• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crop phenotyping studies with application to crop monitoring

    2022-12-06 04:00:32XiuliangJinWannengYangJohnDoonanClementAtzerger
    The Crop Journal 2022年5期

    Xiuliang Jin ,Wanneng Yang ,John H.Doonan ,Clement Atzerger

    a Institute of Crop Sciences,Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology,Ministry of Agriculture,Beijing 100081,China

    b National Key Laboratory of Crop Genetic Improvement,National Center of Plant Gene Research,Huazhong Agricultural University,Wuhan 430070,Hubei,China

    c The National Plant Phenomics Centre,Institute of Biological,Rural and Environmental Sciences (IBERS),Aberystwyth University,Aberystwyth,Ceredigion SY23 3FL,UK

    d Institute of Geomatics,University of Natural Resources and Life Sciences (BOKU),Peter Jordan Stra?e 82,1190 Vienna,Austria

    1.Introduction

    Crop yield must urgently be sustainably increased to accommodate a rising global population and anticipated climate change in the coming decades,in the face of plant stresses and limited resources[1].Conventional crop breeding is limited by phenotypic selection and breeding efficiency.Crop phenotyping is defined as the application of protocols and methodologies to obtain a specific trait phenotype,ranging from whole plant or canopy level to cellular level,associated with plant biochemistry,function,or structure[2,3].Genomics-assisted breeding advances food security,but the crop breeding community needs more effective ways to study the relationship between phenotype and genotype.Although high-throughput genotyping is available at low cost,crop phenotyping and related data management and analysis remain relatively expensive.High-throughput crop phenotyping methods have received increasing attention for their potential for using genomic resources for the genetic improvement of crop yield.They provide powerful tools for measuring physiological and agronomic trait phenotypes,quantifying and monitoring large genetically defined populations in field experiments and breeding nurseries on multiple temporal and spatial scales [4-8].To do this,they apply advanced robotics,high-tech sensors,data processing systems,and images.Several new bioinformatic platforms include multi-dimensional,large-scale trait phenotype datasets and genotypic and omics information.Gene functions and environmental responses can now be dissected with unprecedented temporal and spatial resolution using combined genotyping,phenotyping,and multi-omics data.This ability will help to overcome the limitation of incremental improvements in crop yield.The aim of this special issue is to investigate the latest innovative research in remote sensing technologies,sensor development,technological platforms,and applications for estimating crop trait phenotype based on multisource data streams and imagery.The special issue titled‘‘Crop phenotyping studies with application to crop monitoring”is launched.Here we summarize these papers according to the classification of topics and add our perspectives.

    2.Overview of contributions of this special issue

    Contributions included in this special issue describe the estimation of crop phenotypes by sensors installed on various phenotyping platforms.They highlight the use of spectral analysis,image segmentation,and machine learning algorithms.

    2.1.Sensors and platforms

    High-throughput crop phenotyping technologies described in this special issue employ remote sensing phenotyping platforms including ground-based [9-20],aerial [21-23],indoor [24-27],and satellite-based [28-34] platforms.Twelve papers report results from near-ground platforms and three from aerial,four from indoor,and seven from satellite phenotyping platforms.For ground-based platforms,handheld-based field measuring system[9,11-18,20] and fixed scanning systems [10,19] were used to estimate traits for several crop types.For aerial phenotyping platforms,the recent development of unmanned aerial vehicles(UAVs)has made data acquisition more efficient with unprecedented temporal,spectral and spatial detail[2].Indoor phenotyping platforms have been used to acquire organ-scale traits associated with rice panicles[24],seed germination[25],pod length[26],and vascular bundles[27],because illumination can be well controlled.Because satellite phenotyping platforms have the advantage of regional scale,they have been successfully used for crop classification[12,28,30,32,34],yield estimation[29,31],and crop coefficient estimation [33].

    In addition to phenotyping platforms,optical sensors play an important role in advanced phenotyping methods.Light,cheap sensors can be installed in these platforms to increase their data acquisition efficiency and quality.Light detection and ranging(LiDAR) sensors [10,19],hyperspectral sensors [9,11,12,14,15,17,20],thermal sensors [22],and RGB and multi-spectral imagery cameras [13,16,18,22-34] have been used for studying crop phenotyping.RGB images for segmentation,detec-tion,or classification and multispectral and thermal images and hyperspectral data for physical and biochemical crop traits are fully explored using optical radiative transfer models.LiDAR sensors loaded on UAV or ground platforms may be used to acquire three-dimensional crop structure information in future breeding programs.

