed as follows:

    whereΔis the uncertain term of the WPT system(‖Δ‖<1).

    The plant can be right factorised as follows:

    FIGURE 2 Proposed robust controller based on the operator theory

    The operatorsAandBare shown in equations(9)and(10).

    whereA=N?1.

    Then,compensatorsCandχ1using sliding mode technology are as follows:

    whereKis a designed number satisfyingK>1 andα>0.The tracking performance of the system can be guaranteed by using the compensators.

    2.5|Problems statements

    Based on the strategy of multi‐stage optimization,in this paper,we divide the simulation process into three stages.The goal of the first stage is to obtain small current overshoot and fast rate of voltage rise,the goal of the second stage is to obtain fast tracking time and small switching fluctuation,and the goal of the third stage is to obtain small steady‐state error and switch fluctuation.For our purpose,we use MGA to get the optimal combination of controller parameters.

    3|MAIN RESULT

    3.1|Cost function design

    In order to find the optimal combination of parameters at each stage,in this paper,we design a cost function for each stage,Q1for the start‐up stage,Q2for the tracking stage,andQ3for the stabilisation stage.And each stage has two indicators for evaluating system performance.

    For cost functionQ1described in(15),it is used to balance overshoot and voltage rise rate.Its two indicators corresponding tof11,andf12are calculated as

    wheret0is the start time,t1is the time step for measuring the current overshoot indicator,iLis the real‐time inductance current of buck circuit,i*Lis the maximum current limit,andv1is the voltage at timet1.

    For cost functionQ2described in(18),it is used to balance tracking time and switching vibration.Its two indicators corresponding tof21,andf22are calculated as

    wheret2is the critical moment after which the error between the reference voltage and output voltage is less than 0.02 and?2is the number of switch vibration in the tracking stage.

    For cost functionQ3described in(21),it is used to balance steady‐state error and switching vibration.Its two indicators corresponding tof31,andf32are calculated as

    wheret3is the end time of simulation,vois the system output voltage(load voltage),Vrefis the output reference voltage,and?3indicates the number of switching fluctuation.

    In the above formula,ωijis the penalty factor of each indicator and represents the contribution to the cost functionQn,where{i|i=1,2,3},{j|j=1,2},{n|n=1,2,3}.The specification of constants in the cost functionQnis shown in Table 2.And the specification of penalty factors of the cost functions at each stage is shown in Table 3,Table 4,and Table 5,respectively.

    3.2|Analysis of the performance of designed parameters

    To investigate the impact of the operator‐based control system parameters on system performance at different stages,three groups of figures are shown in Figure 3,Figure 4,and Figure 5.In the three groups of figures,(a)indicates the impact of the operator‐based control system parameterhon systemperformance,and(b)indicates the impact of the operator‐based control system parameterαon system performance.

    TABLE 2 Specification of constants in the cost functions

    TABLE 3 Specification of penalty factor of the cost function Q1

    TABLE 4 Specification of penalty factor of the cost function Q2

    TABLE 5 Specification of penalty factor of the cost function Q3

    In Figure 3a,you can see that the reciprocal of voltage rise rate fluctuates obviously on the whole,and the current overshoot changes little with the increase ofh.In Figure 3b,whenαis less than 33,there is no obvious current overshoot,and then the current overshoot begins to appear,which indicates that the system performance deteriorates.For the reciprocal of voltage rise rate,whenαless than 33,the curve shows a downward trend,indicating that the output voltage shows an upward trend att1,and this indicator increases significantly from 32 to 33,after which the change is no longer significant.In Figure 4a,whenhis less than 0.77 with the increase ofh,the tracking time curve generally shows an upward trend representing the tracking time is getting longer and then decreases rapidly.For switch vibration,the curve shows a gradual downward trend with the increase ofh,which means less switching loss.In Figure 4b,whenαis less than 32,the tracking time curve shows a sharp downward trend meaning that the less tracking time and better system performance,with a significant increase from 32 to 33 and a gradual decline thereafter.For the switch vibration,the curve shows a downward trend on the whole,which means that the switch loss is decreasing with the increase ofα.Whenαis less than 33,the curve shows a gradual downward trend with a sharp decline from 33 to 34 and a steady decline thereafter.In Figure 5a,whenhis less than 0.77,the steady‐state error curve shows a steady upward trend,rising sharply from 0.77 to 0.82,and then presents a trend of fluctuation.For switch vibration,the curve shows a downward trend.In Figure 5b,both the steady‐state error curve and the switch vibration curve show a downward trend with the increase ofα,which means better system performance.

