• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Precise Segmentation of Choroid Layer in Diabetic Retinopathy Fundus OCT Images by Using SEC-UNet*

    2022-12-22 13:58:40XUXiangCongCHENJunYanWANGXueHuaRuiONGHongLianWANGMingYiZHONGJunPingTANHaiShuZHENGYiXuONGKeHANDingAn

    XU Xiang-Cong,CHEN Jun-Yan,WANG Xue-Hua*,LⅠRui,XⅠONG Hong-Lian,WANG Ming-Yi,ZHONG Jun-Ping,TAN Hai-Shu,ZHENG Yi-Xu,XⅠONG Ke***,HAN Ding-An*

    (1)School of Physics and Optoelectronic Engineering,Foshan University,Foshan 528225,China;2)Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic,Foshan University,Foshan 528225,China;3)School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China;4)Department of Ophthalmology,Nanfang Hospital,Southern Medical University,Guangzhou 510515,China)

    Abstract Objective Diabetic retinopathy (DR) is a serious complication of diabetes that may cause vision loss or even blindness in patients. Early examination of the choroid plays an essential role in the diagnosis of DR. However, owing to the fuzzy choroid-sclera interface (CSⅠ) and shadow of retinopathy in the optical coherence tomography (OCT) images of DR, most existing algorithms cannot segment the choroid layer precisely. The present paper aims to improve the accuracy of choroid segmentation in DR OCT images. Methods Ⅰn this paper, we propose an optimized squeeze-excitation-connection (SEC) module integrated with the UNet,called the SEC-UNet,which not only focuses on the target but also jumps out of the local optimum to enhance the overall expressive ability.Results The experimental results show that the area under the ROC curve(AUC)of the SEC-UNet reaches up to 0.993 0, which outperforms that obtained for conventional UNet and SE-UNet models. Ⅰt indicates that the SEC-UNet can obtain accurate and complete segmentation results of the choroid layer. Statistical analysis of choroid parameter changes indicated that compared with normal eyes,the 1 mm adjacent area of choroid fovea increased in 87.1%of DR patients.Ⅰt proved that DR is likely to cause choroid layer thickening.Conclusion Our method may become a useful diagnostic tool for doctors to explore the function of the choroid in the prevention,pathogenesis,and prognosis of diabetic eye disease.

    Key words diabetic retinopathy,choroid segmentation,optical coherence tomography,squeeze-excitation-connection UNet

    Diabetic retinopathy (DR) is a serious complication of diabetes and has become one of the main causes of blindness worldwide[1].Early detection of eye diseases and appropriate treatment can greatly reduce the number of patients with DR[2].The choroid is a vascular plexus layer that lies between the sclera and retina, providing oxygen and nourishment to the eye[3]. Ⅰt performs critical physiological functions and plays a crucial role in determining various diseased conditions[4-8]. Studies have shown that changes in the shape and anatomical structure of the choroid are strongly related to the incidence and severity of DR[9-11]. Figure 1 illustrates the manually segmented boundaries in a fundus optical coherence tomography(OCT) B-scan image of DR. This process is timeconsuming and depends on the experience and subjective judgment of the doctor. Therefore, an automatic and precise segmentation method is urgently needed for future clinical applications.

    Fig.1 Illustration of a manually labeled OCT B-scan of a patient with DRFour boundaries consist of internal limiting membrane (ⅠLM; red curve), inner segment/out segment (ⅠS/OS; blue curve), Bruch's membrane (BM; yellow curve), and choroid-sclera interface (CSⅠ;green curve).

