• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis

    2022-12-19 06:48:16FabricioFreiredeMeloHannaSantosMarquesSamuelLucaRochaPinheiroFabianFellipeBuenoLemosMarcelSilvaLuzKadimaNayaraTeixeiraClaudioLimaSouzaMarcioVasconcelosOliveira
    World Journal of Clinical Oncology 2022年11期

    Fabricio Freire de Melo, Hanna Santos Marques, Samuel Luca Rocha Pinheiro,Fabian Fellipe Bueno Lemos,Marcel Silva Luz, Kadima Nayara Teixeira, Claudio Lima Souza,Marcio Vasconcelos Oliveira

    Abstract Gastric cancer is the fifth most common malignancy and third leading cancerrelated cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world’s population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions.Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a “hit-and-run” carcinogenic mechanism.Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.

    Key Words: Helicobacter pylori; Virulence factors; CagA; Gastric cancer; EPIYA motifs;Hit-and-run carcinogenesis

    lNTRODUCTlON

    The multiple virulence mechanisms ofHelicobacter pyloriconfer an ability to colonize the hostile gastric environment[1]. This pathogen infects > 50% of the global population and is a major health concern due to the serious repercussions related to its colonization[2]. Among the diseases predisposed byH. pyloriinfection, gastric adenocarcinoma is the fifth most common malignancy and third leading cancer-related cause of death worldwide[3]. Of note, the close relationship betweenH. pyloriand gastric cancer has led the World Health Organization International Agency for Research on Cancer Working Group to consider the bacterium as a class 1 carcinogen based on epidemiological evidence and biological plausibility[4].

    Various virulence factors contribute to successfulH. pyloricolonization and pathogenicity[5]. Among these factors iscagA, a well-known gene that encodes an oncogenic protein that seems to be a determining agent inH. pylori-related gastric carcinogenesis[6]. CagA seropositivity, regardless ofH.pyloristatus, is associated with increased gastric cancer risk. ThecagAgene is located in the pathogenicity islandcag(cagPAI), a nucleic acid sequence that encodes the type IV secretion system(T4SS), which is a bacterial apparatus that delivers the CagA protein and peptidoglycans into gastric epithelial cells. Inside host cells, that virulence factor suffers phosphorylation at a Glu-Pro-Ile-Tyr-Ala(EPIYA) motif, a variable C-terminal region and, subsequently, promotes the activation of the SH2-containing protein tyrosine phosphatase (SHP2)[7,8]. SHP2, in turn, triggers various mechanisms that lead to important cell changes, including alterations in cellular morphology through the disturbing of cell polarity, which leads to a “hummingbird” phenotype, as well as carcinogenesis-related changes in cytoskeleton[9].

    Despite the extensive number of studies on the relationship between CagA andH. pyloriinfection,much still has to be done in order to better understand the role of this oncoprotein in gastric carcinogenesis. Recent investigations have explored multiple host-pathogen interactions in this setting and found other CagA-triggered pathways that probably influence cancer development[10]. Moreover, the action of small RNAs in CagA post-transcriptional regulation has been investigated, showing a broad field to be explored[11]. This review aims to describeH. pylori- and CagA-related oncogenic mechanisms, and to discuss the novelties and perspectives in this field.

    PATHOGENESlS OF H. PYLORI GASTRlC lNFECTlON

    The capacity to resist severe stomach acid conditions is a notable aspect ofH. pylori. To provide successful colonization, the pathogen uses various mechanisms, such as enhanced motility, adherence to gastric epithelial cells, enzymatic machinery, and virulence factors[12]. Besides that, the host immune system also plays an essential role during the infection, mainly by a Th1 response against the bacteria[13].

    The bacterial flagella are crucial for reaching the protective mucus layer at the exterior of the gastric mucosa. After entering the stomach,H. pyloriuses its flagella for swimming in gastric content, allowing the pathogen to arrive at the mucus layer[14]. Some studies have shown that the ferric uptake regulator performs an important role in bacterial colonization, positively regulating the flagellar motility switch inH. pyloristrain J99[15]. Another factor described as a motility modulator is HP0231, a Dsb-like protein. It cooperates in redox homeostasis and is fundamental for gastric establishment[16].

    H. pylorialso depends on chemotaxis for its colonization. The essential pathogen chemoreceptors are T1pA, B, C, D, a CheA kinase, a CheY responsive regulator, and numerous coupling proteins, playing a pivotal role in bacteria pathogenesis[17]. The aggregation of the coupling proteins CheW and CheV1 culminates in the formation of the CheA chemotaxis complex, activating CheA kinase and optimizing the chemotaxis function[18].

    An ideal balance between nickel absorption and incorporation is indispensable forH. pyloricolonization, since nickel is an essential metal for bacterial survival and infection[12,19]. This metal is a cofactor for two significant enzymes: urease and hydrogenase. Both of them have a role in gastric infection, contributing, respectively, to bacterial colonization and metabolism signaling cascade to produce energy[20,21].

    Adherence and outer membrane gastric cell receptors are also relevant in bacterial pathogenesis. The blood group antigen binding adhesin (BabA) is the best-studied molecule ofH. pylori[22]. This protein sequence affects acid sensitivity and plays a critical role in bacterial acid adaptation during infection[12]. Pathogens with high BabA expression levels have increased virulence, leading to duodenal cancer and gastric adenocarcinoma[23]. Another adhesin has been described: HopQ. This molecule binds to cell adhesion molecules related to the carcinoembryonic antigen (carcinoembryonic antigen-related cell adhesion molecules, CEACAMs) 1, 3, 5 and 6, promoting cell signaling guided by this interaction,allowing the translocation of the oncoprotein CagA, the most importantH. pylorivirulence factor, and rising proinflammatory mediators in the infected cells[24,25].

    Additionally, besides CagA, a wide range of virulence factors like vacuolating cytotoxin A (VacA),DupA and OipA have been reported as determinant molecules forH. pyloripathogenicity[26]. VacA,whose gene is found in most bacterial strains, promotes the formation of acidic vacuoles in gastric epithelial cells and modulate the immune response, leading to an immune tolerance and enduringH.pyloriinfection, due to its role in the activity of T cells and antigen-presenting cells [27,28]. These VacA functions can lead to gastritis and duodenal ulcer and gastric cancer development. The bacterial protein DupA provides acid resistance to the pathogen, and seems to cooperate with the production of interleukin (IL)-8, enhancing its levels in the gastric mucosa[29]. The outer membrane protein OipA contributes to the adhesion and activation of IL-8 production, increasing inflammation. OipA is a significant virulence factor on the infection outcome, resulting in increased development of gastric cancer and peptic ulcers[30].

    H. pyloriinfection produces complex host immune responses, through diverse immune mechanisms[31]. During the first contact with the bacteria, a wide range of antigens like lipoteichoic acid and other lipoproteins bind to stomach cell receptors, known as Toll-like receptors (TLRs)[32]. After this interaction, NF-B and c-Jun N-terminal kinase activation takes place, among the proinflammatory cytokine release as signaling pathways[33]. Neutrophils and mononuclear cells infiltrate the gastric surface, producing nitric oxide and reactive oxygen species (ROS), and recruiting CD4+and CD8+T cells[34]. Finally, a Th1-polarized response occurs, with enhanced levels of IFN-γ, IL-1β, Il-6, IL-7, IL-8, IL-10 and IL-18[35,36].

    A correlation has been shown between Th17 cells, a proinflammatory subset of CD4+T cells, and their affiliated cytokines (IL-17A, IL-17F, IL-21, IL-22 and IL-26) in persistentH. pylori-mediated gastric inflammation and the subsequent gastric cancer development[36,37]. We have demonstrated in a previous study that an IL-17 T-cell response predominates inH. pylori-associated gastritis in adults,whereas, in children, there is predominance of a T regulatory (Treg) cell response. IL-17A is known to play an important role in the recruitment and activation of polymorphonuclear cells that are vital forH.pyloriclearance. Treg and Th17 cells are mutually controlled. Therefore, these findings could explain the higher susceptibility of children to the infection and bacterial persistence[38].

    IL-27 expression differs betweenH. pylori-related diseases. Accordingly, we have shown that there is a high expression of IL-27 in the gastric mucosa and serum ofH. pylori-positive duodenal ulcer patients.In contrast, IL-27 is absent in the gastric mucosa and serum of patients with gastric cancer. Consistent with the immunosuppressive role of IL-27 in Th17 cells and IL-6 expression, we observed that expression of Th17-cell-associated cytokines was lower in the patients with duodenal ulcer, which secreted a large concentration of proinflammatory Th1 representative cytokines. We demonstrated that there is high levels of IL-1β, IL-6, IL-17A, IL-23, and transforming growth factor-β, involved in IL-17A expression, on the gastric mucosa and in the serum of gastric cancer patients. Therefore, IL-27 may be involved in the development of different patterns ofH. pylori-induced gastritis and its progression.Taking into account that IL-27 has evident antitumor activity, our results point to a possible therapeutic use of IL-27 as an anticancer agent[39].

    Recently, the role of the interaction betweenH. pyloriinfection and the gastrointestinal microbiome in gastric carcinogenesis has also been investigated. In this regard, researchers explored the diversity and composition of the gastric microbiome at different stages of disease, including normal gastric mucosa,chronic gastritis, atrophic gastritis, intestinal metaplasia, and gastric cancer[40]. A recent meta-analysis indicated thatH. pylori-positive gastric samples exhibit reduced microbial diversity, altered microbial community, composition, and bacterial interactions. An increased abundance of opportunistic pathogens (e.g.,VeillonellaandParvimonas) was observed concomitantly with a decrease in putative probiotics (e.g.,Bifidobacterium) throughout the stages of disease progression[41]. Another study has suggested that successful eradication ofH. pyloricould reverse the tendency towards gastric microbiota dysbiosis and show beneficial effects on the gastric microbiota[42]. The next step in this field could be to conduct a prospective, multicenter, crosscultural study to validate these results and explore the mechanisms underlying theH. pylori-gastric microbiota interaction and its role in gastric cancer development[43].