    2.2.Crop phenotyping traits

    In this special issue,crop traits are divided into two types:biochemical traits and morphological/structural traits.Biochemical traits include canopy nitrogen and carbon content [9,20],leaf pigmentation [11],stripe rust disease [14],chlorophyll [15],wheat powdery mildew [17],yield [19,29,31],aboveground dry biomass[20,22,23],phenological stages [21],seed germination [25],and crop coefficient [33].These traits are estimated by multi/hyperspectral images or sensors,thermal images,or RGB images from ground,satellite,and UAV platforms.Li et al.[19] used multispectral data and LiDAR to identify the best machine learning model and growth stage for estimating yield in wheat.Li et al.[22] evaluated the performance of different data (acquired by RGB,multispectral,and thermal cameras) from a UAV for estimating biomass in sorghum.Morphological and structural traits included plant height [13],rice panicles [24],seed germination [25],pod length [26] and vascular bundle [27].These morphological and structural traits were measured from three-dimensional point clouds from LiDAR sensors or RGB images.Wu et al.[24]integrated supervoxel clustering and a deep convolutional neural network to model 3D rice panicles.Du et al.[27] developed a deep learningintegrated phenotyping pipeline to detect vascular bundles with computed tomography images.The special issue also presents studies on rice and wheat spike detection [16,18] and crop classification [30,32,34] under various ecological environmental conditions.

    2.3.Data processing and analysis approaches

    In recent years,in the era of big data,data processing and analysis approaches are critical for increasing the efficiency and quality of information extracted from crop phenotyping systems.Such approaches have been used to estimate crop phenotypes.They are classified into two types,corresponding to the abovementioned two kinds of crop traits.Approaches used for estimating biochemical traits include partial least-squares regression [9,25],lookup table [11],difference-in-differences algorithm [14],random forest[15,17,19,23],extreme learning machine[17],artificial neural network [17,19],support vector machine [17,19,22,23],hierarchical linear model [20],asymmetric Gaussian function [21],quadratic and cubic polynomials [29],data assimilation [31],and linear discriminant analysis models[25].These approaches are shown to be efficient for estimating various targeted crop traits.Optical radiative transfer models combined with an optimizing algorithm was applied by Sun et al.[11],who used radiative transfer models to invert leaf chlorophyll and carotenoid content.In contrast to biochemical traits,morphological and structural traits including plant height[13],rice panicles[24],pod length[26]and vascular bundle[27] are usually estimated using image detection and segmentation approaches.Qiu et al.[13] used RGB-D camera to capture depth information and color images for measuring maize plant height using a segmentation algorithm.Li et al.[26]used a feature pyramid network,principal component analysis and instance segmentation to measure pod length and width in soybean.These detection and segmentation approaches are used to reduce the influence of background information,and then are applied for accurate estimation of crop morphological and structural traits.

    3.Summary and perspectives

    Conventional crop phenotyping costs much time,effort,and resources.High-throughput crop phenotyping methods are complementary to such field work and allow high-throughput crop phenotyping using UAVs and advanced sensors (thermal infrared,multi/hyperspectral,LiDAR,and others).The integration of UAV with advanced sensors to acquire abundant spatial,temporal,and spectral information has been applied to crop phenotyping by many scientists[2].The unique advantages of UAV remote sensing not only increase the efficiency of data acquisition,but facilitate data standardization,reducing human subjective evaluation[35].Machine learning algorithms and image processing and analysis methods are rapidly advancing,including data preprocessing,deep learning algorithms,and platform or system development and testing.All these features contribute to estimating targeted crop traits using multi-source data [5,8].

    These 26 papers presented in this special issue highlight the topic of estimation of crop traits using remote sensing technologies,sensors,technological platforms and machine learning algorithms.First,the special issue describes the importance of novel high-throughput crop phenotyping methods for improving crop breeding.Second,it investigates the application of sensors and platforms for high-throughput phenotyping of diverse crops in diverse growth environments.Finally,it provides guidelines to effectively combining data processing and analysis methods for improving crop phenotyping.