    FIGURE 3 The impact of the operator‐based control system parameters on cost function Q1 indicator f11,f12.(a)Impact of operator‐based control system parameter h on the wireless power transfer(WPT)system performance indicators at stage 1.(b)Impact of the operator‐based control system parameter α on the WPT system performance indicators at stage 1

    Figures 3–5 show that the control system parameters greatly affect the WPT system performance,and it is not realistic to get the optimal combination of parameters through the traditional observation method.On the one hand,the control system has more than one parameter and the parameters are interdependent.On the other hand,the curve of each system indicator is non‐monotonic,which also increases the difficulty of parameter selection.Control system parameter selection is a very time‐consuming process,and it is difficult to get the optimal parameters,so it is very necessary to use MGA to select the optimal control system parameters.

    3.3|MGA parameter settings

    FIGURE 4 The impact of the operator‐based control system parameters on cost function Q2 indicator f21,f22.(a)Impact of the operator‐based control system parameter h on the wireless power transfer(WPT)system performance indicators at stage 2.(b)Impact of the operator‐based control system parameter α on the WPT system performance indicators at stage 2

    The optimization range of the key parameters for MGA is shown in Table 6,and the optimal values of key parameters at each stage are shown in Table 7.The influence of crossover probability and mutation probability on fitness at each stage is shown in Figure 6,Figure 7,and Figure 8,respectively,whereXaxis represents the crossover probabilityPc,Yaxis represents mutation probabilityPm,andZ‐axis represents fitness,which is the average of 30 programme runs.The star represents the optimal parameters.

    3.4|Searching for optimal parameters

    The main procedure for searching the optimal parametersαandhat each stage is as follows.

    Step1(Initialisation):Initialise population randomly by

    wherepopis the population size,nis the number of the decision variable,andlengthis the coding length of a single decision variable,the phenotype for each genotypeXicorresponds to a combination of the control system parametersαandh,and its corresponding performance indicators are used to calculate the cost functionQn.

    FIGURE 5 The influence of the operator‐based control system parameters on cost function Q3 indicator f31,f32.(a)Impact of the operator‐based control system parameter h on the wireless power transfer(WPT)system performance indicators at stage 3.(b)Impact of the operator‐based control system parameter α on the WPT system performance indicators at stage 3

    TABLE 6 The optimization range of the crossover probability Pc and mutation probability Pm for the modified genetic algorithm(MGA)

    TABLE 7 The optimal value of the crossover probability Pc and mutation probability Pm for the modified genetic algorithm(MGA)at each stage

    Step2(Selection):Use roulette as the selection operator.

    FIGURE 6 The influence of crossover probability Pc and mutation probability Pm on fitness at stage 1

    FIGURE 7 The influence of crossover probability Pc and mutation probability Pm on fitness at stage 2

    FIGURE 8 The influence of crossover probability Pc and mutation probability Pm on fitness at stage 3

    whereris a random number between 0 and 1,qis the cumulative probability,andVjis the individual selected to enter the next generation.Obviously,individuals who can make the WPT system perform better at this stage have a greater chance of being selected.

    Step3(Crossover):If the random number generated byrandis less than the crossover probabilityPc,the crossover operation is performed by

    whereκis the intersection.After that,progeny can have individuals that are different from their parents,that is,different combinations of control system parameters.

    Step4(Mutation):The mutation of chromosomes acts on genes.For each gene of chromosomes in the new population after crossover operation,the mutation probabilityPmwill be used to judge whether the gene position is mutated by

    Step5:Judge whether the programme satisfies the termination condition.If so,end the programme and output the optimal solution(corresponding to the optimal combination ofαandhat this stage),otherwise back to Step 2.

    The pseudocode of MGA is shown in Algorithm 1.

