• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electromagnetic Transmission Characteristics of Y-Shaped and Y-Ring-Shaped Frequency Selective Fabrics

    2022-12-10 05:18:52GUANFuwang關(guān)福旺LIDanYANGZhuli楊竹麗QIUYiping邱夷平

    GUAN Fuwang(關(guān)福旺), LI Dan (李 丹), YANG Zhuli(楊竹麗), QIU Yiping(邱夷平), 3

    1 College of Textiles and Apparel, Quanzhou Normal University, Quanzhou 362000, China

    2 Key Laboratory of Clothing Materials of Universities in Fujian(Quanzhou Normal University), Quanzhou 362000, China

    3 College of Textiles, Donghua University, Shanghai 201620, China

    Abstract: Asymmetrical Y-shaped and Y-ring-shaped frequency selective fabrics (FSFs) were proposed in this paper. They were prepared by computer engraving technology and tested in the anechoic chamber by using the free-space method. The test results of representative samples show that the resonance frequencies and the resonance peak or valley values in two polarization modes are not completely identical but the differentials are small, indicating that the influences of polarization modes are not significant. The transmission coefficient curves of Y-shaped and Y-ring-shaped FSFs with various size parameters are obviously different. For instance, as the unit size D increases by 4.0 mm, the resonance frequencies of patch FSFs decrease by 1.92 GHz and the resonance valleys increase by 12.32 dB. Different size parameters have dissimilar effects on the transmission characteristics and the corresponding influence laws should be analyzed concretely. The work could provide reference for the structural design and characteristics analysis of other FSFs.

    Key words: electromagnetic transmission; frequency selective fabric (FSF); computer engraving technology; transmission coefficient; anechoic chamber

    Introduction

    Frequency selective surfaces (FSSs) are periodic arrays composed of metal patches or apertures within a metallic screen, respectively showing the band-stop or band-pass characteristics[1]. FSSs have been systematically studied over the last decades and they can be widely used in various products, such as radar radome, special shielding clothing, and intelligent wearable products[2-4]. At present, the research work mainly focuses on the development of new structures (including complex patterns, multi-layer FSSs as well as three-dimensional structures[5-7]), the design of new characteristics (such as broadband absorption, narrow-frequency filtering, and multi-resonance characteristics[8-10]), and the structure and characteristics analysis of curved, tunable and active FSSs[11-13]. The existing products are mostly rigid plates or soft membrane materials, and the processing methods are mainly concentrated in laser engraving, chemical coating, vacuum coating,etc. Porous, flexible and lightweight textiles and processing methods are rarely involved[14-15].

    Based on the research foundation of FSSs, theoretical feasibility, preparation convenience and potential application advantages of frequency selective fabrics (FSFs) have been analyzed and some research progress has been made in recent years[16-19]. Our research group has successively designed and prepared FSFs with various conductive patterns such as cross-shaped, Jerusalem-shaped, and square-ring patterns, and the frequency selective characteristics have been systematically tested and analyzed[19-24]. However, it is worth noting that the above conductive units are centrosymmetric, namely they would overlap after 180° rotation. The electromagnetic transmission characteristics of such units could be predicted to a certain extent. For instance, the polarization mode would exert little influences due to the ideal symmetry. Therefore, other FSFs with less symmetrical conductive units should be separately investigated.

    According to Refs. [25-27], Y-shaped and Y-ring-shaped FSFs are very popular structures. Many research works have been carried out, and some basic conclusions have been made, which could help to design FSFs. However, due to the introduction of flexible and porous base fabrics, the electromagnetic transmission characteristics of FSFs would be certainly affected and should be systematically studied. In this paper, Y-shaped and Y-ring-shaped FSFs are designed by the electromagnetic simulation methods[28]. Then the FSFs are prepared by computer engraving technology, and the electromagnetic transmission characteristics are tested by using the free-space method. By comparatively analyzing the test results of FSFs with two complementary structures and different size parameters in two polarization modes, the design validity is verified and the effects of various parameters on frequency selective characteristics are explored. The research work could provide technical support for the preparation of FSFs and have reference value for exploring the characteristics of FSFs.