    CAGA — H. PYLORI TRANSLOCATED ONCOPROTElN

    CagA is a translocated effector protein that induces morphofunctional modifications in gastric epithelial cells and inflammatory responses, whose balance allows successful colonization of the acidic stomach environment[44,45]. The CagA gene is located in thecagPAI; a 40-kb DNA fragment that contains about 31 genes and confers virulence to some strains ofH. pylori. Some genes of the island encode proteins that form a T4SS, which is responsible for the translocation of CagA into the cytoplasm of gastric epithelial cells through interaction of bacterial and host cell components[46-48]. The oncoprotein has a molecular weight of 128-145 kDa and its tertiary structure is characterized by a structured N-terminal region, split into Domains I-III and an unstructured C-terminal tail[49].

    Injection of CagA depends on the recognition of its N-terminal and C-terminal portions by T4SS,which can occur simultaneously or not[50]. However, several other mechanisms are also required for its inoculation. We highlight the binding between T4SS CagL and CagY to human β1-integrins[51,52],along with the CEACAMs andH. pyloriouter membrane protein Q (HopQ) interaction, that allow the translocation of CagA into the host cells[53]. A recent study noted that the instability of the relationship betweenH. pyloriHopQ and mouse CEACAMs may explain why the pathogenesis of infection in the stomach of rodents infected with CagA positiveH. pyloristrains occurs differently from infection by the same strain in humans. The authors also demonstrated that the presence of functional T4SS is associated with a time-dependent reduction in human CEACAM1 levels after CagA-positiveH. pyloriinfection[54]. However, it is still unclear whether the instability of the HopQ-CEACAMs relationship favors the host or the bacterium, so more studies are needed to investigate the possibility of these interactions being beneficial in favor of the patient infected withH. pylori.BabA is apparently also capable of increasing T4SS activity[55].

    CagA is known to possess multiple phosphorylation segments in its tertiary structure. The phosphorylation sites are denominated EPIYA sequences; regions consisting of five amino acids (Glu-Pro-Ile-Tyr-Ala) located in the C-terminal portion of the oncoprotein. Four different EPIYA segments have been described according to the different amino acid sequences surrounding each motif,designated EPIYA-A (32 amino acids), B (40 amino acids), C (34 amino acids) and D (42 amino acids).EPIYA-A and EPIYA-B motifs have been identified in almost all CagA-positiveH. pyloristrains,followed by one, two, or three EPIYA-C sequences in western strains, or an EPIYA-D segment in East Asian strains[56,57]. Figure 1A summarizes the main structural domain differences between East Asian and western CagA.

    Once inside the gastric epithelial cells, the EPIYA segments are selectively tyrosine-phosphorylated by different kinases of the Src family (s-Src, Fyn, Lyn and Yes) or by Abl kinase of the host cells[58-61].After the phosphorylation process, CagA moves to the cell membrane and acts as a promiscuous scaffold protein that simultaneously disturbs multiple signaling pathways, involved in the regulation of a large range of cellular processes, including proliferation, differentiation and apoptosis[62].

    In this sense, a better understanding of the molecular structure of CagA and the interactions promoted by CagA-positiveH. pyloristrains to prevail in the host organism may be essential in identifying variations in prognosis, disease severity, and mechanisms that may be beneficial to the host,according to infections by differentH. pyloristrains.

    ROLE OF CagA lN GASTRlC CARClNOGENESlS

    The translocated effector protein CagA was found to be associated with gastric cancer development even before the initial elucidation of its pathogenic mechanisms[63,64]. Initially, the correlation between infection with CagA-positiveH. pyloristrains and carcinogenesisin vivowas established by experiments in Mongolian gerbil models[65-67]. More recently, transgenic expression of CagA in mice and zebrafish has also been shown to be associated with the development of gastric and hematopoietic neoplasms[68,69]. Thereby, the oncogenic potential of the bacterial protein has become increasingly evident and, at the same time, different studies have sought to clarify its underlying mechanisms. Nowadays, CagA is considered a pathological analog of a scaffold or hub protein capable of disrupting multiple host signaling pathways and promoting a pro-oncogenic microenvironment[70].

    Upon translocation, CagA localizes to the inner surface of the plasmatic membrane, where it undergoes tyrosine phosphorylation by multiple members of the Src family kinases and c-Abl kinases[8,10,59,61]. As mentioned above, four different EPIYA segments were described according to the different amino acid sequences surrounding each motif, designated EPIYA-A-EPIYA-D[56,57]. Strains containing EPIYA-D or at least two EPIYA-C motifs are known to be associated with an increased risk of developing precancerous lesions and gastric cancer[71-75]. Queirozet al[75] demonstrated in a Brazilian population that first-degree relatives of patients with gastric cancer were significantly and independently more frequently colonized byH. pyloristrains with higher numbers of CagA EPIYA-C segments, which may be associated with an enhanced risk of developing this neoplasm[76].

    Following tyrosine phosphorylation, EPIYA-C and D motifs acquire the ability to interact with SHP2 and induce pathological intracellular signaling[9]. Abnormal SHP2 activity leads to aberrant activation of the Ras-MAPK pathway, which has been associated with accelerated cell cycle progression and enhanced cell proliferation. CagA-activated SHP2 is also able to interact with proteins such as focal adhesion kinase, thence leading to cell elongation, increased motility, and cytoskeleton rearrangements[77,78]. All these pathological alterations in cell biology increase the risk of damaged cells acquiring precancerous genetic changes[79]. It is worth mentioning that CagA possessing EPIYA-D or a higher number of EPIYA-C segments binds more robustly to SHP2, which may explain their association with higher risk of gastric cancer development[8]. It has also been described that EPIYA-A and B motifs are able to interact with the SH2 domains of the tyrosine-protein kinase Csk, thereby inducing damage to actin binding proteins such as cortactin and vinculin. Consequently, rearrangements in the cytoskeleton reduce cell adhesion to the extracellular matrix and increase cell motility[80]. A recent study observed thatH. pylori, through the T4SS encoded bycagPAI, interferes with the activity of cortectin binding partners, and stimulates overexpression of this molecule and promotes alterations in the actin cytoskeleton that may favor cell adhesion, motility and invasion of tumor cells contributing to the development of gastric cancer[81].

    Recent studies have described that SHIP2, an SH2-containing phosphatidylinositol 5′-phosphatase, is a previously undiscovered CagA binding protein. Similar to SHP2, the SHIP2 protein is able to bind to EPIYA-C and D motifs in a tyrosine phosphorylation-dependent manner. In contrast, SHIP2 binds more robustly to EPIYA-C than to EPIYA-D sequences, thereby inducing changes in membrane phosphatidylinositol composition. This process enhances the subsequent delivery of CagA to the host cell, which binds to and dysregulates SHP2[82].

    Other mechanisms have also been related to the aberrant induction of morphological changes,increased motility and cell proliferation[83]. In a tyrosine-phosphorylation-dependent manner, the interaction of CagA with the adapter molecule Crk is known to drive abnormal cell proliferationviaMAPK signaling. Furthermore, the activation of Crk signaling pathways lead to the loss of cell-cell adhesion, hence inducing cell scattering/hummingbird phenotype and cell-cell dissociation[84]. It is important to mention that the EPIYA motif that corresponds to the binding site Csk has not been identified yet. In contrast, activation of the growth factor receptor-bound protein 2 (Grb2) protein and theC-Metoncogene in a tyrosine-phosphorylation-independent manner can also lead to similar pathological effects, highlighting the multiplicity of pro-oncogenic mechanisms of CagA[85,86]. Grb2 is an important regulator of Ras-MAPK pathway activation, capable of deregulating cell proliferation.Activation of C-Met-mediated PI3K/Akt signaling is associated with cancer-promoting mitogenic and inflammatory response[87-91].

    The ability of CagA to disrupt the epithelial barrier has also been widely linked to its carcinogenic potential. In addition to the EPIYA sequences, the oncoprotein contains another repetitive sequence in its C-terminal polymorphic region, known as the CagA-multimerization (CM) motif[90]. With its number varying between different strains, the CM motif is composed of a 16-amino-acid sequence located downstream of the last EPIYA sequence[89]. This sequence, although highly conserved,possesses a 5-amino-acid difference between East Asian and western strains, hence distinguishing East Asian and western CagA (CMW)[91]. Thus, higher number of EPIYA-C motifs also increases the number of CM motifs in the CMW. The CM motif is identified as the main mediator of the interaction between CagA and the partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase, which plays a pivotal role in establishing epithelial polarity. As a result, there is loss of cell polarity, as well as induction of morphological alterations also associated with the hummingbird phenotype[92]. CagAmediated PAR1 inhibition also disrupts mitosis, causing increased cell division and impaired segregation of sister chromatids, thus leading to chromosomal instability (CI)[93]. Currently, CI is widely recognized for its multifactorial role in carcinogenesis and its microenvironment[94].

    Figure 2 Simplified model of CagA-mediated hit-and-run carcinogenesis. The pro-oncogenic properties of CagA are already well established. However,genetic and epigenetic alterations caused by this oncoprotein provide a favorable environment for carcinogenesis, independently of its presence, in a hit-and-run carcinogenesis mechanism. In this sense, through interaction with various host proteins, CagA leads to chromosomal instability, double-strand breaks and repeated nucleotide mutations, which are correlated to gastric cancer development. CMW: western CagA.