    Ⅰn the past, many algorithms for choroid segmentation have been developed[12-18],such as graph search[19], active contours and Markov random fields[20], and support vector machines (SVM)[21].However, these have not been adopted into the real clinical environment;this is primarily because a.there are too many super parameters that need to be adjusted in the segmentation program, and b. the segmentation results need to be manually corrected and processed.Ⅰn recent years,deep learning has been widely used in medical image processing. Masoodet al.[17]used a convolutional neural network (CNN)Cifar-10 architecture to extract the choroid part of OCT images into patches with or without CSⅠ.However, it needs to deal with a large number of overlapping windows, which can be computationally redundant. Georgeet al.[22]used SegNet to obtain the choroid region and used the morphology for edge detection. Segmentation of pathological choroid images is not ideal because of the inadequate use of shallow features. UNet may be one of the most popular and successful architectures for medical image segmentation to date[23]because its fully CNN structure requires only a small number of samples,the encoding path of coarse-grained context detection,and the decoding path of fine-grained location.However,because the shape,size,or light of the target affects the accuracy of the segmentation results, a single UNet may not perform well. Therefore,multiple UNets are cascaded to increase the model performance. Oktayet al.[24]proposed attention gates,which automatically learn to focus on the target, and integrating them into the conventional UNet model can increase the prediction accuracy without adding additional networks. Another excellent attention mechanism is the squeeze-and-excitation (SE)module[25], which can focus on the target, highlight useful features by channel, and suppress irrelevant features.Rundoet al.[26]incorporated SE modules into UNet to segment the prostate zonal and achieved excellent results.

    However, the SE module in the network can easily fall into the local optimum while ignoring the global features of the target, which results in a decreased accuracy in the DR choroid boundary segmentation task. Ⅰn this paper, we propose an optimized SE module, namely the squeeze-excitationconnection (SEC) module, in which a skip connection between the feature mapping layer and the conversion output was inserted.The SEC module not only retains the attention ability of the original SE module but also enables the current layer to pass its own feature maps to the subsequent layer, thereby enhancing the overall expressive ability of the network. We integrated the SEC module with UNet and compared it with conventional UNet and SE-UNet models for segmentation of the choroid boundary in DR OCT images.The results indicated that SEC-UNet achieved the best performance (i.e., an area under the ROC curve (AUC) value of 0.993 0). The qualitative and quantitative comparisons demonstrated that the SEC module is effective and that the proposed model can achieve precise segmentation of DR choroid images.Ⅰn this paper, we measure the foveal choroidal thickness and the volume of the adjacent area. Ⅰn the future, it may become a useful diagnostic tool for doctors to explore the mechanism for the pathogenesis of DR.

    1 Methods

    Ⅰn this study, the SEC-UNet was developed to segment the choroid boundaries in OCT images of DR, where the UNet structure serves as the backbone and the SEC module serves as an attention mechanism to strengthen the discriminative representation ability,thereby making the network more adaptive to DR choroid segmentation tasks.

    1.1 Network architecture

    SEC-UNet combines an encoder and a decoder path,as shown in Figure 2.The network starts with an input image with dimensions 320×320×3. The first layer of the encoder path is a convolutional layer with a stride of 1.The second layer is the SEC module with a channel size of 128. The third layer comprises maxpooling layers with a stride of 2. We repeated the same steps 3 times, and the channel sizes of these modules were 256, 512, and 1 024, respectively. The decoder path takes the output of the encoder path as the input; the two paths are similar except that the maxpooling layers are replaced by upsampling layers with a stride of 2 in the decoder path. The features obtained through the encoder and decoder paths are combined by the skip connection. At the end of the net, the choroid and background areas are segmented using the SoftMax activation function.

    1.2 SEC module

    The SEC module is an optimized version of the SE module,as shown in Figure 3.The SE module is a lightweight gating mechanism[25]. Ⅰt can enhance the representational power of the network by modeling channel-wise relationships.

    Ⅰn the SE module,the input mapsX'∈RH'×W'×C'are transformed (Ftr) to feature mapsX∈RH×W×C.Before feedingXinto the next transformation, it undergoes 3 successive steps: squeeze, excitation, and connection.The global spatial information is squeezed(Fsq) into a channel descriptor by global average pooling, and the gating mechanism is employed to tackle the issue of exploiting channel dependencies:

    Fig.2 Architecture of the proposed SEC-UNet model

    Fig.3 Squeeze-excitation-connection module

    whereσdenotes the Sigmoid function,δrefers to the rectified linear unit (ReLU)[27]function,W1 ∈andW2 ∈are fully connected layers, andris the reduction rate in the dimensionality reduction layer (set as 16). The transformation output of the SE module is obtained by rescaling(Fscale)ofF(X).