    Algorithm 1 Modified genetic algorithm to search optimal parameters

    4|SIMULATION

    4.1|Circuit configurations

    FIGURE 1 0 Output voltage tracking curve of the wireless power transfer(WPT)system

    FIGURE 1 1 Inductive current of the buck circuit

    FIGURE 1 2 Results of the multi‐stage optimization at the start‐up stage.(a)Inductance current of buck circuit at stage 1.(b)The output voltage tracking curve of the wireless power transfer(WPT)system at stage 1.(c)System performance indicators corresponding to physical quantities at stage 1

    FIGURE 9 Simulation diagram of the wireless power transfer(WPT)system

    TABLE 8 The optimal controller parameter combination at the start‐up stage

    In order to verify that the proposed scheme can make the WPT system obtain better performance,we use Simulink as the simulation platform as shown in Figure 9.It is a closed‐loop WPT system with five parts,namely a four‐coils power transfer inductive links acts as the coupling system to achieve contactless transmission of energy,a full‐bridge rectifier circuit with a filter capacitor acts as the rectifier to convert ac signals into dc signals,a classical buck converter as the power conversion stage to achieve power conversion,as a feedback controller,and the operator‐based control system ensures the tracking performance and robustness of the non‐linear WPT system.As a multi‐stage controller,the parameter switching module can change the operator‐based control system parametersαandhto make the system reach the optimal state in each stage of simulation.

    The first three parts constitute an open‐loop WPT system.Its equivalent circuit diagram is shown in Figure 1 and the parameter settings are shown in Table 1.The operator‐based control system receives four signals,including the control signal from the parameter switching module,capacitance currentiCs,input voltageVinand output voltagevo,from the power conversion stage,and then output control signal to the electronic switchS.Furthermore,the“Stop Time”is set to 1.5 s and the‘Sample Time’is set to 3e?8seconds,in simulation.

    4.2|Simulation results and comparisons

    The overall optimization results are shown in Figures 10 and 11,in which Figure 10 is the output voltage tracking curve and Figure 11 is the inductance current curve of the buck circuit.From Figures 10 and 11,we can see the switch points of the three stages and the influence of the comparison controller and optimised controller on system performance,respectively.As can be seen from Figure 10,compared with our previous method,the multi‐stage optimization method proposed in this paper obtained a larger output voltage at the end of the first stage and a faster tracking speed at the second stage.According to Figure 11,the current overshoot of the comparison controller is slightly smaller than the optimised controller,but neither exceeded the maximum current limit.

    The optimization results of the start‐up stage are shown in Figure 12.Figure 12a represents the inductance current curve.According to the figure that the comparison controller is slightly better than the optimised controller in terms of current overshoot,but neither of them exceeds the maximum current limit.Figure 12b represents the output voltage curve.The figure shows that the output voltage obtained by using the optimised controller is larger than that obtained by using the comparison controller at 0.02 s end time of the first stage.Figure 12c describes the system performance indicators corresponding to physical quantities in Figure 12a and Figure 12b;theXaxis represents the current overshoot and theYaxis represents the reciprocal of the voltage rise rate,and the star mark indicates the optimization results:current overshoot indicator is 0 and the reciprocal of voltage rise rate is 0.8627.The optimal controller parameters are shown in Table 8.

    FIGURE 1 3 Results of the multi‐stage optimization at the tracking stage.(a)The output voltage tracking curve of the wireless power transfer(WPT)system at stage 2.(b)Switch vibration waveform of certain periods at stage 2.(c)System performance indicators corresponding to physical quantities at stage 2

    TABLE 9 The optimal controller parameter combination at the tracking stage

    The optimization results of the tracking stage are shown in Figure 13.Figure 13a represents the output voltage curve.Be apparent from the figure that the tracking time obtained by using the optimised controller is much smaller than that obtained by using the comparison controller.Figure 13b represents the switch fluctuation of the second stage in a certain period.Obviously,the number of switch fluctuation obtained by using the optimised controller is much less than that obtained by using the comparison controller.Figure 13c describes the system performance indicators corresponding to physical quantities in Figure 13a and Figure 13b;theXaxis represents the tracking time and theYaxis represents the switch vibration,and the star mark represents the optimization results:tracking time is 0.15,884 and the number of switch vibration is 114,983.The optimal controller parameters are listed in Table 9.