    From a different perspective, there is also a dangerous association between CM motifs and Ecadherin, a key protein in establishing cell polarity and maintaining epithelial integrity and differentiation[95-97]. It has been described that the CagA-E-cadherin interaction downregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Therefore, it was inferred that the oncoprotein plays an important role in the development of intestinal metaplasia, a precancerous transdifferentiation of gastric epithelial cells from which intestinal-type gastric adenocarcinoma emerges[98].

    Also in this sense, a recent study observed that CagA seems to be able to induce gastric carcinogenesis by stimulating the migration of cancer cells through the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The authors reported that CagA also participates in the generation of intracellular ROS and that ROS inhibition has the potential to disrupt the NLRP3 pathway and pyroptosis. With these findings, the authors concluded that NLRP3 plays a key role in the action of CagA on gastric cells and that silencing NLRP3 can limit the effects of migration and invasion of cancer cells caused by CagA[99].

    It is worth emphasizing the ability of CagA to activate a variety of antiapoptotic pathways, upon interaction of its N-terminal portion with various tumor suppressor factors. For example, it is well described that CagA is able to impair the antiapoptotic activity of the tumor suppressor factor p53.CagA protein induces degradation of p53 protein in both ASPP2- and p14ARF-dependent manners[100,101]. Furthermore, it is known that the interaction of the oncoprotein with Runt-related transcription factor 3 (RUNX3) is able to induce the ubiquitination and degradation of RUNX3 that blocks its antitumoral activity[102]. Figure 1B summarizes the main molecular mechanisms of CagA-mediated carcinogenesis.

    Another important potential of CagA associated with gastric cancer pathogenesis is the ability to drive epithelial to mesenchymal transition (EMT); a phenomenon extensively related to carcinogenesis[103,104]. EMT is the result of a complex molecular program that allows cancer cells to suppress their epithelial characteristics, transforming themselves into mesenchymal epithelial cells. This change allows the cells to acquire motility, invasiveness, greater resistance to apoptosis, and the ability to migrate from the primary site[104,105]. In this regard, it has been shown that EMT gene expression is upregulated in gastric epithelial cells infected withH. pyloriCagA-positive strains[106]. Nevertheless, multiple pathogenic mechanisms have been described, including reduction of glycogen synthase kinase-3 activity and triggering of the YAP oncogenic pathway, for example. However, the multiplicity of processes involved in EMT and its role in gastric cancer development still requires further explanation[107,108].

    Recent studies have not been limited to pathogen-host interactions inH. pyloriinfection, but have also investigated the mechanisms regulating bacterial virulence factors, such as CagA, and their relation to carcinogenesis. Eisenbartet al[11] identified a conserved, abundant nickel-regulated sRNA and named it NikS (nickel-regulated sRNA), whose expression is transcriptionally modulated based on the size of a variable thymine stretch in its promoter region. NikS, in dependence on nickel availability,directly represses several virulence factors ofH. pylori, including the oncoprotein, CagA, and its effects on host cell internalization and epithelial barrier disruption. In this sense, multiple clinical repercussions of post-transcriptional modulation of CagA by NikS can be hypothesized, including decreased activation of procarcinogenic signaling. Kinoshita-Daitokuet al[109] described that NikS expression is lower in clinical isolates from gastric cancer patients than in isolates from noncancer patients, while the expression of virulence factors targeted by NikS, including CagA, is increased in isolates from gastric cancer patients. This field needs to be better explored, especially regarding the correlation of NikS with the multiple virulence factors ofH. pyloriand its potential clinical repercussions.

    CAGA-MEDlATED HlT-AND-RUN CARClNOGENESlS

    Even though CagA is notably a pro-oncogenic virulence factor, once gastric cancer sets in, its perpetuation is independent of the presence of this oncoprotein. In this sense, genetic and epigenetic changes caused by CagA seem to be responsible for this process, in a mechanism called “hit-and-run”carcinogenesis[58,92], firstly proposed by Skinner[110] for virus-induced cancers. Apparently, these changes are intrinsically related to disorders in the expression of activation-induced cytidine deaminase(AID), a crucial enzyme in the processes of somatic hypermutation and class-switch recombination of immunoglobulin genes in B cells[111,112]. Matsumotoet al[111] state thatcagA-positiveH. pyloriinduces disordered expression of AIDviaNF-B, which consequently leads to various nucleotide mutations, such as in the tumor suppressor geneTP53.cagA-positiveH. pyloristrains are also related to oxidative DNA damage, because they are able to promote increased levels of H2O2and downregulation of heme oxygenase-1[89,113]. CagA also inhibits PAR1 kinase, leading to microtubule-based spindle dysfunction and consequent CI[93].

    Some studies have shown thatH. pylorican also promote DNA double-strand breaks (DSBs) in host cells[114,115], but whether or not this feature is CagA-related remains uncertain. However, a recent study showed that inhibition of PAR1b kinase by CagA hinderedBRCA1gene phosphorylation, which leads to a BRCAness picture that, in turn, induces DSBs[116]. All these genetic and epigenetic changes support the hit-and-run mechanism, in which, regardless of the presence of CagA, the established prooncogenic environment maintains the acquired phenotype. Figure 2 summarizes the main features regarding CagA-mediated hit and run carcinogenesis mechanism.

    CONCLUSlON

    In this study, we address the role of CagA in the development ofH. pylori-mediated gastric carcinogenesis and discuss the perspectives in this field of study (Figure 3). CagA undergoes important translocation and tyrosine phosphorylation before disrupting several cell signaling pathways and promoting protein dysfunction. However, there is still much to be clarified regarding the steps involved in the role of CagA in gastric carcinogenesis. Recent discoveries such as the identification of the SHIP2 binding protein capable of binding to the EPIYA-C and D motifs and potentiating the delivery of CagA to infected cells, or discovery of the instability between theH. pyloriHopQ and CEACAM relationship, are significant findings that can generate advances in the area, and therefore, need to be investigated in more depth. Exploration of the little-known field of regulatory RNAs seems promising for a broader understanding of the control mechanisms involved inH. pyloriinfection and CagA levels and has the potential to identify factors with important clinical repercussions for conditions such as gastric cancer.Finally, the ability ofH. pylorito evolve as a pathogenic bacterium and as a carcinogen is undeniable,therefore, it is essential to clarify what is still unclear about the subject and periodically monitor the behavior of the bacterium in the infection, the molecular processes and elements such as CagA to advance the diagnosis and treatment of the disease.

    Figure 3 Status of the current understanding regarding CagA-related pathogenic mechanisms. EMT: Epithelial to mesenchymal transition;CEACAMs: Carcinoembryonic antigen-related cell adhesion molecules; Grb2: Growth factor receptor-bound protein 2; ASPP2: Apoptosis-stimulating protein of p532;SHP2: Domain-containing protein tyrosine phosphatase 2; SHIP2: Src homology 2 domain-containing inositol 5'-phosphatase 2; RUNX3: Runt-related transcription factor 3; PAR1: Partitioning-defective 1; NikS: Nickel-regulated sRNA.

    FOOTNOTES

    Author contributions:All authors equally contributed to this paper with conception and design of the study,literature review and analysis, drafting and critical revision and editing, and final approval of the final version; all authors agree to be accountable for all aspects of the work in ensuring that questions that are related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

    Supported byNational Council for Scientific and Technological Development, CNPq Brazil.

    Conflict-of-interest statement:All the authors report no relevant conflicts of interest for this article.

    Open-Access:This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BYNC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is noncommercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

    Country/Territory of origin:Brazil

    ORClD number:Fabrício Freire de Melo 0000-0002-5680-2753; Hanna Santos Marques 0000-0001-5741-1570; Samuel Luca Rocha Pinheiro 0000-0002-8877-892X; Fabian Fellipe Bueno Lemos 0000-0002-4686-7086; Marcel Silva Luz 0000-0003-1650-5807; Cláudio Lima Souza 0000-0002-8094-8357; Márcio Vasconcelos Oliveira 0000-0002-8959-0478.

    S-Editor:Gao CC

    L-Editor:Kerr C

    P-Editor:Gao CC

    REFERENCES

    1 Sitkin S, Lazebnik L, Avalueva E, Kononova S, Vakhitov T. Gastrointestinal microbiome andHelicobacter pylori:Eradicate, leave it as it is, or take a personalized benefit-risk approach?World J Gastroenterol2022 ; 28 : 766 -774 [PMID:35317277 DOI: 10 .3748 /wjg.v28 .i7 .766 ]

    2 Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Effect of Helicobacter pylori on gastric epithelial cells.World J Gastroenterol2014 ; 20 : 12767 -12780 [PMID: 25278677 DOI: 10 .3748 /wjg.v20 .i36 .12767 ]

    3 Warsinggih, Syarifuddin E, Marhamah, Lusikooy RE, Labeda I, Sampetoding S, Dani MI, Kusuma MI, Uwuratuw JA,Prihantono, Faruk M. Association of clinicopathological features and gastric cancer incidence in a single institution.Asian J Surg2022 ; 45 : 246 -249 [PMID: 34090784 DOI: 10 .1016 /j.asjsur.2021 .05 .004 ]

    4 Schistosomes, liver flukes and Helicobacter pylori. IARC Monogr Eval Carcinog Risks Hum 1994 ; 61 : 1 -241 [PMID:7715068 ]

    5 Sgouras DN, Trang TT, Yamaoka Y. Pathogenesis of Helicobacter pylori Infection. Helicobacter 2015 ; 20 Suppl 1 : 8 -16 [PMID: 26372819 DOI: 10 .1111 /hel.12251 ]

    6 Alipour M. Molecular Mechanism of Helicobacter pylori-Induced Gastric Cancer. J Gastrointest Cancer 2021 ; 52 : 23 -30 [PMID: 32926335 DOI: 10 .1007 /s12029 -020 -00518 -5 ]

    7 Backert S, Tegtmeyer N, Fischer W. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system.Future Microbiol2015 ; 10 : 955 -965 [PMID: 26059619 DOI:10 .2217 /fmb.15 .32 ]