    The SE module recalibrates the features through the internal gating structure to focus the attention of the network on the target. However, it easily falls into the local optimum, ignoring the global features of the target, which results in inaccurate boundary segmentation in the choroid segmentation task. Ⅰn this study, we modified the original structure of the SE module. We took inspiration from the dense connectivity in DenseNet, which takes a feed-forward mode to connect the current layer to the subsequent layer, thus encouraging feature reuse and enhancing feature expression capabilities[28]. We inserted a skip connection (Fconnect)between the feature mapping layer and the transform output:

    This feed-forward connection mode can take advantage of the context information and can effectively enhance the global and local expression capabilities at the same time. Ⅰt also encourages feature reuse throughout the network and makes the module more compact.

    2 Experiments and results

    Ⅰn this section, we introduced the database used to evaluate networks followed by detailed network parameters and training details and displayed the segmentation results and comparison among different networks.

    2.1 Dataset

    The collection and analysis of image data were approved by the Human Research Ethics Committee of Nanfang Hospital of Southern Medical University and adhered to the tenets of the Declaration of Helsinki. The dataset was acquired using Heidelberg OCTSPECTRALⅠS S200 and consisted of EDⅠ-OCT images from 40 DR eyes (25 patients). Each EDⅠ-OCT cube has 128 B-scans, and a given B-scan contains 512 A-scans, each of which comprises 596 pixels. We randomly selected 30 B-scans from each volume and manually annotated them by experienced doctors. For each B-scan, we used the graph search method[29]to obtain the ⅠS/OS boundary, removed the region above it to retain region of interest (ROⅠ) for reducing the choroid-independent information, and then cropped it into 10 patches (320×320) in the horizontal direction to expand the data. The new dataset was divided into training set, validation set,and test set in the ratio 7∶2∶1.

    2.2 Implementation

    The proposed method was built on Keras with TensorFlow as the backend[30]. The experiments were run on a single GPU (NVⅠDⅠA GeForce GTX 2080Ti). The model was trained for 100 epochs. Each convolution layer in the model had a kernel size of 3×3. The weights and biases of SEC-UNet were initialized using the He_normal scheme. We used the Adam optimizer with a mini-batch size of 8 to update the network weights and biases. The learning rate for training the model was 10-5. Ⅰn the training stage, we placed a dropout layer with a probability of 0.2 after the convolution layer to prevent the network from overfitting.

    2.3 Evaluation metrics

    The choroid segmentation results can be evaluated by accuracy (ACC), sensitivity (SE),specificity (SP), andF1-score (F1)[31], which are defined as

    whereTP,TN,FP, andFNrepresent the number of true positive, true negative, false positive, and false negative pixels, respectively. Other evaluation metrics, such as receiver operating characteristic(ROC)curve andAUC,were also used in this study.

    2.4 Comparison between different networks

    To validate the performance of the proposed algorithm, we tested SEC-UNet for DR choroid segmentation and compared it with the conventional UNet[23]and SE-UNet[26]models. These networks were trained on the same parameter settings,including the Adam optimizer, initial learning rate, and maximum epoch number, to ensure a fair comparison.As shown in Figure 4,the ROC curve of the proposed model reaches the upper left corner,and theAUCis(a value of 0.993 0) larger than that of the other two models. Ⅰn contrast, the ROC curves of the UNet and SE-UNet were entangled, which reveals that SE-UNet cannot improve the performance of UNet in this segmentation task. For the complex features of DR choroid images, the SE module overfocuses on the boundary and falls into the local optimum, while ignoring the overall expression of the target.

    Table 1 lists the evaluation metrics of the models.The highlighted numbers represent the best performance. Ⅰt can be observed that despite anSEvalue lower than the SE-UNet model, theACC,SP,andF1 values of the proposed model are higher than those of the other two, indicating its superiority in the segmentation performance. SEC-UNet has the slowest training and prediction speed, which trades computational cost for superior segmentation performance. The higherSEvalue but lowerSPvalue of the SE-UNet model indicates that it tends to oversegment the choroid region. TheF1 values of UNet and SE-UNet are similar, which verifies the drawbacks of over-focus on the boundary in the SE module.