    The optimization results of the stabilisation stage are shown in Figure 14.Figure 14a represents the output voltage curve.We can see from the figure that the steady‐state error obtained by using the optimised controller is smaller than that obtained by using the comparison controller.Figure 14b represents the switch fluctuation of the third stage in a certain period.It is obvious that the number of switch fluctuation obtained by using the optimised controller is less than that obtained by using the comparison controller.Figure 14c describes the system performance indicators corresponding to physical quantities in Figure 14a and Figure 14b;theXaxis represents the steady‐state error and theYaxis represents the switch vibration,and the star mark represents the optimization results:steady‐state error is 0.000,926 and the number of switch vibration is 442,778.The optimal controller parameters are listedin Table 10.

    5|CONCLUSION

    In this paper,an MGA‐based optimization strategy of control system parameters is proposed to balance the performance of the uncertain WPT system at different periods.This method can find the optimal parameter combination of controller at different periods.Compared with the previous method,the WPT system can obtain better performance at each stage by using the optimised controller,while the system performance is relatively poor by using the comparison controller.Therefore,the effectiveness of the proposed method is verified.

    FIGURE 1 4 Results of the multi‐stage optimization at the stabilisation stage.(a)The output voltage tracking curve of the wireless power transfer(WPT)system at stage 3.(b)Switch vibration waveform of certain periods at stage 3.(c)System performance indicators corresponding to physical quantities at stage 3

    TABLE 10 The optimal controller parameter combination at the stabilisation stage

    ACKNOWLEDGEMENTS

    This work was supported in part by the National Natural Science Foundation of China under Grant 62006124,in part by the Nature Science Foundation of Jiangsu Province under Project BK20200811,in part by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant 20KJB520006,and in part by the Startup Foundation for Introducing Talent of NUIST.