    1 Experiments

    1.1 Sample design

    In this paper, Y-shaped and Y-ring-shaped FSFs were proposed. Based on the previous research work, the empirical formula and the electromagnetic simulation method were used for optimization design[24]. The schematics of Y-shaped and Y-ring-shaped FSFs are shown in Figs. 1(a), 1(b), 2(a), and 2(b). The corresponding unit size parameters are respectively shown in Figs. 1(c) and 2(c). By increasing or decreasing the values of unit size parameters, seven groups of Y-shaped FSFs and three groups of Y-ring-shaped FSFs were designed for comparison. Each group includes patch and aperture FSFs. The unit size parameters of Y-shaped and Y-ring-shaped FSFs are respectively listed in Tables 1 and 2.

    Table 1 Unit size parameters of Y-shaped FSFs

    It is noteworthy that each sample in Tables 1 and 2 contains two FSFs specimens. For instance, 1A# and 1B# respectively refer to the patch and the aperture FSFs. Therefore, there are twenty samples in total.

    Table 2 Unit size parameters of Y-ring-shaped FSFs

    1.2 Sample preparation and testing process

    The FSF samples were prepared by computer engraving technology and the preparation process was described detailly in Ref.[20]. The cotton warp backed weave fabric with a thickness of 0.8 mm was adopted for the dielectric layer, and warp and weft yarn densities were 110 end/(10 cm) and 280 pick/(10 cm), respectively. The aluminum foil with a thickness of 0.08 mm and square resistance of 3.62×10-4Ω was selected to form the conductive FSS layer. The GRAPHTEC CE6000-60 engraving machine(Japan) was driven by Wentai engraving software to periodically cut the fabric-based composites, and the operating parameters, such as tool pressures and speeds, were repeatedly adjusted to prepare the ideal sample with relatively smooth conductive patterns without obvious damage.

    The electromagnetic transmission characteristics were tested in the anechoic chamber by using the free-space method. The calibration process must be completed prior to the formal experiment to ensure that the center lines of the two antennas and the testing board are overlapped. The test was respectively carried out with and without the sample in the testing board, and the differential value between the two testing results is the authentic data of the sample. Specific testing principle and process were introduced in detail in Ref.[19]. By adjusting the position of the horn antenna and the absorbing wall, the electromagnetic transmission characteristics of samples in different polarization modes could be tested. Figures 3(a) and 3(b) show the preparation and test of Y-shaped FSF samples.

    2 Results and Discussion

    2.1 Electromagnetic transmission characteristics of Y-shaped FSFs

    2.1.1PolarizationmodeofY-shapedFSFs

    To study the influence of the polarization mode, the prepared FSFs were respectively tested in transverse electrical (TE) and transverse magnetic (TM) modes, which mean that the electric vector is respectively perpendicular and parallel to the incident plane. Samples 1A# and 1B# are taken as examples to analyze the testing results, and the transmission coefficient curves in two polarization modes are shown in Fig. 4.

    Fig. 1 Schematics of Y-shaped FSFs and unit size parameters: (a) patch FSF; (b) aperture FSF; (c) unit size parameters

    Fig. 2 Schematics of Y-ring-shaped FSFs and unit size parameters: (a) patch FSF; (b) aperture FSF; (c) unit size parameters

    Fig. 3 Preparation and test of Y-shaped FSF samples: (a) sample preparation; (b) sample test

    Fig. 4 Transmission coefficient curves of samples 1A# and 1B# in two polarization modes

    In Fig. 4, the transmission coefficient curves of samples 1A# and 1B# have obvious resonance valleys or peaks, showing band-stop or band-pass characteristics, which verifies the validity of design process. For the patch FSF, the resonance frequencies are respectively 16.56 GHz and 16.31 GHz in two polarization modes, with the valleys reaching -20.59 dB and -19.41 dB, and -10.00 dB bandwidths are 0.89 GHz and 0.77 GHz, with the difference of 0.12 GHz. For the aperture FSF, the resonance frequencies are respectively 16.56 GHz and 16.68 GHz in two polarization modes, with the peak values reaching -0.93 dB and -0.74 dB, and -3.00 dB bandwidths are 1.91 GHz and 2.17 GHz, with the difference of 0.26 GHz. The transmission coefficient curves in TE and TM modes have a high coincide degree, but there still are slight differences, which can be ascribed to the non-axisymmetry of the conductive units. The above results prove that the polarization mode exerts a certain influence but it is small. The testing results in the TE mode are chosen for subsequent analysis.