    The special issue does not discuss the rapid development of ground phenotyping platforms (phenopoles,phenomobiles,and stationary platforms) and their applications for crop phenotyping traits under biotic and abiotic stresses in the field experiments.Phenotypic studies of crop roots and micro-scale crop phenotypes are not featured.This issue does not focus on genome-wide association study approaches or quantitative trait locus identification based on crop genomic and phenotype datasets.Scientists should pay more attention to these study directions in the future.

    High-throughput crop phenotyping methods need to be further improved to yield more accurate estimates of crop traits.The combination of aerial and ground platforms and advanced sensors,such as thermal,hyperspectral and multispectral cameras,have resulted in a pressing need for advanced image processing algorithms.Deep-learning algorithms have shown advantages for crop phenotype detection and segmentation[6,7].The estimation accuracy of crop phenotyping traits is reduced because of crop growth environmental conditions that degrade the stability of optical sensors.Field crop phenotyping will benefit from refined and more stable optical sensors.Crop phenotyping platforms and sensors are expensive in most crop breeding studies,but the rapid development of mobile and miniaturized technologies will offer powerful and affordable micro-sensors for monitoring crop phenotypes via multi-temporal high-resolution images.Smaller and lighter sensors have been combined with phenotyping platforms to conduct the study of crop phenotyping[4,5,8].Various optical sensors have been used to estimate crop traits under multiple stress conditions.Integrating the data and image outputs of sensors to increase the accuracy of crop phenotype estimation remains a challenge for crop phenotyping research [2,3].Satellites acquiring relatively high-resolution temporal-spatial images offer the opportunity to estimate crop traits on a large regional scale according to international image processing standard protocols.Because images from ground-and aerial-based crop phenotyping systems cannot contain internationally uniform data analysis standards,the sharing of image datasets will be prohibited [2].

    Multidisciplinary collaboration teams will build a more efficient crop phenotype data management and analysis system.This system will include a user-friendly data management and analysis interface that is combined with data or image preprocessing and analysis algorithms.Field weather and soil information should be input into the system to maintain the estimation stability and accuracy of phenotyping.In future,high-throughput crop phenotyping will increase the efficiency of crop trait identification and further find new crop traits in crop breeding studies with more advanced sensors,image processing algorithms,and platforms.Despite great progress in the field of crop phenotyping,there are still several opportunities for follow-up investigations about the field of crop phenotyping.In particular,we suggest more studies on the application and development of ground platforms and the creation of algorithms for multi-source data fusion.Deep learning algorithms linking functional structure models and optical radiative transfer models will better leverage the value of big data in the field of crop phenotyping.With fast development of image processing algorithms and sensor technology,we believe that crop phenotyping will receive more attention by the image processing,remote sensing,and crop breeding communities.Finally,highthroughput crop phenotyping methods will accelerate follow-up studies of precision agriculture.