    CONFLICT OF INTEREST

    The author declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

    DATA AVAILABILITY STATEMENT

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    ORCID

    Xudong Gaohttps://orcid.org/0000-0002-0750-9198

    国产欧美日韩精品亚洲av| 午夜福利在线观看吧| 日韩欧美精品v在线| 在线观看www视频免费| 日韩精品中文字幕看吧| 亚洲中文日韩欧美视频| 精品久久久久久久久久免费视频| 99热这里只有精品一区 | 在线观看免费视频日本深夜| 一本大道久久a久久精品| 免费在线观看日本一区| 亚洲avbb在线观看| av片东京热男人的天堂| 好男人在线观看高清免费视频| 俺也久久电影网| 国产精品av久久久久免费| 久久精品aⅴ一区二区三区四区| 国产乱人伦免费视频| 中文资源天堂在线| 免费一级毛片在线播放高清视频| 高潮久久久久久久久久久不卡| 欧美另类亚洲清纯唯美| 欧美黄色淫秽网站| 国产精品美女特级片免费视频播放器 | 热99re8久久精品国产| 欧美zozozo另类| 亚洲无线在线观看| 一个人免费在线观看的高清视频| 欧美黑人欧美精品刺激| 亚洲成人国产一区在线观看| 日本 av在线| 国产一区在线观看成人免费| 精华霜和精华液先用哪个| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品青青久久久久久| 两个人的视频大全免费| 麻豆久久精品国产亚洲av| 中文亚洲av片在线观看爽| 免费无遮挡裸体视频| 国产伦在线观看视频一区| 中文资源天堂在线| 国产午夜精品论理片| 看片在线看免费视频| 九色国产91popny在线| 精品久久久久久久久久免费视频| 淫妇啪啪啪对白视频| 亚洲人成网站高清观看| 正在播放国产对白刺激| 正在播放国产对白刺激| 国产激情久久老熟女| 亚洲欧洲精品一区二区精品久久久| 国产久久久一区二区三区| 欧美国产日韩亚洲一区| 九色国产91popny在线| 窝窝影院91人妻| 真人做人爱边吃奶动态| 一区二区三区国产精品乱码| 国产精品野战在线观看| 高潮久久久久久久久久久不卡| 一级毛片女人18水好多| 成人18禁高潮啪啪吃奶动态图| 色尼玛亚洲综合影院| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全电影3| 99热这里只有精品一区 | 黄色视频,在线免费观看| 国产精品自产拍在线观看55亚洲| or卡值多少钱| 亚洲狠狠婷婷综合久久图片| 成在线人永久免费视频| 久久久久久大精品| 国产一区二区三区在线臀色熟女| 黄色视频,在线免费观看| 久久久国产精品麻豆| 哪里可以看免费的av片| 黄片小视频在线播放| 两个人免费观看高清视频| 午夜免费观看网址| 免费电影在线观看免费观看| av欧美777| 欧美午夜高清在线| 亚洲18禁久久av| 99在线人妻在线中文字幕| 18禁黄网站禁片免费观看直播| 男人舔奶头视频| 欧美日本亚洲视频在线播放| 村上凉子中文字幕在线| 国产精品久久久av美女十八| 男女午夜视频在线观看| av国产免费在线观看| 一区福利在线观看| 国产成人系列免费观看| 亚洲成人精品中文字幕电影| 欧美日本亚洲视频在线播放| 中文字幕人成人乱码亚洲影| 两个人的视频大全免费| 国产精品亚洲美女久久久| 成人三级做爰电影| 亚洲人成伊人成综合网2020| 午夜激情福利司机影院| 1024手机看黄色片| 禁无遮挡网站| 国产欧美日韩一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| 麻豆国产av国片精品| 一级片免费观看大全| 亚洲国产欧美一区二区综合| 黄片大片在线免费观看| 亚洲成av人片免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲国产精品成人综合色| 1024视频免费在线观看| 18美女黄网站色大片免费观看| 精品欧美国产一区二区三| 久久久精品国产亚洲av高清涩受| 老司机午夜福利在线观看视频| 日本三级黄在线观看| 成人18禁高潮啪啪吃奶动态图| 看片在线看免费视频| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区免费观看 | av有码第一页| 国产一区二区三区在线臀色熟女| 日本免费a在线| 久久精品成人免费网站| 免费看十八禁软件| 精品熟女少妇八av免费久了| 亚洲免费av在线视频| 国产精品 欧美亚洲| 脱女人内裤的视频| 一本大道久久a久久精品| 亚洲色图av天堂| 国产午夜福利久久久久久| 日本免费一区二区三区高清不卡| www.