    8 Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. Src is the kinase of the Helicobacter pylori CagA proteinin vitroand in vivo.J Biol Chem2002 ; 277 : 6775 -6778 [PMID: 11788577 DOI: 10 .1074 /jbc.C100754200 ]

    9 Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein.Science2002 ; 295 : 683 -686 [PMID: 11743164 DOI:10 .1126 /science.1067147 ]

    10 Tammer I, Brandt S, Hartig R, K?nig W, Backert S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering.Gastroenterology2007 ; 132 : 1309 -1319 [PMID: 17408661 DOI:10 .1053 /j.gastro.2007 .01 .050 ]

    11 Eisenbart SK, Alzheimer M, Pernitzsch SR, Dietrich S, Stahl S, Sharma CM. A Repeat-Associated Small RNA Controls the Major Virulence Factors of Helicobacter pylori.Mol Cell2020 ; 80 : 210 -226 .e7 [PMID: 33002424 DOI:10 .1016 /j.molcel.2020 .09 .009 ]

    12 Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter 2017 ; 22 Suppl 1 [PMID:28891130 DOI: 10 .1111 /hel.12405 ]

    13 Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK, Brooks EG, Graham DY, Reyes VE, Ernst PB.Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype.Gastroenterology1998 ; 114 : 482 -492 [PMID: 9496938 DOI: 10 .1016 /S0016 -5085 (98 )70531 -1 ]

    14 Eaton KA, Morgan DR, Krakowka S. Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori.J Med Microbiol1992 ; 37 : 123 -127 [PMID: 1629897 DOI: 10 .1099 /00222615 -37 -2 -123 ]

    15 Lee AY, Kao CY, Wang YK, Lin SY, Lai TY, Sheu BS, Lo CJ, Wu JJ. Inactivation of ferric uptake regulator (Fur)attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.Helicobacter2017 ; 22 [PMID: 28402041 DOI: 10 .1111 /hel.12388 ]

    16 Zhong Y, Anderl F, Kruse T, Schindele F, Jagusztyn-Krynicka EK, Fischer W, Gerhard M, Mejías-Luque R. Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric Colonization. PLoS One 2016 ; 11 : e0154643 [PMID: 27138472 DOI: 10 .1371 /journal.pone.0154643 ]

    17 Aizawa SI, Harwood CS, Kadner RJ. Signaling components in bacterial locomotion and sensory reception.J Bacteriol2000 ; 182 : 1459 -1471 [PMID: 10692349 DOI: 10 .1128 /jb.182 .6 .1459 -1471 .2000 ]

    18 Abedrabbo S, Castellon J, Collins KD, Johnson KS, Ottemann KM. Cooperation of two distinct coupling proteins creates chemosensory network connections.Proc Natl Acad Sci U S A2017 ; 114 : 2970 -2975 [PMID: 28242706 DOI:10 .1073 /pnas.1618227114 ]

    19 Becker KW, Skaar EP. Metal limitation and toxicity at the interface between host and pathogen.FEMS Microbiol Rev2014 ; 38 : 1235 -1249 [PMID: 25211180 DOI: 10 .1111 /1574 -6976 .12087 ]

    20 Eaton KA, Brooks CL, Morgan DR, Krakowka S. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets.Infect Immun1991 ; 59 : 2470 -2475 [PMID: 2050411 DOI: 10 .1002 /ps.2016 ]

    21 Olson JW, Maier RJ. Molecular hydrogen as an energy source for Helicobacter pylori. Science 2002 ; 298 : 1788 -1790 [PMID: 12459589 DOI: 10 .1126 /science.1077123 ]

    22 Oliveira AG, Santos A, Guerra JB, Rocha GA, Rocha AM, Oliveira CA, Cabral MM, Nogueira AM, Queiroz DM.babA2 - and cagA-positive Helicobacter pylori strains are associated with duodenal ulcer and gastric carcinoma in Brazil.J Clin Microbiol2003 ; 41 : 3964 -3966 [PMID: 12904430 DOI: 10 .1128 /JCM.41 .8 .3964 -3966 .2003 ]

    23 Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA,Altraja S, Wadstr?m T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarstr?m L, Borén T. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation.Science2002 ; 297 : 573 -578 [PMID: 12142529 DOI: 10 .1126 /science.1069076 ]

    24 Javaheri A, Kruse T, Moonens K, Mejías-Luque R, Debraekeleer A, Asche CI, Tegtmeyer N, Kalali B, Bach NC, Sieber SA, Hill DJ, K?niger V, Hauck CR, Moskalenko R, Haas R, Busch DH, Klaile E, Slevogt H, Schmidt A, Backert S,Remaut H, Singer BB, Gerhard M. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs.Nat Microbiol2016 ; 2 : 16189 [PMID: 27748768 DOI: 10 .1038 /nmicrobiol.2016 .189 ]

    25 K?niger V, Holsten L, Harrison U, Busch B, Loell E, Zhao Q, Bonsor DA, Roth A, Kengmo-Tchoupa A, Smith SI,Mueller S, Sundberg EJ, Zimmermann W, Fischer W, Hauck CR, Haas R. Helicobacter pylori exploits human CEACAMsviaHopQ for adherence and translocation of CagA.Nat Microbiol2016 ; 2 : 16188 [PMID: 27748756 DOI:10 .1038 /nmicrobiol.2016 .188 ]

    26 de Brito BB, da Silva FAF, Soares AS, Pereira VA, Santos MLC, Sampaio MM, Neves PHM, de Melo FF. Pathogenesis and clinical management ofHelicobacter pylorigastric infection.World J Gastroenterol2019 ; 25 : 5578 -5589 [PMID:31602159 DOI: 10 .3748 /wjg.v25 .i37 .5578 ]

    27 Atherton JC, Peek RM Jr, Tham KT, Cover TL, Blaser MJ. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori.Gastroenterology1997 ; 112 : 92 -99 [PMID: 8978347 DOI:10 .1016 /S0016 -5085 (97 )70223 -3 ]

    28 Djekic A, Müller A. The Immunomodulator VacA Promotes Immune Tolerance and Persistent Helicobacter pylori Infection through Its Activities on T-Cells and Antigen-Presenting Cells.Toxins (Basel)2016 ; 8 [PMID: 27322319 DOI:10 .3390 /toxins8060187 ]

    29 Farzi N, Yadegar A, Aghdaei HA, Yamaoka Y, Zali MR. Genetic diversity and functional analysis of oipA gene in association with other virulence factors among Helicobacter pylori isolates from Iranian patients with different gastric diseases.Infect Genet Evol2018 ; 60 : 26 -34 [PMID: 29452293 DOI: 10 .1016 /j.meegid.2018 .02 .017 ]

    30 Miftahussurur M, Yamaoka Y, Graham DY. Helicobacter pylori as an oncogenic pathogen, revisited.Expert Rev Mol Med2017 ; 19 : e4 [PMID: 28322182 DOI: 10 .1017 /erm.2017 .4 ]

    31 Yoshikawa T, Naito Y. The role of neutrophils and inflammation in gastric mucosal injury. Free Radic Res 2000 ; 33 :785 -794 [PMID: 11237100 DOI: 10 .1080 /10715760000301301 ]

    32 Smith SM. Role of Toll-like receptors in Helicobacter pylori infection and immunity.World J Gastrointest Pathophysiol2014 ; 5 : 133 -146 [PMID: 25133016 DOI: 10 .4291 /wjgp.v5 .i3 .133 ]

    33 Smith MF Jr, Mitchell A, Li G, Ding S, Fitzmaurice AM, Ryan K, Crowe S, Goldberg JB. Toll-like receptor (TLR) 2 and TLR5 , but not TLR4 , are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells.J Biol Chem2003 ; 278 : 32552 -32560 [PMID: 12807870 DOI: 10 .1074 /jbc.M305536200 ]

    34 Wilson KT, Ramanujam KS, Mobley HL, Musselman RF, James SP, Meltzer SJ. Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line.Gastroenterology1996 ; 111 : 1524 -1533 [PMID: 8942731 DOI: 10 .1016 /S0016 -5085 (96 )70014 -8 ]

    35 Lindholm C, Quiding-J?rbrink M, L?nroth H, Hamlet A, Svennerholm AM. Local cytokine response in Helicobacter pylori-infected subjects.Infect Immun1998 ; 66 : 5964 -5971 [PMID: 9826379 DOI: 10 .1111 /j.1574 -695 X.1998 .tb01224 .x]

    36 Dixon BREA, Hossain R, Patel RV, Algood HMS. Th17 Cells in Helicobacter pylori Infection: a Dichotomy of Help and Harm.Infect Immun2019 ; 87 [PMID: 31427446 DOI: 10 .1128 /IAI.00363 -19 ]

    37 Pinchuk IV, Morris KT, Nofchissey RA, Earley RB, Wu JY, Ma TY, Beswick EJ. Stromal cells induce Th17 during Helicobacter pylori infection and in the gastric tumor microenvironment.PLoS One2013 ; 8 : e53798 [PMID: 23365642 DOI: 10 .1371 /journal.pone.0053798 ]

    38 Freire de Melo F, Rocha AM, Rocha GA, Pedroso SH, de Assis Batista S, Fonseca de Castro LP, Carvalho SD,Bittencourt PF, de Oliveira CA, Corrêa-Oliveira R, Magalh?es Queiroz DM. A regulatory instead of an IL-17 T response predominates in Helicobacter pylori-associated gastritis in children.Microbes Infect2012 ; 14 : 341 -347 [PMID: 22155622 DOI: 10 .1016 /j.micinf.2011 .11 .008 ]