    Fig. 5 Transmission coefficient curves of Y-shaped FSFs with different a values: (a) patch FSFs; (b) aperture FSFs

    Fig. 6 Transmission coefficient curves of Y-shaped FSFs with different b values: (a) patch FSFs; (b) aperture FSFs

    Fig. 7 Transmission coefficient curves of Y-shaped FSFs with different D values: (a) patch FSFs; (b) aperture FSFs

    2.1.2UnitsizeofY-shapedFSFs

    The electromagnetic transmission characteristics of Y-shaped FSFs with different unit size parameters were tested and deeply analyzed. By comparing the characteristics differences of different FSFs, the influences of parametersa,b, andDcould be explored. The transmission coefficient curves of Y-shaped FSFs with differenta,b, andDvalues are separately shown in Figs. 5-7.

    Figure 5 shows that with the increase ofa, the transmission coefficient curves move to a higher frequency region. The valley values of patch FSFs decrease gradually, while the peak values of aperture FSFs increase progressively. Figure 6 shows that asbincreases, the transmission coefficient curves move to a lower frequency region, different from the variation trend in Fig. 5. Figure 7 shows that the change ofDwould exert remarkable influences on the transmission coefficients and the influence rules are identical for patch and aperture FSFs. AsDincreases, the transmission coefficient curves move to a lower frequency region, but the frequency selective characteristics become less ideal. To quantitatively analyze the influences of unit size parameters, characteristic indices including the resonance frequency and the resonance peak or valley, are extracted and shown in Fig. 8.

    Fig. 8 Effects of unit size parameters on characteristic indices: (a) resonance frequency of patch FSFs; (b) resonance frequency of aperture FSFs; (c) resonance valley of patch FSFs; (d) resonance peak of aperture FSFs

    Figures 8(a) and 8(b) show that the effects of unit size parameters on the resonance frequency are similar for patch and aperture FSFs. On the whole, the unit size parameterahas a positive effect. As the value ofaincreases, the resonance frequency also increases. But the influences of unit size parametersbandDare opposite. According to the results, the variation ofbhas the most significant influence and the resonance frequency decreases by about 5 GHz as the value ofbincreases by 2.0 mm. Figures 8(c) and 8(d) show that for patch and aperture FSFs, the influences of unit size parameters on the resonance valley or peak values are different. However, their frequency selective performance is becoming worse, which can be attributed to the variation of equivalent capacitance and inductance values caused by the change ofD. For patch FSFs,aandbhave negative effects and the influence ofDis positive. It is noteworthy in Fig. 8(c) that the effect ofbis the most remarkable. The influences of size parameters of aperture FSFs are contrary to those of patch FSFs and it seems that the variation trends in Fig. 8(d) are obviously nonlinear, different from the curves in Figs. 8(a) and 8(b).

    2.2 Electromagnetic transmission characteristics of Y-ring-shaped FSFs

    2.2.1PolarizationmodeofY-ring-shapedFSFs

    Based on the study of Y-shaped FSFs, Y-ring-shaped FSFs with different unit size parameters were tested systematically and the electromagnetic transmission characteristics were analyzed deeply. Samples 8A# and 8B# are selected to analyze the influence of polarization modes, and the transmission coefficient curves in TE and TM modes are shown in Fig. 9.

    Fig. 9 Transmission coefficient curves of samples 8A# and 8B# in two polarization modes

    Fig. 10 Transmission coefficient curves of Y-ring-shaped FSFs with different unit size parameters: (a) patch FSFs; (b) aperture FSFs

    Fig. 11 Comparison of transmission coefficient curves of Y-shaped and Y-ring-shaped FSFs: (a) patch FSFs; (b) aperture FSFs

    Figure 9 shows that patch and aperture FSFs respectively exhibit ideal band-stop and band-pass characteristics, proving the validity of the design process.

    On the whole, the transmission coefficient curves in two polarization modes are similar but not completely identical. For the patch FSF tested in TE and TM modes, the resonance frequencies respectively appear at 13.33 GHz and 13.92 GHz, with transmission coefficients of resonance valleys reaching -32.53 dB and -38.02 dB, and -10.00 dB bandwidths are separately 2.38 GHz and 2.64 GHz. For the aperture FSF, the resonance frequencies are 13.50 GHz and 12.90 GHz, with transmission coefficients of resonance peaks reaching -0.37 dB and -0.19 dB, and the -0.50 dB bandwidths are separately 1.36 GHz and 1.87 GHz.