自偷自拍.com| 18禁黄网站禁片免费观看直播| 亚洲激情在线av| 国产精品九九99| 18禁美女被吸乳视频| 亚洲av熟女| 午夜精品在线福利| 久久久精品国产亚洲av高清涩受| 人妻久久中文字幕网| 黑人欧美特级aaaaaa片| 亚洲成av人片在线播放无| 曰老女人黄片| 国产亚洲精品久久久久久毛片| 日本成人三级电影网站| 在线观看www视频免费| 嫩草影视91久久| 少妇被粗大的猛进出69影院| 亚洲中文av在线| 日韩大码丰满熟妇| 99热6这里只有精品| 亚洲男人的天堂狠狠| 中文字幕久久专区| 中文字幕最新亚洲高清| 99国产精品99久久久久| 欧美日韩国产亚洲二区| 他把我摸到了高潮在线观看| 搡老岳熟女国产| 99精品欧美一区二区三区四区| 听说在线观看完整版免费高清| 免费人成视频x8x8入口观看| 制服诱惑二区| 亚洲一区高清亚洲精品| 国产又黄又爽又无遮挡在线| 欧美高清成人免费视频www| 麻豆成人av在线观看| 国产三级中文精品| 久久这里只有精品中国| 欧美黑人欧美精品刺激| 国产成人精品无人区| 狂野欧美白嫩少妇大欣赏| 校园春色视频在线观看| 国产精品一区二区免费欧美| 一本大道久久a久久精品| 国产视频一区二区在线看| 精品人妻1区二区| 日韩欧美三级三区| 90打野战视频偷拍视频| 亚洲国产欧美一区二区综合| 美女 人体艺术 gogo| 成熟少妇高潮喷水视频| 人妻丰满熟妇av一区二区三区| 我的老师免费观看完整版| 中文字幕人妻丝袜一区二区| 高清毛片免费观看视频网站| 日本在线视频免费播放| 不卡av一区二区三区| 免费在线观看视频国产中文字幕亚洲| 亚洲午夜精品一区,二区,三区| 成人特级黄色片久久久久久久| 国产三级在线视频| 美女黄网站色视频| 免费看美女性在线毛片视频| tocl精华| www.熟女人妻精品国产| 亚洲午夜理论影院| 老熟妇仑乱视频hdxx| 国产成年人精品一区二区| 舔av片在线| 成人av在线播放网站| 国产v大片淫在线免费观看| 啦啦啦韩国在线观看视频| 国产精品1区2区在线观看.| www.自偷自拍.com| 18禁国产床啪视频网站| 亚洲av熟女| 欧美日韩一级在线毛片| √禁漫天堂资源中文www| 国产亚洲精品一区二区www| 精品不卡国产一区二区三区| 国产野战对白在线观看| 久久天堂一区二区三区四区| 国产精品精品国产色婷婷| 最近在线观看免费完整版| 日本在线视频免费播放| 日韩国内少妇激情av| 99国产极品粉嫩在线观看| 99精品欧美一区二区三区四区| 少妇裸体淫交视频免费看高清 | 国产区一区二久久| 九色国产91popny在线| 国产精品乱码一区二三区的特点| 18禁观看日本| 99热只有精品国产| cao死你这个sao货| 亚洲免费av在线视频| 怎么达到女性高潮| 在线十欧美十亚洲十日本专区| 国产精品久久久久久亚洲av鲁大| 在线免费观看的www视频| 国产亚洲av嫩草精品影院| 成人亚洲精品av一区二区| 亚洲午夜理论影院| 少妇粗大呻吟视频| 国产野战对白在线观看| 久久久水蜜桃国产精品网| 在线观看免费日韩欧美大片| 国产区一区二久久| 精品高清国产在线一区| 精品一区二区三区视频在线观看免费| 午夜影院日韩av| 久久香蕉国产精品| 亚洲人成电影免费在线| √禁漫天堂资源中文www| 岛国在线观看网站| 激情在线观看视频在线高清| 美女扒开内裤让男人捅视频| 欧美性猛交╳xxx乱大交人| 久久久久久久久免费视频了| 色在线成人网| 欧美日韩国产亚洲二区| 欧美精品亚洲一区二区| 成人三级黄色视频| 久久中文字幕一级| 国产麻豆成人av免费视频| 免费在线观看日本一区| 国产av在哪里看| 大型av网站在线播放| 色尼玛亚洲综合影院| 亚洲成人久久性| 搡老妇女老女人老熟妇| 久久久久性生活片| 在线国产一区二区在线| 757午夜福利合集在线观看| 久久久久亚洲av毛片大全| 亚洲国产欧美人成| 国产熟女午夜一区二区三区| 久久午夜综合久久蜜桃| 久久香蕉精品热| 黄色女人牲交| 色精品久久人妻99蜜桃| 欧美大码av| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 亚洲国产中文字幕在线视频| 欧美日韩瑟瑟在线播放| 巨乳人妻的诱惑在线观看| 听说在线观看完整版免费高清| 精品熟女少妇八av免费久了| 制服人妻中文乱码| 国产乱人伦免费视频| 国产免费av片在线观看野外av| 久久久久久久精品吃奶| 国产av不卡久久| 午夜视频精品福利| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 淫妇啪啪啪对白视频| 午夜福利高清视频| 床上黄色一级片| 久久久国产成人免费| 看免费av毛片| 色哟哟哟哟哟哟| 亚洲精品美女久久av网站| 99热6这里只有精品| 国产亚洲精品综合一区在线观看 | 久久久久九九精品影院| 久久久精品国产亚洲av高清涩受| 操出白浆在线播放| 一级毛片女人18水好多| 欧美日韩黄片免| 久久精品影院6| 亚洲五月婷婷丁香| 99热这里只有是精品50| 亚洲一区二区三区色噜噜| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 怎么达到女性高潮| 身体一侧抽搐| av有码第一页| 中文字幕精品亚洲无线码一区| 