    39 Rocha GA, de Melo FF, Cabral MMDA, de Brito BB, da Silva FAF, Queiroz DMM. Interleukin-27 is abrogated in gastric cancer, but highly expressed in other Helicobacter pylori-associated gastroduodenal diseases.Helicobacter2020 ; 25 :e12667 [PMID: 31702083 DOI: 10 .1111 /hel.12667 ]

    40 Xiao W, Ma ZS. Influences of Helicobacter pylori infection on diversity, heterogeneity, and composition of human gastric microbiomes across stages of gastric cancer development.Helicobacter2022 ; 27 : e12899 [PMID: 35678078 DOI:10 .1111 /hel.12899 ]

    41 Liu C, Ng SK, Ding Y, Lin Y, Liu W, Wong SH, Sung JJ, Yu J. Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis.Oncogene2022 ; 41 : 3599 -3610 [PMID: 35680985 DOI:10 .1038 /s41388 -022 -02377 -9 ]

    42 Guo Y, Cao XS, Guo GY, Zhou MG, Yu B. Effect ofHelicobacter PyloriEradication on Human Gastric Microbiota: A Systematic Review and Meta-Analysis.Front Cell Infect Microbiol2022 ; 12 : 899248 [PMID: 35601105 DOI:10 .3389 /fcimb.2022 .899248 ]

    43 Chen CC, Liou JM, Lee YC, Hong TC, El-Omar EM, Wu MS. The interplay betweenHelicobacter pyloriand gastrointestinal microbiota.Gut Microbes2021 ; 13 : 1 -22 [PMID: 33938378 DOI: 10 .1080 /19490976 .2021 .1909459 ]

    44 Montecucco C, Rappuoli R. Living dangerously: how Helicobacter pylori survives in the human stomach.Nat Rev Mol Cell Biol2001 ; 2 : 457 -466 [PMID: 11389469 DOI: 10 .1038 /35073084 ]

    45 Backert S, Tegtmeyer N, Selbach M. The versatility of Helicobacter pylori CagA effector protein functions: The master key hypothesis.Helicobacter2010 ; 15 : 163 -176 [PMID: 20557357 DOI: 10 .1111 /j.1523 -5378 .2010 .00759 .x]

    46 Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors.Proc Natl Acad Sci U S A1996 ;93 : 14648 -14653 [PMID: 8962108 DOI: 10 .1073 /pnas.93 .25 .14648 ]

    47 Odenbreit S, Püls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion.Science2000 ; 287 : 1497 -1500 [PMID: 10688800 DOI:10 .1126 /science.287 .5457 .1497 ]

    48 Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR, Naumann M, Meyer TF. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus.Cell Microbiol2000 ; 2 :155 -164 [PMID: 11207572 DOI: 10 .1046 /j.1462 -5822 .2000 .00043 .x]

    49 Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein.Cancer Sci2011 ; 102 : 36 -43 [PMID: 20942897 DOI: 10 .1111 /j.1349 -7006 .2010 .01743 .x]

    50 Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis.Cell Mol Immunol2020 ; 17 : 50 -63 [PMID: 31804619 DOI:10 .1038 /s41423 -019 -0339 -5 ]

    51 Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, K?nig W, Backert S.Helicobacter exploits integrin for type IV secretion and kinase activation.Nature2007 ; 449 : 862 -866 [PMID: 17943123 DOI: 10 .1038 /nature06187 ]

    52 Jiménez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, Rohde M, Pirch T, Jung K, Retta SF, Terradot L, Fischer W, Haas R. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner.PLoS Pathog2009 ; 5 : e1000684 [PMID: 19997503 DOI: 10 .1371 /journal.ppat.1000684 ]

    53 Couturier MR, Tasca E, Montecucco C, Stein M. Interaction with CagF is required for translocation of CagA into the hostviathe Helicobacter pylori type IV secretion system.Infect Immun2006 ; 74 : 273 -281 [PMID: 16368981 DOI:10 .1128 /IAI.74 .1 .273 -281 .2006 ]

    54 Shrestha R, Murata-Kamiya N, Imai S, Yamamoto M, Tsukamoto T, Nomura S, Hatakeyama M. Mouse Gastric Epithelial Cells Resist CagA Delivery by theHelicobacter pyloriType IV Secretion System.Int J Mol Sci2022 ; 23 [PMID: 35269634 DOI: 10 .3390 /ijms23052492 ]

    55 Sharafutdinov I, Backert S, Tegtmeyer N. The Helicobacter pylori type IV secretion system upregulates epithelial cortactin expression by a CagA- and JNK-dependent pathway.Cell Microbiol2021 ; 23 : e13376 [PMID: 34197673 DOI:10 .1111 /cmi.13376 ]

    56 Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 2004 ; 4 : 688 -694 [PMID: 15343275 DOI: 10 .1038 /nrc1433 ]

    57 Argent RH, Hale JL, El-Omar EM, Atherton JC. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol 2008 ; 57 :1062 -1067 [PMID: 18719174 DOI: 10 .1099 /jmm.0 .2008 /001818 -0 ]

    58 Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains.J Clin Invest2012 ; 122 : 1553 -1566 [PMID: 22378042 DOI: 10 .1172 /JCI61143 ]

    59 Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covacci A. c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs.Mol Microbiol2002 ; 43 : 971 -980 [PMID: 11929545 DOI:10 .1046 /j.1365 -2958 .2002 .02781 .x]

    60 Tegtmeyer N, Backert S. Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein.Eur J Cell Biol2011 ; 90 : 880 -890 [PMID: 21247656 DOI: 10 .1016 /j.ejcb.2010 .11 .006 ]

    61 Poppe M, Feller SM, R?mer G, Wessler S. Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility.Oncogene2007 ; 26 : 3462 -3472 [PMID: 17160020 DOI: 10 .1038 /sj.onc.1210139 ]

    62 Hatakeyama M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis.Cell Host Microbe2014 ; 15 : 306 -316 [PMID: 24629337 DOI: 10 .1016 /j.chom.2014 .02 .008 ]

    63 Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach.Cancer Res1995 ; 55 : 2111 -2115 [PMID: 7743510 ]

    64 Parsonnet J, Friedman GD, Orentreich N, Vogelman H. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection.Gut1997 ; 40 : 297 -301 [PMID: 9135515 DOI: 10 .1136 /gut.40 .3 .297 ]

    65 Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils.Gastroenterology1998 ; 115 : 642 -648 [PMID: 9721161 DOI: 10 .1016 /s0016 -5085 (98 )70143 -x]

    66 Peek RM Jr, Wirth HP, Moss SF, Yang M, Abdalla AM, Tham KT, Zhang T, Tang LH, Modlin IM, Blaser MJ.Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils.Gastroenterology2000 ; 118 : 48 -59 [PMID: 10611153 DOI: 10 .1016 /s0016 -5085 (00 )70413 -6 ]

    67 Ogura K, Maeda S, Nakao M, Watanabe T, Tada M, Kyutoku T, Yoshida H, Shiratori Y, Omata M. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil.J Exp Med2000 ; 192 : 1601 -1610 [PMID:11104802 DOI: 10 .1084 /jem.192 .11 .1601 ]

    68 Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, Higashi H, Musashi M, Iwabuchi K, Suzuki M, Yamada G,Azuma T, Hatakeyama M. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse.Proc Natl Acad Sci U S A2008 ; 105 : 1003 -1008 [PMID: 18192401 DOI: 10 .1073 /pnas.0711183105 ]

    69 Neal JT, Peterson TS, Kent ML, Guillemin K. H. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model.Dis Model Mech2013 ; 6 : 802 -810 [PMID: 23471915 DOI:10 .1242 /dmm.011163 ]

    70 Amieva M, Peek RM Jr. Pathobiology of Helicobacter pylori-Induced Gastric Cancer. Gastroenterology 2016 ; 150 : 64 -78 [PMID: 26385073 DOI: 10 .1053 /j.gastro.2015 .09 .004 ]

    71 Yamaoka Y, El-Zimaity HM, Gutierrez O, Figura N, Kim JG, Kodama T, Kashima K, Graham DY. Relationship between the cagA 3 ' repeat region of Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 1999 ;117 : 342 -349 [PMID: 10419915 DOI: 10 .1053 /gast.1999 .0029900342 ]

    72 Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, Schiavon S, Guariso G, Ceroti M, Nitti D, Rugge M,Plebani M, Atherton JC. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms.Gastroenterology2008 ; 135 : 91 -99 [PMID: 18474244 DOI: 10 .1053 /j.gastro.2008 .03 .041 ]

    73 Sicinschi LA, Correa P, Peek RM, Camargo MC, Piazuelo MB, Romero-Gallo J, Hobbs SS, Krishna U, Delgado A, Mera R, Bravo LE, Schneider BG. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions.Clin Microbiol Infect2010 ; 16 : 369 -378 [PMID: 19456839 DOI:10 .1111 /j.1469 -0691 .2009 .02811 .x]

    74 Batista SA, Rocha GA, Rocha AM, Saraiva IE, Cabral MM, Oliveira RC, Queiroz DM. Higher number of Helicobacter pylori CagA EPIYA C phosphorylation sites increases the risk of gastric cancer, but not duodenal ulcer.BMC Microbiol2011 ; 11 : 61 [PMID: 21435255 DOI: 10 .1186 /1471 -2180 -11 -61 ]

    75 Queiroz DM, Silva CI, Goncalves MH, Braga-Neto MB, Fialho AB, Fialho AM, Rocha GA, Rocha AM, Batista SA,Guerrant RL, Lima AA, Braga LL. Higher frequency of cagA EPIYA-C phosphorylation sites in H. pylori strains from first-degree relatives of gastric cancer patients.BMC Gastroenterol2012 ; 12 : 107 [PMID: 22891666 DOI:10 .1186 /1471 -230 X-12 -107 ]