    2.2.2UnitsizeofY-ring-shapedFSFs

    By keeping the outer diametersa2andb2of Y-ring constant and changing the inner diametersa1andb1of Y-ring, six Y-ring-shaped FSFs were designed and prepared. By analyzing their electromagnetic transmission characteristics, the influence of unit sizes could be explored. The transmission coefficient curves of Y-ring-shaped FSFs with different unit size parameters are shown in Figs. 10(a) and 10(b).

    Figure 10 shows that transmission coefficient curves of patch FSFs as well as aperture FSFs move to lower frequency regions as the inner diameter of Y-ring increases. Overall, the shape of transmission coefficient curves and the resonance frequencies have no obvious change. To quantitatively analyze the influence of the unit size parameters, the resonance frequencies are extracted and listed in Table 3.

    As shown in Table 3, when the internal diameter increases by 1.0 mm, the resonance frequency decreases by 1.87 GHz for patch FSFs, while the variation degree of aperture FSFs is a little larger, decreasing by 2.38 GHz. Different from the Y-shaped FSFs, the unit size parameters only affect the resonance frequency, and the data in Table 3 could provide design basis for determining the unit size parameters.

    Table 3 Resonance frequencies of Y-ring-shaped FSFs with different unit size parameters

    2.3 Characteristics comparison of Y-shaped and Y-ring-shaped FSFs

    To further comparatively analyze the differences of electromagnetic characteristics between Y-shaped and Y-ring-shaped FSFs, samples 1A#, 1B#, 10A#, and 10B# are selected for analysis and the diagram comparisons are shown in Figs. 11(a) and 11(b). Likewise, the characteristics, including the resonance frequency and the resonance peak or valley, are extracted and listed in Table 4.

    Table 4 Comparison of characteristics of Y-shaped and Y-ring-shaped FSFs

    Figures 11(a) and 11(b) show that the electromagnetic transmission characteristics of Y-shaped and Y-ring-shaped FSFs are significantly different. For patch FSFs, the transmission coefficient curves move down and to the left as Y-shaped FSFs vary to Y-ring-shaped FSFs, meaning that both of the resonance frequency and the resonance valley are changing. For aperture FSFs, resonance frequencies and bandwidths present remarkable variance. In Table 4, the differentials of the resonance frequency and the resonance peak or valley are listed, showing that the resonance frequency offset is about 5 GHz for two kinds of FSFs and the resonance valley offset is approximately 13 dB for the patch FSFs.

    The above variations can be attributed to the discrepancy of unit features. Although the unit size parameters of two kinds of FSFs are similar, equivalent inductance and capacitance values are obviously different, as the annular region of Y-ring-shaped FSFs could be equivalent to the extra inductor or capacitor. The above comparative analysis could offer design ideas for other ring-shaped FSFs.

    3 Conclusions

    Y-shaped and Y-ring-shaped FSFs were designed, prepared and tested. Through in-depth comparative analysis, the following conclusions are obtained.

    (1) For Y-shaped and Y-ring-shaped FSFs, the polarization mode exerts certain influences on the electromagnetic transmission characteristics, but the effects are minor.

    (2) For Y-shaped FSFs, the changes of unit size parametersa,b, andDcan significantly affect the electromagnetic transmission characteristics, but the influences are various. On the whole, the variation ofbexerts the greatest influence on the resonance frequency as well as the resonance valley or peak.

    (3) For Y-ring-shaped FSFs, the variation of Y-ring inner diametersa1andb1has an appreciable impact on transmission coefficient curves, but it mainly affects the resonance frequency, different from Y-shaped FSFs.