    Fig.4 ROC curve and AUC analysis of different models

    Table 1 Comparison with different models

    Figure 5 shows 4 sample results to visually compare our method with other models. The original images, choroid ROⅠimages, and ground-truth masks are presented in Figure 5a-c. The segmentation results obtained by UNet, SE-UNet, and SEC-UNet are shown in Figure 5d-f. Ⅰt can be observed that BM is better than CSⅠin the segmentation results of each model because of the fuzzy gradient feature of CSⅠ.The shadow of retinopathy in the DR choroid image is projected into the choroid, which makes it difficult to distinguish the features of the choroid internal vessels and the sclera. This leads to the UNet and SE-UNet mistaking the internal vessel pixels as scleral pixels,as shown in Figure 5d, e. Moreover, the CSⅠ in UNet's segmentation results deviate greatly from the correct one; this is because its main purpose is to recover the global information of the target object,ignoring detailed features such as boundaries. The segmentation results of SE-UNet are slightly better compared with UNet's, but the accuracy of boundary segmentation is lower because of its tendency to easily fall into the local optimum, ignoring the global features of the target. SEC-UNet obtained the most accurate and complete segmentation results (Figure 5f) compared with the ground-truth masks (Figure 5c), which proves that the SEC module can not only focus on the target object but also jump out the local optimum to take advantage of the global feature information. The qualitative and quantitative results demonstrate that the proposed SEC module is effective and the SEC-UNet can achieve automatic and precise segmentation of choroid layer in DR OCT images.

    Fig.5 Sample resultsFrom left to right: (a) original choroid OCT images; (b) choroid ROⅠimages: removed the region above choroid to reduce independent information;(c)ground-truth masks;(d-f)results obtained by UNet,SE-UNet,and our proposed method.

    2.5 Statistical analyses of the choroidal parameters variation

    According to clinical findings, DR may cause choroidal changes[10]. Thus the quantitative measurement of choroidal parameters is of great significance for the diagnosis and preventive treatment of DR. This paper calculated 38 sets of choroid foveal thickness (CFT) and volume of adjacent area (CFV) within 1 mm diameter,respectively, from 28 DR patients.The average values of 7 normal people served as the threshold to judge choroidal change.Results showed in Table 2 indicated that mostCFT, 1 mmCFVincreased in DR eyes compared with normal eyes. And the 1 mmCFVperformed the highest correlation with DR. So it can be used to characterize the choroidal changes caused by DR more accurately and comprehensively.

    Table 2 The performance of CFT,1 mm CFV(xˉ± s)

    Statistical analysis of choroid parameter changes indicated that compared with normal eyes, the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients. Ⅰt proved that DR is likely to cause choroid layer thickening.

    3 Conclusion

    Ⅰn this paper, we presented a new SEC-UNet model to improve the accuracy of choroid segmentation in DR OCT images. Compared with the conventional UNet and SE-UNet models, this model achieved the best performance(AUCvalue of 0.993 0).Our algorithm can obtain automatic and precise segmentation of the choroid layer in DR images,which may be helpful for doctors in diagnosing fundus diseases related to the choroid state. The statistical analysis of choroid parameter presented the 1 mm adjacent area of choroid fovea increased in 87.1% of DR patients, which means DR may thicken the choroid layer. Ⅰn addition, the proposed SEC module can also be incorporated into other network frameworks, such as VGG[32], ResNet[33], and DenseNet[28], to accomplish tasks such as image classification, scene classification, and object detection.