    76 Rocha GA, Rocha AM, Gomes AD, Faria CL Jr, Melo FF, Batista SA, Fernandes VC, Almeida NB, Teixeira KN, Brito KS, Queiroz DM. STAT3 polymorphism and Helicobacter pylori CagA strains with higher number of EPIYA-C segments independently increase the risk of gastric cancer.BMC Cancer2015 ; 15 : 528 [PMID: 26186918 DOI:10 .1186 /s12885 -015 -1533 -1 ]

    77 Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori.Proc Natl Acad Sci U S A1999 ; 96 : 14559 -14564 [PMID: 10588744 DOI: 10 .1073 /pnas.96 .25 .14559 ]

    78 Tsutsumi R, Takahashi A, Azuma T, Higashi H, Hatakeyama M. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. Mol Cell Biol 2006 ; 26 : 261 -276 [PMID: 16354697 DOI:10 .1128 /MCB.26 .1 .261 -276 .2006 ]

    79 Naito M, Yamazaki T, Tsutsumi R, Higashi H, Onoe K, Yamazaki S, Azuma T, Hatakeyama M. Influence of EPIYArepeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA.Gastroenterology2006 ; 130 : 1181 -1190 [PMID: 16618412 DOI: 10 .1053 /j.gastro.2005 .12 .038 ]

    80 Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M. Attenuation of Helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase.J Biol Chem2003 ; 278 : 3664 -3670 [PMID: 12446738 DOI: 10 .1074 /jbc.M208155200 ]

    81 Tegtmeyer N, Harrer A, Rottner K, Backert S. Helicobacter pylori CagA Induces Cortactin Y-470 Phosphorylation-Dependent Gastric Epithelial Cell ScatteringviaAbl, Vav2 and Rac1 Activation. Cancers (Basel) 2021 ; 13 [PMID:34439396 DOI: 10 .3390 /cancers13164241 ]

    82 Fujii Y, Murata-Kamiya N, Hatakeyama M. Helicobacter pylori CagA oncoprotein interacts with SHIP2 to increase its delivery into gastric epithelial cells.Cancer Sci2020 ; 111 : 1596 -1606 [PMID: 32198795 DOI: 10 .1111 /cas.14391 ]

    83 Stein M, Ruggiero P, Rappuoli R, Bagnoli F. Helicobacter pylori CagA: From Pathogenic Mechanisms to Its Use as an Anti-Cancer Vaccine.Front Immunol2013 ; 4 : 328 [PMID: 24133496 DOI: 10 .3389 /fimmu.2013 .00328 ]

    84 Suzuki M, Mimuro H, Suzuki T, Park M, Yamamoto T, Sasakawa C. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion.J Exp Med2005 ; 202 : 1235 -1247 [PMID:16275761 DOI: 10 .1084 /jem.20051027 ]

    85 Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Grb2 is a key mediator of helicobacter pylori CagA protein activities.Mol Cell2002 ; 10 : 745 -755 [PMID: 12419219 DOI: 10 .1016 /s1097 -2765 (02 )00681 -0 ]

    86 Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response.J Cell Biol2003 ; 161 : 249 -255 [PMID: 12719469 DOI:10 .1083 /jcb.200208039 ]

    87 Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H, Nagai S, Koyasu S, Gilman RH, Kersulyte D,Berg DE, Sasakawa C. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation.Cell Host Microbe2009 ; 5 : 23 -34 [PMID: 19154985 DOI: 10 .1016 /j.chom.2008 .11 .010 ]

    88 DiDonato JA, Mercurio F, Karin M. NF-κB and the link between inflammation and cancer. Immunol Rev 2012 ; 246 : 379 -400 [PMID: 22435567 DOI: 10 .1111 /j.1600 -065 X.2012 .01099 .x]

    89 Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer.Proc Jpn Acad Ser B Phys Biol Sci2017 ; 93 : 196 -219 [PMID: 28413197 DOI: 10 .2183 /pjab.93 .013 ]

    90 Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M. Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells.J Biol Chem2006 ; 281 : 32344 -32352 [PMID: 16954210 DOI: 10 .1074 /jbc.M606172200 ]

    91 Lu HS, Saito Y, Umeda M, Murata-Kamiya N, Zhang HM, Higashi H, Hatakeyama M. Structural and functional diversity in the PAR1 b/MARK2 -binding region of Helicobacter pylori CagA. Cancer Sci 2008 ; 99 : 2004 -2011 [PMID: 19016760 DOI: 10 .1111 /j.1349 -7006 .2008 .00950 .x]

    92 Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S,Hatakeyama M. Helicobacter pylori CagA targets PAR1 /MARK kinase to disrupt epithelial cell polarity. Nature 2007 ;447 : 330 -333 [PMID: 17507984 DOI: 10 .1038 /nature05765 ]

    93 Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability.J Biol Chem2009 ; 284 : 22166 -22172 [PMID: 19546211 DOI:10 .1074 /jbc.M109 .035766 ]

    94 Bakhoum SF, Cantley LC. The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment.Cell2018 ; 174 : 1347 -1360 [PMID: 30193109 DOI: 10 .1016 /j.cell.2018 .08 .027 ]

    95 Kurashima Y, Murata-Kamiya N, Kikuchi K, Higashi H, Azuma T, Kondo S, Hatakeyama M. Deregulation of betacatenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence.Int J Cancer2008 ; 122 : 823 -831 [PMID: 17960618 DOI: 10 .1002 /ijc.23190 ]

    96 Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G. E-cadherin/β-catenin complex and the epithelial barrier.J Biomed Biotechnol2011 ; 2011 : 567305 [PMID: 22007144 DOI: 10 .1155 /2011 /567305 ]

    97 Carneiro P, Fernandes MS, Figueiredo J, Caldeira J, Carvalho J, Pinheiro H, Leite M, Melo S, Oliveira P, Sim?es-Correia J, Oliveira MJ, Carneiro F, Figueiredo C, Paredes J, Oliveira C, Seruca R. E-cadherin dysfunction in gastric cancer--cellular consequences, clinical applications and open questions.FEBS Lett2012 ; 586 : 2981 -2989 [PMID: 22841718 DOI:10 .1016 /j.febslet.2012 .07 .045 ]

    98 Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, Hatakeyama M. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells.Oncogene2007 ; 26 : 4617 -4626 [PMID: 17237808 DOI: 10 .1038 /sj.onc.1210251 ]

    99 Zhang X, Li C, Chen D, He X, Zhao Y, Bao L, Wang Q, Zhou J, Xie Y. H. pylori CagA activates the NLRP3 inflammasome to promote gastric cancer cell migration and invasion.Inflamm Res2022 ; 71 : 141 -155 [PMID: 34854954 DOI: 10 .1007 /s00011 -021 -01522 -6 ]

    100 Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2 ) tumor suppressor pathway of the host.Proc Natl Acad Sci U S A2011 ; 108 : 9238 -9243 [PMID: 21562218 DOI: 10 .1073 /pnas.1106200108 ]

    101 Wei J, Noto JM, Zaika E, Romero-Gallo J, Piazuelo MB, Schneider B, El-Rifai W, Correa P, Peek RM, Zaika AI.Bacterial CagA protein induces degradation of p53 protein in a p14 ARF-dependent manner. Gut 2015 ; 64 : 1040 -1048 [PMID: 25080447 DOI: 10 .1136 /gutjnl-2014 -307295 ]

    102 Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr, Ito Y, Chen LF. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 2010 ; 29 : 5643 -5650 [PMID:20676134 DOI: 10 .1038 /onc.2010 .304 ]

    103 Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells.Proc Natl Acad Sci U S A2005 ; 102 : 16339 -16344 [PMID: 16258069 DOI:10 .1073 /pnas.0502598102 ]

    104 Ribatti D, Tamma R, Annese T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview.Transl Oncol2020 ; 13 : 100773 [PMID: 32334405 DOI: 10 .1016 /j.tranon.2020 .100773 ]

    105 Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits.Nat Rev Cancer2009 ; 9 : 265 -273 [PMID: 19262571 DOI: 10 .1038 /nrc2620 ]

    106 Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH, Tobias A, Kumari R, Atherton JC, Watson SA.Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7 . Gut 2010 ; 59 : 1037 -1045 [PMID: 20584780 DOI: 10 .1136 /gut.2009 .199794 ]

    107 Lee DG, Kim HS, Lee YS, Kim S, Cha SY, Ota I, Kim NH, Cha YH, Yang DH, Lee Y, Park GJ, Yook JI, Lee YC.Helicobacter pylori CagA promotes Snail-mediated epithelial-mesenchymal transition by reducing GSK-3 activity.Nat Commun2014 ; 5 : 4423 [PMID: 25055241 DOI: 10 .1038 /ncomms5423 ]

    108 Li N, Feng Y, Hu Y, He C, Xie C, Ouyang Y, Artim SC, Huang D, Zhu Y, Luo Z, Ge Z, Lu N. Helicobacter pylori CagA promotes epithelial mesenchymal transition in gastric carcinogenesisviatriggering oncogenic YAP pathway.J Exp Clin Cancer Res2018 ; 37 : 280 [PMID: 30466467 DOI: 10 .1186 /s13046 -018 -0962 -5 ]

    109 Kinoshita-Daitoku R, Kiga K, Miyakoshi M, Otsubo R, Ogura Y, Sanada T, Bo Z, Phuoc TV, Okano T, Iida T,Yokomori R, Kuroda E, Hirukawa S, Tanaka M, Sood A, Subsomwong P, Ashida H, Binh TT, Nguyen LT, Van KV, Ho DQD, Nakai K, Suzuki T, Yamaoka Y, Hayashi T, Mimuro H. A bacterial small RNA regulates the adaptation of Helicobacter pylori to the host environment.Nat Commun2021 ; 12 : 2085 [PMID: 33837194 DOI:10 .1038 /s41467 -021 -22317 -7 ]