    大话2 男鬼变身卡| av在线app专区| 亚洲久久久久久中文字幕| 国产色爽女视频免费观看| 成人午夜精彩视频在线观看| 内射极品少妇av片p| 亚洲色图av天堂| 麻豆久久精品国产亚洲av| 国产亚洲5aaaaa淫片| 一级毛片 在线播放| 色哟哟·www| 91在线精品国自产拍蜜月| 一级毛片我不卡| 日本爱情动作片www.在线观看| 69av精品久久久久久| 18禁裸乳无遮挡免费网站照片| 久久久久国产精品人妻一区二区| 欧美极品一区二区三区四区| 涩涩av久久男人的天堂| 人人妻人人看人人澡| 欧美日韩综合久久久久久| 亚洲av国产av综合av卡| 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 下体分泌物呈黄色| 成人鲁丝片一二三区免费| 欧美高清性xxxxhd video| 欧美成人精品欧美一级黄| 国产v大片淫在线免费观看| 黄色欧美视频在线观看| 国产成人freesex在线| 中文天堂在线官网| 夜夜看夜夜爽夜夜摸| 亚洲人成网站在线观看播放| 久久久久久久久久成人| 老司机影院毛片| 一区二区三区精品91| 高清日韩中文字幕在线| 亚洲国产欧美在线一区| 麻豆国产97在线/欧美| 国产成人免费无遮挡视频| 在现免费观看毛片| 国产精品一二三区在线看| 久久久久久久大尺度免费视频| 久热久热在线精品观看| 免费看日本二区| 精品亚洲乱码少妇综合久久| 男女那种视频在线观看| 成人美女网站在线观看视频| 午夜精品一区二区三区免费看| 联通29元200g的流量卡| 国产高清三级在线| 另类亚洲欧美激情| 亚洲,欧美,日韩| 久久女婷五月综合色啪小说 | 国产精品久久久久久久电影| 亚洲av.av天堂| 97热精品久久久久久| 国产在线一区二区三区精| 精品酒店卫生间| 精华霜和精华液先用哪个| 久久精品久久久久久噜噜老黄| 波多野结衣巨乳人妻| 国产成人午夜福利电影在线观看| 高清视频免费观看一区二区| 亚洲电影在线观看av| 亚洲av.av天堂| 插阴视频在线观看视频| 人妻 亚洲 视频| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单| 国产精品av视频在线免费观看| 色播亚洲综合网| 内地一区二区视频在线| 日本黄大片高清| 97超视频在线观看视频| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频 | 极品少妇高潮喷水抽搐| 天堂中文最新版在线下载 | 亚洲图色成人| 日本黄大片高清| 国产av不卡久久| 日韩 亚洲 欧美在线| 80岁老熟妇乱子伦牲交| 日韩中字成人| 毛片一级片免费看久久久久| 真实男女啪啪啪动态图| 国产永久视频网站| 免费观看性生交大片5| 日本黄色片子视频| 一个人看的www免费观看视频| www.色视频.com| 一级毛片我不卡| 在线观看一区二区三区激情| 国产白丝娇喘喷水9色精品| 日本色播在线视频| 国产在视频线精品| 午夜免费男女啪啪视频观看| 黄片wwwwww| 国产成人a∨麻豆精品| 91精品国产九色| 大香蕉久久网| 啦啦啦在线观看免费高清www| 亚洲欧美一区二区三区国产| 日韩,欧美,国产一区二区三区| 少妇人妻 视频| 18禁裸乳无遮挡免费网站照片| 国产免费又黄又爽又色| 国产精品国产三级专区第一集| 超碰av人人做人人爽久久| 晚上一个人看的免费电影| 高清视频免费观看一区二区| 亚洲一级一片aⅴ在线观看| 一本一本综合久久| 午夜视频国产福利| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 日韩欧美一区视频在线观看 | 免费观看av网站的网址| 久久影院123| 干丝袜人妻中文字幕| 麻豆成人av视频| 亚洲第一区二区三区不卡| 国产成人一区二区在线| 日本黄色片子视频| 又爽又黄a免费视频| 日日摸夜夜添夜夜添av毛片| 视频区图区小说| 午夜老司机福利剧场| 午夜精品一区二区三区免费看| 男人舔奶头视频| 黄色怎么调成土黄色| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 神马国产精品三级电影在线观看| 黄片wwwwww| 伦理电影大哥的女人| 三级国产精品欧美在线观看| 亚洲精品色激情综合| 亚洲欧美清纯卡通| 美女视频免费永久观看网站| 中国美白少妇内射xxxbb| 亚洲精品视频女| 欧美三级亚洲精品| 欧美另类一区| 最近2019中文字幕mv第一页| 国产伦精品一区二区三区四那| 久久女婷五月综合色啪小说 | 777米奇影视久久| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 亚洲,欧美,日韩| 在线看a的网站| 精品久久久久久久久亚洲| 久久久久久久久久人人人人人人| 一级毛片黄色毛片免费观看视频| 亚洲av中文av极速乱| 免费av毛片视频| 久久6这里有精品| 国产免费一区二区三区四区乱码| 成年免费大片在线观看| 色5月婷婷丁香| eeuss影院久久| 国产av国产精品国产| 国产精品久久久久久精品电影小说 | eeuss影院久久| 亚洲av一区综合| 日本一二三区视频观看| 久久精品国产亚洲网站| 国产在线一区二区三区精| 九草在线视频观看| 国产精品无大码| 亚洲综合色惰| 国国产精品蜜臀av免费| 精品久久久久久久末码| 亚洲国产成人一精品久久久| 99re6热这里在线精品视频| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| a级一级毛片免费在线观看| 精品人妻视频免费看| 国模一区二区三区四区视频| 内射极品少妇av片p| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美区成人在线视频| 欧美少妇被猛烈插入视频| 18禁动态无遮挡网站| av.