    国产精品嫩草影院av在线观看| 亚洲成人一二三区av| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 国产女主播在线喷水免费视频网站| 久久久久精品久久久久真实原创| 久久 成人 亚洲| 国产乱来视频区| 久久精品熟女亚洲av麻豆精品| 亚洲成人av在线免费| 国产乱人视频| 国产精品无大码| 少妇人妻一区二区三区视频| 少妇丰满av| 少妇被粗大猛烈的视频| 日韩av不卡免费在线播放| 22中文网久久字幕| 午夜日本视频在线| 国产精品福利在线免费观看| 哪个播放器可以免费观看大片| 国产精品国产三级专区第一集| 亚洲真实伦在线观看| 免费高清在线观看视频在线观看| 日产精品乱码卡一卡2卡三| 在线观看免费日韩欧美大片 | a 毛片基地| 观看免费一级毛片| 精品熟女少妇av免费看| 亚州av有码| 欧美xxxx黑人xx丫x性爽| 亚洲国产成人一精品久久久| 国产伦在线观看视频一区| 日韩av不卡免费在线播放| 色哟哟·www| 成年人午夜在线观看视频| 亚洲国产毛片av蜜桃av| 国产乱人视频| 视频中文字幕在线观看| 熟妇人妻不卡中文字幕| 亚洲国产高清在线一区二区三| 亚洲av男天堂| 成年人午夜在线观看视频| 欧美97在线视频| 天堂中文最新版在线下载| 一级毛片 在线播放| 好男人视频免费观看在线| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 十分钟在线观看高清视频www | 亚洲国产色片| 日韩电影二区| 2022亚洲国产成人精品| 视频中文字幕在线观看| 中文字幕免费在线视频6| 国产成人午夜福利电影在线观看| 婷婷色麻豆天堂久久| 国产亚洲最大av| 国产精品99久久99久久久不卡 | 精品久久久久久久久av| 国产成人免费无遮挡视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲久久久国产精品| 免费看不卡的av| 简卡轻食公司| 亚洲欧美一区二区三区国产| 国产亚洲av片在线观看秒播厂| 亚洲精品一区蜜桃| 另类亚洲欧美激情| 夫妻性生交免费视频一级片| 日产精品乱码卡一卡2卡三| 成人国产av品久久久| 日韩大片免费观看网站| 18禁在线播放成人免费| 一本久久精品| 嘟嘟电影网在线观看| 国产淫语在线视频| 久久女婷五月综合色啪小说| 日日啪夜夜撸| 亚洲国产精品专区欧美| 国产亚洲最大av| 亚洲高清免费不卡视频| 久久精品国产亚洲网站| 日日啪夜夜爽| 91狼人影院| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 国产成人免费观看mmmm| 亚洲怡红院男人天堂| 久久人人爽人人爽人人片va| 搡老乐熟女国产| 王馨瑶露胸无遮挡在线观看| 亚洲欧美中文字幕日韩二区| 国产一级毛片在线| 成人美女网站在线观看视频| 日韩国内少妇激情av| 日本免费在线观看一区| 伦理电影大哥的女人| 蜜臀久久99精品久久宅男| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| 街头女战士在线观看网站| 波野结衣二区三区在线| 日本黄大片高清| 一区二区三区精品91| 国产精品一及| 18禁在线播放成人免费| 日本欧美国产在线视频| 国产精品伦人一区二区| 干丝袜人妻中文字幕| 国产一区有黄有色的免费视频| 欧美97在线视频| 国产一区二区三区综合在线观看 | 人人妻人人爽人人添夜夜欢视频 | 国产精品99久久久久久久久| 国产免费福利视频在线观看| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 亚洲av免费高清在线观看| 超碰97精品在线观看| 在线观看人妻少妇| 久久久久久久久久成人| 在线天堂最新版资源| 久久精品久久久久久噜噜老黄| 九色成人免费人妻av| 欧美日韩国产mv在线观看视频 | 亚洲欧洲国产日韩| 天美传媒精品一区二区| 国产免费一区二区三区四区乱码| 久久综合国产亚洲精品| 视频中文字幕在线观看| 国产精品久久久久久av不卡| 美女内射精品一级片tv| 欧美成人a在线观看| 最近的中文字幕免费完整| 国产爽快片一区二区三区| 丝袜喷水一区| 久热这里只有精品99| 免费看光身美女| 精品国产一区二区三区久久久樱花 | 18禁动态无遮挡网站| 赤兔流量卡办理| 亚洲电影在线观看av| 日韩伦理黄色片| 精品一区在线观看国产| av国产久精品久网站免费入址| 干丝袜人妻中文字幕| 国产91av在线免费观看| 亚洲丝袜综合中文字幕| 亚洲经典国产精华液单| 天天躁夜夜躁狠狠久久av| 精品一区二区免费观看| av在线播放精品| 少妇熟女欧美另类| 极品少妇高潮喷水抽搐| 欧美+日韩+精品| 亚洲精品自拍成人| 亚洲国产av新网站| 丰满迷人的少妇在线观看| 男人和女人高潮做爰伦理| 欧美成人精品欧美一级黄| 中文资源天堂在线| 汤姆久久久久久久影院中文字幕| 亚洲精品色激情综合| 成人黄色视频免费在线看| 一级毛片 在线播放| 黑人高潮一二区| 日韩强制内射视频| 国产精品久久久久成人av| 亚洲精品456在线播放app| 蜜桃在线观看..