人人妻人人看人人澡| 久久久久亚洲av毛片大全| av在线天堂中文字幕| 欧美黄色淫秽网站| www日本在线高清视频| 五月伊人婷婷丁香| av视频在线观看入口| 国内久久婷婷六月综合欲色啪| 午夜激情av网站| 精品乱码久久久久久99久播| 欧美乱妇无乱码| 精品高清国产在线一区| 国产av在哪里看| а√天堂www在线а√下载| 国产精品永久免费网站| 成人特级黄色片久久久久久久| АⅤ资源中文在线天堂| 国产成人aa在线观看| 亚洲一区二区三区不卡视频| 日韩欧美精品v在线| 欧美黑人巨大hd| 脱女人内裤的视频| 妹子高潮喷水视频| videosex国产| 女人被狂操c到高潮| 国产精品亚洲一级av第二区| 久久久水蜜桃国产精品网| 精品无人区乱码1区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美日韩无卡精品| 最近最新中文字幕大全免费视频| 亚洲av电影不卡..在线观看| 久热爱精品视频在线9| 国产精品,欧美在线| 黄片大片在线免费观看| 啦啦啦韩国在线观看视频| 免费看a级黄色片| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 999精品在线视频| 女生性感内裤真人,穿戴方法视频| 免费看日本二区| 亚洲专区国产一区二区| 宅男免费午夜| 久久性视频一级片| 免费观看精品视频网站| av天堂在线播放| 色播亚洲综合网| 欧美大码av| 成人国产一区最新在线观看| 国产亚洲精品久久久久5区| 欧美日韩亚洲国产一区二区在线观看| 女同久久另类99精品国产91| 99在线人妻在线中文字幕| 国产v大片淫在线免费观看| 一级黄色大片毛片| 国产午夜精品久久久久久| 久久久国产成人精品二区| 777久久人妻少妇嫩草av网站| 亚洲精品久久成人aⅴ小说| 香蕉国产在线看| 看片在线看免费视频| 日韩 欧美 亚洲 中文字幕| 一边摸一边抽搐一进一小说| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 大型av网站在线播放| 久久热在线av| 午夜福利在线在线| 舔av片在线| 色尼玛亚洲综合影院| 999久久久精品免费观看国产| a级毛片a级免费在线| 中出人妻视频一区二区| 神马国产精品三级电影在线观看 | 怎么达到女性高潮| 村上凉子中文字幕在线| 亚洲五月天丁香| 国产激情偷乱视频一区二区| 日韩欧美国产一区二区入口| 欧美zozozo另类| 欧美一级a爱片免费观看看 | 成人手机av| 国产成人精品久久二区二区免费| 日韩精品免费视频一区二区三区| 久久久久九九精品影院| 国产熟女xx| 宅男免费午夜| 中文字幕精品亚洲无线码一区| 一二三四在线观看免费中文在| 90打野战视频偷拍视频| 亚洲成a人片在线一区二区| 成年版毛片免费区| 女生性感内裤真人,穿戴方法视频| 欧美一级毛片孕妇| 夜夜看夜夜爽夜夜摸| 久久久精品欧美日韩精品| 国产成人啪精品午夜网站| 国产一区二区三区视频了| 在线观看美女被高潮喷水网站 | 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 深夜精品福利| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美性猛交黑人性爽| 老司机午夜福利在线观看视频| 国产亚洲av高清不卡| 久久久精品欧美日韩精品| 午夜久久久久精精品| 欧美又色又爽又黄视频| 母亲3免费完整高清在线观看| 日韩欧美在线乱码| 久久婷婷人人爽人人干人人爱| 免费在线观看亚洲国产| 一级黄色大片毛片| 国产精品av久久久久免费| 九色国产91popny在线| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 天天一区二区日本电影三级| 天堂√8在线中文| 蜜桃久久精品国产亚洲av| www.自偷自拍.com| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区av网在线观看| 好看av亚洲va欧美ⅴa在| 91麻豆精品激情在线观看国产| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 国产精品av久久久久免费| 免费观看精品视频网站| 美女午夜性视频免费| 99久久国产精品久久久| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频| 亚洲最大成人中文| 亚洲av日韩精品久久久久久密| 国产片内射在线| 少妇人妻一区二区三区视频| 1024手机看黄色片| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 无遮挡黄片免费观看| 桃红色精品国产亚洲av| 欧美精品啪啪一区二区三区| 麻豆国产97在线/欧美 | 免费在线观看视频国产中文字幕亚洲| 国产av不卡久久| 午夜久久久久精精品| 五月伊人婷婷丁香| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久久电影 | 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 精品第一国产精品| 中文字幕人成人乱码亚洲影| 国内精品久久久久久久电影| 久久精品91蜜桃| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 三级毛片av免费| 小说图片视频综合网站| 久久中文字幕一级| 国产1区2区3区精品| 国产高清视频在线观看网站| 国产av一区在线观看免费| 精品人妻1区二区| av福利片在线| 一区二区三区激情视频| 最近最新中文字幕大全免费视频| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 国产av一区在线观看免费| 97人妻精品一区二区三区麻豆| 欧美日韩福利视频一区二区| 三级男女做爰猛烈吃奶摸视频| 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看 | 国产人伦9x9x在线观看| 国产一区在线观看成人免费| 国产视频内射| 人人妻,人人澡人人爽秒播| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| а√天堂www在线а√下载| 啦啦啦韩国在线观看视频| 久久精品国产清高在天天线| 亚洲avbb在线观看| 在线视频色国产色| 亚洲成a人片在线一区二区| 天天躁夜夜躁狠狠躁躁| 欧美成人一区二区免费高清观看 | 日韩国内少妇激情av| 国产三级黄色录像| 久久久久久久久免费视频了| 色噜噜av男人的天堂激情| 国产精品亚洲av一区麻豆| 午夜福利在线在线| 后天国语完整版免费观看| 亚洲熟女毛片儿| а√天堂www在线а√下载| 久久精品亚洲精品国产色婷小说| 国产精品亚洲一级av第二区| 亚洲九九香蕉| 国产精品野战在线观看| 天堂动漫精品| 最新美女视频免费是黄的| 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 此物有八面人人有两片| 三级毛片av免费| 国产精品久久久久久亚洲av鲁大| 久久久精品国产亚洲av高清涩受| 亚洲成人久久性| 欧美色视频一区免费| 国产精品久久久久久久电影 | 亚洲熟女毛片儿| 色精品久久人妻99蜜桃| 成年版毛片免费区| 人成视频在线观看免费观看| 欧美不卡视频在线免费观看 | 欧美激情久久久久久爽电影| 久久久精品欧美日韩精品| 成人精品一区二区免费| 亚洲精品国产精品久久久不卡| 一级毛片高清免费大全| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 亚洲中文av在线| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清在线视频| 深夜精品福利| 两个人看的免费小视频| 1024香蕉在线观看| 亚洲欧洲精品一区二区精品久久久| 黄色女人牲交| 亚洲欧洲精品一区二区精品久久久| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av片天天在线观看| 露出奶头的视频| 99国产精品99久久久久| 欧美日韩中文字幕国产精品一区二区三区| 国产精品电影一区二区三区| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 亚洲中文av在线| 9191精品国产免费久久| 91成年电影在线观看| 人人妻人人看人人澡| 色综合站精品国产| 午夜日韩欧美国产| 丝袜美腿诱惑在线| 日韩国内少妇激情av| 两个人视频免费观看高清| 亚洲午夜精品一区,二区,三区| 夜夜爽天天搞| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 国产一级毛片七仙女欲春2| 亚洲欧美日韩高清专用| 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 午夜福利在线在线| 久久草成人影院| 亚洲国产看品久久| 法律面前人人平等表现在哪些方面| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 国产精品久久久人人做人人爽| 久久国产精品人妻蜜桃| 天堂动漫精品| 中文字幕av在线有码专区| 丝袜美腿诱惑在线| 757午夜福利合集在线观看| 国产精品 国内视频| 日韩中文字幕欧美一区二区| 一本一本综合久久| 欧美+亚洲+日韩+国产| 在线看三级毛片| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 丰满人妻一区二区三区视频av | 亚洲乱码一区二区免费版| 蜜桃久久精品国产亚洲av| 波多野结衣高清作品| 色综合婷婷激情| 亚洲av熟女| 妹子高潮喷水视频| 精品一区二区三区四区五区乱码| 欧美av亚洲av综合av国产av| 亚洲第一电影网av| 麻豆国产97在线/欧美 | 97人妻精品一区二区三区麻豆| 国产精品永久免费网站| 日韩欧美三级三区|