    亚洲精华国产精华精| 久久精品国产亚洲av天美| 一进一出抽搐动态| 色哟哟·www| 国产精品久久久久久精品电影| 黄色一级大片看看| 久久久久久久久中文| 丁香六月欧美| 中文字幕人妻熟人妻熟丝袜美| 少妇人妻精品综合一区二区 | 91狼人影院| 欧美一级a爱片免费观看看| 亚洲欧美日韩高清专用| 国产精品久久视频播放| 床上黄色一级片| 少妇人妻一区二区三区视频| 天天一区二区日本电影三级| 久久久久久久久中文| 看免费av毛片| 国产视频内射| 嫩草影院入口| 亚洲欧美日韩无卡精品| 国产精品一区二区性色av| 亚洲经典国产精华液单 | 色综合站精品国产| 97碰自拍视频| aaaaa片日本免费| 国产精品久久久久久精品电影| 一区二区三区激情视频| 欧美区成人在线视频| 国产欧美日韩一区二区精品| 欧美激情在线99| 久久久久久久久久黄片| 永久网站在线| 99精品在免费线老司机午夜| 尤物成人国产欧美一区二区三区| 午夜精品在线福利| 色综合亚洲欧美另类图片| 久久精品久久久久久噜噜老黄 | 国产欧美日韩精品一区二区| 国产 一区 欧美 日韩| 亚洲精品乱码久久久v下载方式| 别揉我奶头~嗯~啊~动态视频| 日本免费a在线| 亚洲无线在线观看| 免费av毛片视频| 国产一区二区在线观看日韩| 国产三级在线视频| 婷婷精品国产亚洲av在线| 久久精品91蜜桃| 欧美精品啪啪一区二区三区| 黄色配什么色好看| 日日摸夜夜添夜夜添小说| 欧美一级a爱片免费观看看| 简卡轻食公司| 亚洲欧美日韩高清专用| 精品欧美国产一区二区三| 久9热在线精品视频| 五月玫瑰六月丁香| 天堂动漫精品| 国产国拍精品亚洲av在线观看| 男女下面进入的视频免费午夜| 日韩欧美在线乱码| 中文字幕av在线有码专区| 久久久久久久久中文| 亚洲欧美日韩高清在线视频| 久久久色成人| 久久九九热精品免费| 国产精品久久视频播放| 亚洲成av人片免费观看| 久久性视频一级片| a在线观看视频网站| 国产黄a三级三级三级人| 国产 一区 欧美 日韩| 美女高潮的动态| 色视频www国产| 老司机午夜福利在线观看视频| 一进一出抽搐动态| 国产日本99.免费观看| 亚洲欧美精品综合久久99| x7x7x7水蜜桃| 成年免费大片在线观看| 国内精品久久久久久久电影| 成人鲁丝片一二三区免费| 国产亚洲欧美98| 欧美极品一区二区三区四区| 人妻久久中文字幕网| 亚洲国产色片| 国产精品嫩草影院av在线观看 | 又黄又爽又免费观看的视频| 757午夜福利合集在线观看| netflix在线观看网站| 熟妇人妻久久中文字幕3abv| 亚洲人成网站在线播放欧美日韩| 两性午夜刺激爽爽歪歪视频在线观看| 性欧美人与动物交配| 我的女老师完整版在线观看| 国产毛片a区久久久久| 三级国产精品欧美在线观看| www日本黄色视频网| 国产黄a三级三级三级人| 色精品久久人妻99蜜桃| 日韩亚洲欧美综合| 中文字幕免费在线视频6| 国产色婷婷99| 免费无遮挡裸体视频| 国产乱人视频| 色综合亚洲欧美另类图片| 观看美女的网站| 好男人在线观看高清免费视频| 一区二区三区免费毛片| 性插视频无遮挡在线免费观看| 亚洲欧美清纯卡通| 男人狂女人下面高潮的视频| 国产探花在线观看一区二区| 日韩精品中文字幕看吧| 日韩欧美国产一区二区入口| 91麻豆精品激情在线观看国产| 深夜精品福利| 制服丝袜大香蕉在线| 国产麻豆成人av免费视频| 一本精品99久久精品77| 久久久久免费精品人妻一区二区| 日本熟妇午夜| 嫩草影视91久久| 国产精品免费一区二区三区在线| 99在线人妻在线中文字幕| 国产精品精品国产色婷婷| 给我免费播放毛片高清在线观看| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 国内精品一区二区在线观看| av在线观看视频网站免费| 亚洲国产欧洲综合997久久,| 国产精品久久视频播放| 欧美中文日本在线观看视频| 丁香六月欧美| 永久网站在线| 亚洲激情在线av| 亚洲七黄色美女视频| 国产视频内射| 国产在线男女| 全区人妻精品视频| 精华霜和精华液先用哪个| 他把我摸到了高潮在线观看| 搡老妇女老女人老熟妇| 成人性生交大片免费视频hd| 亚洲第一电影网av| 国产精品乱码一区二三区的特点| 91久久精品电影网| 人妻夜夜爽99麻豆av| 精品久久久久久久人妻蜜臀av| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 99在线人妻在线中文字幕| 天天躁日日操中文字幕| 免费看日本二区| 看黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 久久久久久久久大av| 丝袜美腿在线中文| 婷婷丁香在线五月| 亚洲无线观看免费| 成人国产一区最新在线观看| 99在线人妻在线中文字幕| 欧美成狂野欧美在线观看| www.