    110 Skinner GR. Transformation of primary hamster embryo fibroblasts by type 2 simplex virus: evidence for a "hit and run"mechanism.Br J Exp Pathol1976 ; 57 : 361 -376 [PMID: 183803 ]

    111 Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T, Azuma T, Okazaki IM, Honjo T, Chiba T.Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium.Nat Med2007 ; 13 : 470 -476 [PMID: 17401375 DOI: 10 .1038 /nm1566 ]

    112 Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.Cell2000 ; 102 :553 -563 [PMID: 11007474 DOI: 10 .1016 /s0092 -8674 (00 )00078 -7 ]

    113 Chaturvedi R, Asim M, Romero-Gallo J, Barry DP, Hoge S, de Sablet T, Delgado AG, Wroblewski LE, Piazuelo MB,Yan F, Israel DA, Casero RA Jr, Correa P, Gobert AP, Polk DB, Peek RM Jr, Wilson KT. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA.Gastroenterology2011 ; 141 : 1696 -708 .e1 [PMID:21839041 DOI: 10 .1053 /j.gastro.2011 .07 .045 ]

    114 Hanada K, Uchida T, Tsukamoto Y, Watada M, Yamaguchi N, Yamamoto K, Shiota S, Moriyama M, Graham DY,Yamaoka Y. Helicobacter pylori infection introduces DNA double-strand breaks in host cells.Infect Immun2014 ; 82 :4182 -4189 [PMID: 25069978 DOI: 10 .1128 /IAI.02368 -14 ]

    115 Hartung ML, Gruber DC, Koch KN, Grüter L, Rehrauer H, Tegtmeyer N, Backert S, Müller A. H. pylori-Induced DNA Strand Breaks Are Introduced by Nucleotide Excision Repair Endonucleases and Promote NF-κB Target Gene Expression.Cell Rep2015 ; 13 : 70 -79 [PMID: 26411687 DOI: 10 .1016 /j.celrep.2015 .08 .074 ]

    116 Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, Takahashi-Kanemitsu A, Knight CT, Kunita A,Suzuki N, Del Valle AA, Tsuboi M, Hata M, Hayakawa Y, Ohnishi N, Ueda K, Fukayama M, Ushiku T, Ishikawa S,Hatakeyama M. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis.Cell Host Microbe2021 ; 29 : 941 -958 .e10 [PMID: 33989515 DOI: 10 .1016 /j.chom.2021 .04 .006 ]