| 亚洲精品aⅴ在线观看| 各种免费的搞黄视频| 精品久久久久久久末码| 99久久精品一区二区三区| 国产 一区精品| 一级毛片我不卡| 精品一品国产午夜福利视频| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 亚洲最大成人中文| av一本久久久久| 九九爱精品视频在线观看| 两个人的视频大全免费| 大片免费播放器 马上看| 久久婷婷青草| av免费在线看不卡| 国产精品伦人一区二区| 午夜福利在线观看免费完整高清在| 中国国产av一级| 伊人久久国产一区二区| 久久国产乱子免费精品| 水蜜桃什么品种好| 国产精品久久久久久久电影| 久久6这里有精品| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 麻豆乱淫一区二区| 国产有黄有色有爽视频| 亚洲色图综合在线观看| 久热这里只有精品99| 成人毛片a级毛片在线播放| 国产高清国产精品国产三级 | 亚洲av.av天堂| 在线免费观看不下载黄p国产| 黄色一级大片看看| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 日本色播在线视频| 韩国av在线不卡| 波野结衣二区三区在线| 亚洲精品久久午夜乱码| 小蜜桃在线观看免费完整版高清| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 边亲边吃奶的免费视频| 王馨瑶露胸无遮挡在线观看| 国产在线视频一区二区| 国产高清国产精品国产三级 | 激情五月婷婷亚洲| tube8黄色片| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 尾随美女入室| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| 两个人的视频大全免费| 亚洲欧美清纯卡通| 黄色日韩在线| 国产高清有码在线观看视频| 亚洲无线观看免费| 一级毛片电影观看| 又爽又黄a免费视频| 国产精品偷伦视频观看了| 午夜福利影视在线免费观看| 成人免费观看视频高清| 综合色丁香网| 亚洲精华国产精华液的使用体验| 一级片'在线观看视频| 午夜精品国产一区二区电影| 在线观看免费日韩欧美大片 | 久久午夜福利片| 久久亚洲国产成人精品v| 亚洲精品乱久久久久久| 亚洲不卡免费看| av在线观看视频网站免费| 毛片女人毛片| 国产男女超爽视频在线观看| 亚洲,一卡二卡三卡| 午夜视频国产福利| 777米奇影视久久| 成年av动漫网址| 午夜日本视频在线| 黄色视频在线播放观看不卡| 精品熟女少妇av免费看| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 观看美女的网站| 国产免费又黄又爽又色| 欧美bdsm另类| 超碰97精品在线观看| 成人毛片a级毛片在线播放| videossex国产| 高清视频免费观看一区二区| 国产精品爽爽va在线观看网站| 国产一区有黄有色的免费视频| 国产一区二区在线观看日韩| 美女视频免费永久观看网站| 国产精品福利在线免费观看| 人妻系列 视频| 制服丝袜香蕉在线| 能在线免费看毛片的网站| 日韩国内少妇激情av| 多毛熟女@视频| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 高清毛片免费看| 亚洲一区二区三区欧美精品| 校园人妻丝袜中文字幕| 嘟嘟电影网在线观看| 看免费成人av毛片| 国产一区二区在线观看日韩| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 亚洲精品成人av观看孕妇| 不卡视频在线观看欧美| 搡女人真爽免费视频火全软件| 美女cb高潮喷水在线观看| 午夜免费观看性视频| 久久99蜜桃精品久久| 一二三四中文在线观看免费高清| 在线观看人妻少妇| 91午夜精品亚洲一区二区三区| 午夜免费鲁丝| 乱码一卡2卡4卡精品| 日韩伦理黄色片| 久久精品久久久久久久性| 国产高潮美女av| 春色校园在线视频观看| 你懂的网址亚洲精品在线观看| 免费观看无遮挡的男女| 看免费成人av毛片| 久久97久久精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲av电影在线观看一区二区三区| 国产一级毛片在线| 高清毛片免费看| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 