熟女人妻精品国产| 国产白丝娇喘喷水9色精品| 亚洲自拍偷在线| 听说在线观看完整版免费高清| 99riav亚洲国产免费| 亚洲美女搞黄在线观看 | 日韩欧美三级三区| 香蕉av资源在线| 99国产精品一区二区蜜桃av| 蜜桃亚洲精品一区二区三区| 国产精品野战在线观看| 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 夜夜爽天天搞| 成熟少妇高潮喷水视频| 内射极品少妇av片p| av天堂在线播放| 亚洲av日韩精品久久久久久密| 国产一区二区三区在线臀色熟女| 亚洲av.av天堂| 亚洲精品影视一区二区三区av| 99久久精品国产亚洲精品| 国产精品野战在线观看| 网址你懂的国产日韩在线| 少妇被粗大猛烈的视频| 日韩欧美免费精品| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 久久精品人妻少妇| 女生性感内裤真人,穿戴方法视频| 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 搡老熟女国产l中国老女人| 亚洲成人久久性| 精品久久久久久久久av| 欧美zozozo另类| 亚洲五月婷婷丁香| 亚洲第一欧美日韩一区二区三区| 国产麻豆成人av免费视频| 小蜜桃在线观看免费完整版高清| 熟女电影av网| 91麻豆精品激情在线观看国产| 欧美zozozo另类| 亚洲人成网站在线播| 少妇高潮的动态图| 婷婷色综合大香蕉| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 久久久久国产精品人妻aⅴ院| 少妇熟女aⅴ在线视频| 国产不卡一卡二| а√天堂www在线а√下载| 一级黄片播放器| netflix在线观看网站| 2021天堂中文幕一二区在线观| 久久精品久久久久久噜噜老黄 | 97人妻精品一区二区三区麻豆| 女生性感内裤真人,穿戴方法视频| 桃红色精品国产亚洲av| 中文在线观看免费www的网站| 亚洲色图av天堂| 日韩欧美一区二区三区在线观看| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| av专区在线播放| 欧美+亚洲+日韩+国产| 一个人免费在线观看的高清视频| 给我免费播放毛片高清在线观看| 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女| 好男人电影高清在线观看| 国产欧美日韩精品亚洲av| 一级作爱视频免费观看| 看片在线看免费视频| 嫩草影视91久久| 免费大片18禁| 国产精品久久久久久久久免 | 欧美最新免费一区二区三区 | 一区福利在线观看| 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 小说图片视频综合网站| 国产成年人精品一区二区| 亚洲最大成人手机在线| 久久国产精品人妻蜜桃| 国产一级毛片七仙女欲春2| 有码 亚洲区| 美女 人体艺术 gogo| 国产精品不卡视频一区二区 | 国产成人aa在线观看| 在线国产一区二区在线| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单 | 老司机午夜福利在线观看视频| 日韩中字成人| 国内毛片毛片毛片毛片毛片| 三级毛片av免费| 午夜免费男女啪啪视频观看 | 级片在线观看| 一区二区三区高清视频在线| 欧美性猛交黑人性爽| 99在线视频只有这里精品首页| 真实男女啪啪啪动态图| 女同久久另类99精品国产91| 亚洲自偷自拍三级| 一级黄片播放器| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 国产成人影院久久av| 欧美一级a爱片免费观看看| 免费无遮挡裸体视频| 亚洲av免费在线观看| 免费人成视频x8x8入口观看| 国产色爽女视频免费观看| 嫩草影视91久久| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 亚洲国产精品合色在线| 亚洲综合色惰| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 午夜福利在线在线| 天美传媒精品一区二区| 久久久久精品国产欧美久久久| 日韩亚洲欧美综合| 国产大屁股一区二区在线视频| 老熟妇乱子伦视频在线观看| 亚洲片人在线观看| 午夜福利在线观看吧| 精品久久久久久久久久久久久| 久久香蕉精品热| 欧美黑人欧美精品刺激| 在现免费观看毛片| 99久久99久久久精品蜜桃| avwww免费| 亚洲最大成人手机在线| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 免费人成视频x8x8入口观看| 怎么达到女性高潮| 国产三级中文精品| 日日干狠狠操夜夜爽| 亚洲人成网站高清观看| 亚洲精品一区av在线观看| 一级毛片久久久久久久久女| 国产精品伦人一区二区| 波野结衣二区三区在线| 五月玫瑰六月丁香| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| or卡值多少钱| 别揉我奶头 嗯啊视频| 日本黄大片高清| 午夜亚洲福利在线播放| 国产在线精品亚洲第一网站| 国产精品影院久久| 91久久精品国产一区二区成人| 老司机午夜福利在线观看视频| 国产精品1区2区在线观看.