    性插视频无遮挡在线免费观看| 久久精品国产亚洲网站| 国产亚洲av片在线观看秒播厂 | 精品无人区乱码1区二区| 亚洲天堂国产精品一区在线| 亚洲在久久综合| 亚洲精品日韩在线中文字幕 | 天堂av国产一区二区熟女人妻| 不卡视频在线观看欧美| 成人亚洲欧美一区二区av| 少妇熟女欧美另类| 国产一区二区亚洲精品在线观看| 亚洲av一区综合| 日本av手机在线免费观看| 日本欧美国产在线视频| 性欧美人与动物交配| 久久久久久久久久久丰满| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| av.在线天堂| 一区二区三区高清视频在线| 夜夜看夜夜爽夜夜摸| 色综合色国产| 免费无遮挡裸体视频| 你懂的网址亚洲精品在线观看 | 熟女电影av网| 黄片wwwwww| 日日撸夜夜添| 亚洲高清免费不卡视频| 午夜福利成人在线免费观看| 2022亚洲国产成人精品| 激情 狠狠 欧美| 亚洲人与动物交配视频| 国产激情偷乱视频一区二区| av天堂在线播放| 丰满人妻一区二区三区视频av| videossex国产| 内地一区二区视频在线| 九草在线视频观看| 日本色播在线视频| av卡一久久| 一卡2卡三卡四卡精品乱码亚洲| 国产精品99久久久久久久久| 男女下面进入的视频免费午夜| 嫩草影院新地址| 中出人妻视频一区二区| 日韩,欧美,国产一区二区三区 | 亚洲欧洲日产国产| 国产日本99.免费观看| 免费观看精品视频网站| 久久欧美精品欧美久久欧美| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 日韩成人伦理影院| eeuss影院久久| 一区二区三区四区激情视频 | av又黄又爽大尺度在线免费看 | 国产亚洲欧美98| 中国美白少妇内射xxxbb| 日日啪夜夜撸| 狠狠狠狠99中文字幕| 极品教师在线视频| 欧美区成人在线视频| 久久久久久久久大av| 99riav亚洲国产免费| 一本精品99久久精品77| 国产女主播在线喷水免费视频网站 | 国产色婷婷99| 国产精品久久久久久亚洲av鲁大| 免费观看人在逋| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 热99在线观看视频| 久久国内精品自在自线图片| 亚洲在线观看片| 国产极品精品免费视频能看的| 波多野结衣高清作品| av女优亚洲男人天堂| 可以在线观看毛片的网站| 久久热精品热| 超碰av人人做人人爽久久| 国产亚洲欧美98| 国产成人freesex在线| 久久精品久久久久久噜噜老黄 | 国产乱人偷精品视频| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 国产成人一区二区在线| 国内揄拍国产精品人妻在线| 好男人在线观看高清免费视频| 午夜精品一区二区三区免费看| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 99热全是精品| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 久久国内精品自在自线图片| 亚洲精华国产精华液的使用体验 | 亚洲国产精品国产精品| 色哟哟哟哟哟哟| 久久久久久国产a免费观看| 少妇熟女欧美另类| 波野结衣二区三区在线| 哪里可以看免费的av片| 中出人妻视频一区二区| 日本-黄色视频高清免费观看| 国产成人福利小说| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕日韩| 亚洲精品国产成人久久av| 99热这里只有是精品在线观看| 免费看光身美女| 国产高清激情床上av| 国产成人影院久久av| 国产色婷婷99| 久久国产乱子免费精品| 高清毛片免费观看视频网站| 18+在线观看网站| 97人妻精品一区二区三区麻豆| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 免费看日本二区| 亚洲经典国产精华液单| 亚洲18禁久久av| 日韩 亚洲 欧美在线| 亚洲无线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 午夜免费男女啪啪视频观看| 午夜a级毛片| 性色avwww在线观看| 啦啦啦韩国在线观看视频| av天堂在线播放| 欧美激情在线99| 国产 一区 欧美 日韩| 成人毛片60女人毛片免费| or卡值多少钱| 又爽又黄a免费视频| 国内精品美女久久久久久| or卡值多少钱| 国产综合懂色| 日产精品乱码卡一卡2卡三| 欧美激情在线99| 男女那种视频在线观看| 日本五十路高清| 亚洲aⅴ乱码一区二区在线播放| 一本精品99久久精品77| 亚洲自拍偷在线| 亚洲五月天丁香| 国产大屁股一区二区在线视频| 99久久久亚洲精品蜜臀av| 99久久中文字幕三级久久日本| 欧美激情在线99| 亚洲国产精品国产精品| 夫妻性生交免费视频一级片| 亚洲av成人av| 亚洲成a人片在线一区二区| 国产综合懂色| 亚洲,欧美,日韩| 国产乱人视频| av在线播放精品| 又黄又爽又刺激的免费视频.| 99久国产av精品国产电影| 午夜视频国产福利| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 在线观看一区二区三区| 午夜激情欧美在线| 国产亚洲精品久久久久久毛片| 国产精品三级大全| 女人被狂操c到高潮| 一级黄色大片毛片| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 国产亚洲精品久久久久久毛片| 亚洲精品国产成人久久av| 精品久久久久久成人av| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 真实男女啪啪啪动态图| 深夜a级毛片| 亚洲高清免费不卡视频| 国产av麻豆久久久久久久| av免费观看日本| 久久久久九九精品影院| 亚洲在久久综合| 久久久久久久久久黄片| 成人亚洲精品av一区二区| 不卡一级毛片| av卡一久久| 国产av麻豆久久久久久久| 国产一区二区在线观看日韩| 99热全是精品| 高清午夜精品一区二区三区 | 国产精品.久久久| 长腿黑丝高跟| 亚洲国产精品国产精品| 国产三级中文精品| 欧美xxxx黑人xx丫x性爽| 国产在线男女| 黑人高潮一二区| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 一区二区三区高清视频在线| 亚洲av免费在线观看| 99热全是精品| 亚洲国产高清在线一区二区三| 麻豆国产97在线/欧美| 欧美成人精品欧美一级黄| 亚洲一区二区三区色噜噜| 日本爱情动作片www.在线观看| 尤物成人国产欧美一区二区三区| 国产三级在线视频| 老司机影院成人| 熟妇人妻久久中文字幕3abv| 久久人人爽人人爽人人片va| 欧美另类亚洲清纯唯美| 国产午夜精品久久久久久一区二区三区| 国产成人a∨麻豆精品| 国产精品野战在线观看| 男女做爰动态图高潮gif福利片| 国产人妻一区二区三区在| 三级经典国产精品| 综合色丁香网| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 日本五十路高清| 99久久精品国产国产毛片| 国产精品99久久久久久久久| 综合色av麻豆| 久久久a久久爽久久v久久| 亚洲自拍偷在线| 99在线视频只有这里精品首页| 国产成人freesex在线| 亚洲精品粉嫩美女一区| 亚洲在线自拍视频| 亚洲av.av天堂| 成人二区视频| 久久久午夜欧美精品| 插阴视频在线观看视频| h日本视频在线播放| 日韩强制内射视频| 99久久精品一区二区三区| 久久久久久久久大av| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 夜夜爽天天搞| 亚洲最大成人中文| 国国产精品蜜臀av免费| 啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| 一级av片app| 精品人妻偷拍中文字幕| 99riav亚洲国产免费| 免费看光身美女| 久久久精品94久久精品| 青春草视频在线免费观看| 久久亚洲精品不卡| 人妻久久中文字幕网| 亚洲精品乱码久久久久久按摩| 国模一区二区三区四区视频| 黄色一级大片看看| 淫秽高清视频在线观看| 可以在线观看毛片的网站| 美女国产视频在线观看| 久久久国产成人精品二区| 日本免费一区二区三区高清不卡| 国产成人影院久久av| 亚洲最大成人中文| 激情 狠狠 欧美| 亚洲三级黄色毛片| 爱豆传媒免费全集在线观看| 中文在线观看免费www的网站| 成人三级黄色视频| 日韩一区二区三区影片| 日本黄大片高清| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添av毛片| 97在线视频观看| 日本一本二区三区精品| 26uuu在线亚洲综合色| 秋霞在线观看毛片| 大型黄色视频在线免费观看| 国产真实乱freesex| 九九在线视频观看精品| 日韩欧美精品免费久久| 岛国毛片在线播放| 日日摸夜夜添夜夜爱| 亚洲性久久影院| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 亚洲欧洲国产日韩| 欧美极品一区二区三区四区| 91av网一区二区| 51国产日韩欧美| 国产精品一区二区性色av| 好男人视频免费观看在线| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 一边亲一边摸免费视频| 99精品在免费线老司机午夜| 国产成人福利小说| 可以在线观看毛片的网站| 深夜精品福利| 99热这里只有是精品50| 免费电影在线观看免费观看| 中文字幕人妻熟人妻熟丝袜美| 男人舔女人下体高潮全视频| 亚洲人成网站在线播| 久久99蜜桃精品久久| 欧美xxxx性猛交bbbb| 麻豆久久精品国产亚洲av| 18禁裸乳无遮挡免费网站照片| 精品少妇黑人巨大在线播放 | 日本撒尿小便嘘嘘汇集6| 午夜福利高清视频| 国产精品一区www在线观看| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 国产黄片美女视频| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 精品免费久久久久久久清纯| 亚洲最大成人中文| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| av视频在线观看入口| 欧美人与善性xxx| 成人漫画全彩无遮挡| 精品久久久久久久人妻蜜臀av| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 97人妻精品一区二区三区麻豆| 麻豆精品久久久久久蜜桃| 国产乱人视频| 韩国av在线不卡| 又粗又爽又猛毛片免费看| 久久久久网色| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 91久久精品电影网| 三级毛片av免费| 日韩av不卡免费在线播放| 人妻少妇偷人精品九色| 久久精品人妻少妇| 成人性生交大片免费视频hd| 日韩精品青青久久久久久| 狂野欧美白嫩少妇大欣赏| ponron亚洲| 亚洲国产精品成人久久小说 | 一级av片app| 国产精品无大码| 免费看av在线观看网站| 18禁黄网站禁片免费观看直播| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 免费看a级黄色片| 国产日本99.免费观看| 国产av在哪里看| 亚洲成a人片在线一区二区| 久久99精品国语久久久| 男人狂女人下面高潮的视频| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 18禁黄网站禁片免费观看直播| 极品教师在线视频| 婷婷六月久久综合丁香| 十八禁国产超污无遮挡网站| 变态另类丝袜制服| 欧美变态另类bdsm刘玥| 一级毛片久久久久久久久女| 岛国毛片在线播放| 日韩欧美精品免费久久| av在线蜜桃| 国产精品久久久久久精品电影小说 | av天堂在线播放| 夜夜夜夜夜久久久久| 欧美日本亚洲视频在线播放| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 高清在线视频一区二区三区 | 中国国产av一级| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 亚洲av二区三区四区| 久久午夜福利片| av福利片在线观看| 亚洲av免费高清在线观看| 1000部很黄的大片| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| 老司机福利观看| av免费观看日本| 蜜桃久久精品国产亚洲av| 免费av毛片视频| 国产又黄又爽又无遮挡在线| 国产高清视频在线观看网站| 久久久久久久久中文| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 69av精品久久久久久| 一级黄色大片毛片| 国产片特级美女逼逼视频| 又粗又爽又猛毛片免费看| 日本撒尿小便嘘嘘汇集6| 美女大奶头视频| 内地一区二区视频在线| 深夜精品福利| 18+在线观看网站| 在线观看美女被高潮喷水网站| 内射极品少妇av片p| 免费人成视频x8x8入口观看| 久久精品91蜜桃| 亚洲国产精品成人久久小说 | 亚洲图色成人| 精品午夜福利在线看| 国产欧美日韩精品一区二区| 美女xxoo啪啪120秒动态图| 久久久久国产网址| 能在线免费看毛片的网站| 国内精品美女久久久久久| 51国产日韩欧美| 村上凉子中文字幕在线| 直男gayav资源| 爱豆传媒免费全集在线观看| 午夜免费男女啪啪视频观看| 女人十人毛片免费观看3o分钟| 在线观看66精品国产| 久久久色成人| 国产精品福利在线免费观看| 九九爱精品视频在线观看| 99热只有精品国产| 少妇的逼水好多| 免费看美女性在线毛片视频| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 午夜福利高清视频| 91精品国产九色| 99久久精品热视频| 一级毛片aaaaaa免费看小| 一级二级三级毛片免费看| 黄色一级大片看看| 亚洲最大成人手机在线| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 日日撸夜夜添| av专区在线播放| 欧美日韩乱码在线| 变态另类成人亚洲欧美熟女| 熟女人妻精品中文字幕| 久久国产乱子免费精品| 国产 一区 欧美 日韩| 久久久久久久午夜电影| 亚洲国产精品合色在线| 国内精品宾馆在线| 欧美日本亚洲视频在线播放| 我要搜黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜福利片| 一区二区三区高清视频在线| 国产一级毛片在线| 在线免费观看的www视频| 赤兔流量卡办理| а√天堂www在线а√下载| 小说图片视频综合网站| 久久精品夜色国产| 男人舔女人下体高潮全视频| 日韩视频在线欧美| 日本免费a在线| 婷婷精品国产亚洲av| 欧美色视频一区免费| 村上凉子中文字幕在线| 国产综合懂色| 黄色视频,在线免费观看| 国产精品一区二区三区四区免费观看| 亚洲av免费高清在线观看| 久久精品91蜜桃| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影小说 | 天堂av国产一区二区熟女人妻| 搡老妇女老女人老熟妇| 天堂中文最新版在线下载 | 边亲边吃奶的免费视频| 久久精品国产99精品国产亚洲性色| 亚洲av男天堂| 亚洲成av人片在线播放无| 性插视频无遮挡在线免费观看| 99久久久亚洲精品蜜臀av| 成人二区视频| 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱 | av天堂在线播放| 日本在线视频免费播放| 久久久精品94久久精品| 亚洲经典国产精华液单| 狂野欧美白嫩少妇大欣赏| avwww免费| 联通29元200g的流量卡| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 免费看日本二区| 亚洲自偷自拍三级| 国产探花极品一区二区| 99久久精品国产国产毛片| 久久人人精品亚洲av| 老女人水多毛片| 青春草亚洲视频在线观看| 少妇丰满av| 午夜精品一区二区三区免费看| 欧美日韩乱码在线| 不卡一级毛片| 女的被弄到高潮叫床怎么办| 少妇的逼好多水| 国产成人freesex在线| 男人和女人高潮做爰伦理| 久久国产乱子免费精品| 日韩大尺度精品在线看网址| а√天堂www在线а√下载| av在线蜜桃| 国产亚洲欧美98| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.色视频.com| 久久久欧美国产精品| 午夜福利在线观看吧| 神马国产精品三级电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲内射少妇av| 伦理电影大哥的女人| 国产美女午夜福利| 菩萨蛮人人尽说江南好唐韦庄 | 国产探花极品一区二区| 99在线视频只有这里精品首页| eeuss影院久久| 欧美最黄视频在线播放免费| 卡戴珊不雅视频在线播放| 一区二区三区高清视频在线| 免费黄网站久久成人精品| 国产成人福利小说| 婷婷精品国产亚洲av| 久久人人爽人人片av| 国产精品一及| 搞女人的毛片| 国产真实乱freesex| 热99在线观看视频| 亚洲欧美成人精品一区二区| 插阴视频在线观看视频| 成人三级黄色视频| 可以在线观看毛片的网站| 性插视频无遮挡在线免费观看| 波多野结衣高清无吗| 又爽又黄a免费视频| 欧美一区二区亚洲| 色哟哟哟哟哟哟| 国产91av在线免费观看| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 免费看日本二区| 有码 亚洲区| 免费av不卡在线播放| 亚洲成a人片在线一区二区| 国产一区亚洲一区在线观看| 看免费成人av毛片| 最近的中文字幕免费完整| 高清日韩中文字幕在线| 国产探花极品一区二区| 可以在线观看的亚洲视频| 国产精品久久久久久精品电影| 欧美日韩国产亚洲二区| 日韩亚洲欧美综合| 婷婷色综合大香蕉| 精品久久久久久久人妻蜜臀av| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 最近2019中文字幕mv第一页| 国产真实伦视频高清在线观看| 人妻系列 视频| 久久久久久久久中文| 我要搜黄色片| 免费观看在线日韩| 夜夜夜夜夜久久久久| 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 一级毛片电影观看 | 国产v大片淫在线免费观看| 精品一区二区免费观看| 免费人成在线观看视频色| 欧美性猛交╳xxx乱大交人| 网址你懂的国产日韩在线| 毛片女人毛片| 日本免费一区二区三区高清不卡| 国产视频内射| 精品国产三级普通话版| 欧美最黄视频在线播放免费| 一个人免费在线观看电影| 夜夜看夜夜爽夜夜摸| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 亚洲成av人片在线播放无| 一边摸一边抽搐一进一小说| 久久99精品国语久久久| 一本精品99久久精品77|