五月天丁香电影| 国产美女午夜福利| 欧美一区二区亚洲| 在线亚洲精品国产二区图片欧美 | 久久午夜福利片| 午夜免费观看性视频| 国产极品天堂在线| 国产av国产精品国产| 精品亚洲成国产av| 久久久久久九九精品二区国产| 久久人人爽av亚洲精品天堂 | 色婷婷av一区二区三区视频| 简卡轻食公司| www.av在线官网国产| 日韩三级伦理在线观看| a级毛色黄片| 免费av不卡在线播放| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 高清黄色对白视频在线免费看 | 最近手机中文字幕大全| 日日摸夜夜添夜夜添av毛片| 最新中文字幕久久久久| av女优亚洲男人天堂| 黄色配什么色好看| 日韩三级伦理在线观看| 97在线人人人人妻| 国产成人91sexporn| 亚洲图色成人| 少妇人妻久久综合中文| 女的被弄到高潮叫床怎么办| 最黄视频免费看| 国产v大片淫在线免费观看| 国产精品无大码| 性色av一级| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 91aial.com中文字幕在线观看| 99热6这里只有精品| 午夜福利高清视频| 下体分泌物呈黄色| 中文字幕av成人在线电影| 久久久久精品性色| 又黄又爽又刺激的免费视频.| 精品国产乱码久久久久久小说| 一级av片app| 亚洲精品,欧美精品| 国产视频内射| freevideosex欧美| 美女高潮的动态| 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| a级毛色黄片| 亚洲精品,欧美精品| 久久99热6这里只有精品| av在线观看视频网站免费| 黄色视频在线播放观看不卡| 亚洲成人av在线免费| 少妇裸体淫交视频免费看高清| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 插阴视频在线观看视频| 国产毛片在线视频| 大码成人一级视频| 熟妇人妻不卡中文字幕| freevideosex欧美| 国产在视频线精品| 亚洲国产日韩一区二区| 精品午夜福利在线看| 女的被弄到高潮叫床怎么办| 国产永久视频网站| 嫩草影院入口| 久久亚洲国产成人精品v| 99热网站在线观看| a级毛色黄片| av.在线天堂| 日本爱情动作片www.在线观看| 久久这里有精品视频免费| 亚洲怡红院男人天堂| 欧美丝袜亚洲另类| 永久免费av网站大全| 毛片一级片免费看久久久久| 在线精品无人区一区二区三 | videos熟女内射| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 亚洲av国产av综合av卡| 国产精品久久久久久精品古装| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 久久久国产一区二区| av专区在线播放| 成人影院久久| 黄色配什么色好看| 亚洲va在线va天堂va国产| 制服丝袜香蕉在线| 国产中年淑女户外野战色| 汤姆久久久久久久影院中文字幕| 免费看日本二区| 少妇丰满av| 国产乱人偷精品视频| 久久久久视频综合| a级一级毛片免费在线观看| 亚洲精品国产色婷婷电影| 国产伦在线观看视频一区| 一区二区三区四区激情视频| 波野结衣二区三区在线| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 美女视频免费永久观看网站| 少妇人妻久久综合中文| 久久精品熟女亚洲av麻豆精品| 麻豆国产97在线/欧美| 亚洲精品一二三| 最近中文字幕高清免费大全6| 国产精品一区二区三区四区免费观看| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 国产视频内射| 又大又黄又爽视频免费| 成人美女网站在线观看视频| 久久久久人妻精品一区果冻| 少妇高潮的动态图| 毛片女人毛片| 日产精品乱码卡一卡2卡三| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 简卡轻食公司| 国产av精品麻豆| 久久6这里有精品| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 欧美 日韩 精品 国产| 国内少妇人妻偷人精品xxx网站| 女人十人毛片免费观看3o分钟| 中文字幕久久专区| 最近最新中文字幕免费大全7| 一级av片app| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 久久久久久久久久久免费av| 舔av片在线| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国产精品国产三级国产专区5o| 午夜福利网站1000一区二区三区| 