| 一二三四社区在线视频社区8| 亚洲成人久久爱视频| 国产精品一区二区三区四区免费观看 | 性色av乱码一区二区三区2| 国产亚洲欧美98| 亚洲av二区三区四区| 国产黄a三级三级三级人| 91麻豆av在线| 欧美日韩黄片免| 偷拍熟女少妇极品色| 国产大屁股一区二区在线视频| 日本免费一区二区三区高清不卡| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 成人高潮视频无遮挡免费网站| 九九久久精品国产亚洲av麻豆| 久久午夜亚洲精品久久| 久久精品国产亚洲av涩爱 | 亚洲av免费高清在线观看| 欧美激情国产日韩精品一区| 欧美黄色片欧美黄色片| xxxwww97欧美| 亚洲国产精品合色在线| 久久人人爽人人爽人人片va | 亚洲无线观看免费| 97超视频在线观看视频| aaaaa片日本免费| 欧美区成人在线视频| 欧美一区二区亚洲| 99热这里只有是精品50| 美女免费视频网站| 一本一本综合久久| 国产精品国产高清国产av| 久久久久久国产a免费观看| 校园春色视频在线观看| 91午夜精品亚洲一区二区三区 | 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 999久久久精品免费观看国产| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| ponron亚洲| 天天躁日日操中文字幕| netflix在线观看网站| 国产精品,欧美在线| 夜夜夜夜夜久久久久| 亚洲一区二区三区色噜噜| 午夜亚洲福利在线播放| 美女被艹到高潮喷水动态| 黄色女人牲交| 亚洲欧美激情综合另类| 999久久久精品免费观看国产| 欧美性猛交╳xxx乱大交人| 又黄又爽又刺激的免费视频.| 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 欧美潮喷喷水| eeuss影院久久| 精品熟女少妇八av免费久了| 一个人看的www免费观看视频| 少妇的逼好多水| 精品99又大又爽又粗少妇毛片 | 日韩人妻高清精品专区| 精品久久久久久久末码| 搡老熟女国产l中国老女人| 男女床上黄色一级片免费看| 国产69精品久久久久777片| 国产极品精品免费视频能看的| 日韩欧美免费精品| 免费人成在线观看视频色| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| .国产精品久久| 男女之事视频高清在线观看| 日韩大尺度精品在线看网址| 婷婷色综合大香蕉| 国内精品久久久久久久电影| 色哟哟哟哟哟哟| 在线观看午夜福利视频| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 身体一侧抽搐| 天天躁日日操中文字幕| 在线播放国产精品三级| 美女大奶头视频| 非洲黑人性xxxx精品又粗又长| 日韩国内少妇激情av| 琪琪午夜伦伦电影理论片6080| 亚洲欧美精品综合久久99| 午夜免费成人在线视频| 久久久国产成人免费| 黄色配什么色好看| 舔av片在线| 亚洲人成网站高清观看| 九九久久精品国产亚洲av麻豆| 97超级碰碰碰精品色视频在线观看| 熟女电影av网| 中亚洲国语对白在线视频| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产伦在线观看视频一区| 丰满乱子伦码专区| 99热这里只有是精品50| 搡女人真爽免费视频火全软件 | 国产精品98久久久久久宅男小说| 欧美精品国产亚洲| 国产精品永久免费网站| 日本五十路高清| 一级黄色大片毛片| 淫秽高清视频在线观看| 夜夜躁狠狠躁天天躁| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 97碰自拍视频| 久久性视频一级片| 国产精品亚洲一级av第二区| 一个人观看的视频www高清免费观看| 高潮久久久久久久久久久不卡| 欧美又色又爽又黄视频| 日本一二三区视频观看| 黄色日韩在线| 免费观看人在逋| 国产亚洲精品综合一区在线观看| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 日本 av在线| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 三级毛片av免费| 成人毛片a级毛片在线播放| 最后的刺客免费高清国语| 亚洲av二区三区四区| 久久6这里有精品| 亚洲,欧美,日韩| 欧美一区二区亚洲| 欧美日本视频| a级毛片免费高清观看在线播放| www.