少妇猛男粗大的猛烈进出视频| 啦啦啦啦在线视频资源| 肉色欧美久久久久久久蜜桃| 美女内射精品一级片tv| 九草在线视频观看| 多毛熟女@视频| 日日啪夜夜爽| 亚洲欧美日韩无卡精品| 少妇熟女欧美另类| 午夜日本视频在线| 日本欧美国产在线视频| 亚洲电影在线观看av| 国产免费视频播放在线视频| 亚洲性久久影院| 国产男人的电影天堂91| 国产色爽女视频免费观看| 99热国产这里只有精品6| 热re99久久精品国产66热6| 只有这里有精品99| 国产黄色视频一区二区在线观看| 国产免费福利视频在线观看| videossex国产| 看免费成人av毛片| av在线播放精品| 亚洲最大成人中文| 最近中文字幕高清免费大全6| 国产一区二区三区综合在线观看 | 欧美性感艳星| 亚洲性久久影院| 久久久久久久精品精品| 在线播放无遮挡| 成人特级av手机在线观看| 在线观看免费视频网站a站| 2018国产大陆天天弄谢| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级 | 成人漫画全彩无遮挡| 亚洲人成网站在线观看播放| 伦理电影免费视频| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 久久久久国产网址| 啦啦啦中文免费视频观看日本| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 女人久久www免费人成看片| 国产免费一区二区三区四区乱码| 人体艺术视频欧美日本| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 亚洲欧美清纯卡通| 国产免费一级a男人的天堂| 人妻少妇偷人精品九色| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 干丝袜人妻中文字幕| 久久99精品国语久久久| a 毛片基地| 亚洲第一区二区三区不卡| 欧美日韩国产mv在线观看视频 | 深爱激情五月婷婷| 久久久精品免费免费高清| 亚洲一级一片aⅴ在线观看| www.色视频.com| 99久久人妻综合| 久久久久精品久久久久真实原创| 干丝袜人妻中文字幕| 国产精品成人在线| 秋霞在线观看毛片| 久久久久久九九精品二区国产| 国产在视频线精品| 色网站视频免费| 亚洲高清免费不卡视频| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡免费网站照片| av在线蜜桃| 狂野欧美激情性bbbbbb| 只有这里有精品99| 嘟嘟电影网在线观看| 视频区图区小说| 尤物成人国产欧美一区二区三区| 中国三级夫妇交换| 精品久久久噜噜| 欧美国产精品一级二级三级 | 欧美+日韩+精品| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 国产成人精品福利久久| 一区二区三区四区激情视频| 亚洲色图av天堂| 高清欧美精品videossex| 国产高潮美女av| 99热这里只有是精品在线观看| 日韩伦理黄色片| videos熟女内射| 国产亚洲欧美精品永久| 熟女av电影| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 我要看黄色一级片免费的| 久久久久久九九精品二区国产| 秋霞在线观看毛片| 街头女战士在线观看网站| 韩国高清视频一区二区三区| 成人黄色视频免费在线看| 亚洲图色成人| 亚洲国产欧美在线一区| av视频免费观看在线观看| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 久久97久久精品| av天堂中文字幕网| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 欧美xxxx性猛交bbbb| 只有这里有精品99| 亚洲av不卡在线观看| 十分钟在线观看高清视频www | 97精品久久久久久久久久精品| 黄片无遮挡物在线观看| 极品教师在线视频| 草草在线视频免费看| 精品亚洲成国产av| 一边亲一边摸免费视频| 人人妻人人看人人澡| 校园人妻丝袜中文字幕| .国产精品久久| 国产亚洲精品久久久com| 1000部很黄的大片| 天堂俺去俺来也www色官网| 久久久久精品久久久久真实原创| 精品亚洲成a人片在线观看 | 国产色婷婷99| 精品一区在线观看国产| 国产在线视频一区二区| 大香蕉97超碰在线| 日韩av在线免费看完整版不卡| 色视频www国产| 99热网站在线观看| 午夜免费观看性视频| 最近中文字幕高清免费大全6| 夫妻性生交免费视频一级片| 人妻少妇偷人精品九色| av在线观看视频网站免费| 狠狠精品人妻久久久久久综合| 高清日韩中文字幕在线| 久久这里有精品视频免费| 欧美一区二区亚洲| 成人亚洲欧美一区二区av|