熟女人妻精品国产| 一a级毛片在线观看| 亚洲欧美精品综合久久99| 精品久久久久久,| 欧美黄色淫秽网站| 亚洲av成人不卡在线观看播放网| 97热精品久久久久久| 国产熟女xx| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 国产高潮美女av| 午夜精品久久久久久毛片777| 波野结衣二区三区在线| 天天躁日日操中文字幕| 国产黄片美女视频| 性插视频无遮挡在线免费观看| 欧美+日韩+精品| 极品教师在线免费播放| 91在线观看av| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看 | 三级男女做爰猛烈吃奶摸视频| 亚洲av第一区精品v没综合| 特级一级黄色大片| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 成人特级av手机在线观看| 美女被艹到高潮喷水动态| 麻豆国产97在线/欧美| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 日本黄色片子视频| 人人妻人人澡欧美一区二区| 桃色一区二区三区在线观看| 午夜福利18| 亚洲第一欧美日韩一区二区三区| 午夜福利在线在线| 国产亚洲欧美98| 成人三级黄色视频| 色av中文字幕| 一级a爱片免费观看的视频| 久久久国产成人精品二区| 丁香欧美五月| 老司机午夜福利在线观看视频| 午夜免费成人在线视频| 夜夜夜夜夜久久久久| 久久国产乱子免费精品| 亚洲av电影不卡..在线观看| 午夜福利欧美成人| 又爽又黄无遮挡网站| 精品久久久久久久久亚洲 | 黄色丝袜av网址大全| 国产一区二区在线观看日韩| 精品午夜福利视频在线观看一区| 亚洲欧美日韩无卡精品| 婷婷丁香在线五月| 久久亚洲精品不卡| 国产在视频线在精品| 精品久久久久久久久亚洲 | 亚洲在线自拍视频| 久久精品影院6| 免费人成在线观看视频色| 欧美日韩中文字幕国产精品一区二区三区| 真实男女啪啪啪动态图| 欧美精品国产亚洲| 波多野结衣巨乳人妻| 深爱激情五月婷婷| 特级一级黄色大片| 亚洲国产精品成人综合色| 在线a可以看的网站| 给我免费播放毛片高清在线观看| 夜夜看夜夜爽夜夜摸| 青草久久国产| 欧美区成人在线视频| 一本一本综合久久| 嫩草影视91久久| 美女高潮的动态| 少妇丰满av| 国产av一区在线观看免费| av欧美777| av黄色大香蕉| 亚洲熟妇中文字幕五十中出| 别揉我奶头 嗯啊视频| 欧美黄色片欧美黄色片| 可以在线观看毛片的网站| 国产一区二区在线av高清观看| 99热6这里只有精品| 国产av在哪里看| 精品午夜福利视频在线观看一区| 亚洲精品成人久久久久久| 日本在线视频免费播放| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 亚洲片人在线观看| 国产在视频线在精品| 亚洲自偷自拍三级| 99热精品在线国产| av在线天堂中文字幕| 中文字幕久久专区| 丰满乱子伦码专区| 91狼人影院| 欧美成人a在线观看| 全区人妻精品视频| 午夜精品久久久久久毛片777| 三级国产精品欧美在线观看| 最近在线观看免费完整版| 国产三级中文精品| 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 欧美中文日本在线观看视频| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 国产欧美日韩精品亚洲av| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 日日夜夜操网爽| 亚洲性夜色夜夜综合| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 午夜福利高清视频| 51国产日韩欧美| 91av网一区二区| 国产又黄又爽又无遮挡在线| 日本精品一区二区三区蜜桃| 赤兔流量卡办理| 丝袜美腿在线中文| 亚洲 欧美 日韩 在线 免费| 熟女人妻精品中文字幕| 午夜福利18| 别揉我奶头 嗯啊视频| 丰满的人妻完整版| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 亚洲,欧美,日韩| 亚洲欧美日韩卡通动漫| av福利片在线观看| av女优亚洲男人天堂| 午夜福利在线在线| 国产精品伦人一区二区| 黄片小视频在线播放| 窝窝影院91人妻| 亚洲七黄色美女视频| 亚洲成人免费电影在线观看|