在线天堂| 18禁在线播放成人免费| 伊人久久国产一区二区| 国产 一区精品| 国产在视频线精品| 日韩成人伦理影院| 国产一区亚洲一区在线观看| 18禁动态无遮挡网站| 我的老师免费观看完整版| 一级二级三级毛片免费看| 97在线人人人人妻| 亚洲精品日韩av片在线观看| 国产精品99久久99久久久不卡 | 国产淫片久久久久久久久| 日韩国内少妇激情av| 免费电影在线观看免费观看| 美女视频免费永久观看网站| 麻豆久久精品国产亚洲av| av国产精品久久久久影院| 欧美一级a爱片免费观看看| 欧美日韩在线观看h| 日韩免费高清中文字幕av| 亚洲精华国产精华液的使用体验| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 高清午夜精品一区二区三区| 精品少妇久久久久久888优播| 欧美一级a爱片免费观看看| 日本色播在线视频| 久久人人爽人人片av| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 菩萨蛮人人尽说江南好唐韦庄| 国产成人aa在线观看| 女人久久www免费人成看片| 各种免费的搞黄视频| 亚洲国产最新在线播放| 国产在线一区二区三区精| av.在线天堂| 成人国产av品久久久| 久久久久精品性色| 熟女电影av网| 日韩av免费高清视频| 老女人水多毛片| 久久热精品热| 男男h啪啪无遮挡| 午夜免费观看性视频| 精品一区二区免费观看| 一区二区三区乱码不卡18| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久com| a级毛色黄片| 日本黄色片子视频| 在线a可以看的网站| 777米奇影视久久| 欧美成人a在线观看| 啦啦啦啦在线视频资源| 国产成人一区二区在线| 亚洲国产精品专区欧美| 日本欧美国产在线视频| 欧美高清成人免费视频www| 欧美bdsm另类| 国产一区二区亚洲精品在线观看| 成年人午夜在线观看视频| 免费av观看视频| 午夜视频国产福利| av天堂中文字幕网| 久久99蜜桃精品久久| 日本av手机在线免费观看| 九九爱精品视频在线观看| 久久久久久久久久人人人人人人| 国产精品久久久久久精品电影| 久久韩国三级中文字幕| 老女人水多毛片| 免费观看a级毛片全部| 亚洲欧美一区二区三区国产| 两个人的视频大全免费| 亚洲va在线va天堂va国产| 内射极品少妇av片p| 国产一区二区亚洲精品在线观看| 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 一级av片app| 久久热精品热| 国产 精品1| 色网站视频免费| 色视频在线一区二区三区| 精品久久久久久久人妻蜜臀av| 七月丁香在线播放| av黄色大香蕉| 少妇人妻 视频| 日本黄色片子视频| 免费看a级黄色片| 亚洲精品日本国产第一区| av天堂中文字幕网| 久久午夜福利片| 亚洲最大成人中文| 久久人人爽av亚洲精品天堂 | 国产探花极品一区二区| 激情五月婷婷亚洲| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 午夜日本视频在线| 久久久久国产精品人妻一区二区| 日韩人妻高清精品专区| 午夜爱爱视频在线播放| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| 成人免费观看视频高清| 亚洲,一卡二卡三卡| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| 欧美一级a爱片免费观看看| 国产成人91sexporn| 国产精品蜜桃在线观看| 欧美日韩视频精品一区| 欧美3d第一页| 中文欧美无线码| 久久久久国产精品人妻一区二区| 我的老师免费观看完整版| 最近手机中文字幕大全| 色网站视频免费| 午夜福利视频精品| 亚洲色图av天堂| 69人妻影院| 97超碰精品成人国产| 国产精品三级大全| 亚洲av中文字字幕乱码综合| 欧美少妇被猛烈插入视频| 大又大粗又爽又黄少妇毛片口| www.色视频.com| 亚洲久久久久久中文字幕| 日本色播在线视频| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 18禁动态无遮挡网站| 精品人妻视频免费看| 建设人人有责人人尽责人人享有的 | 亚洲,欧美,日韩| 久久久精品欧美日韩精品| 80岁老熟妇乱子伦牲交| 日韩强制内射视频| 欧美老熟妇乱子伦牲交| 国产亚洲最大av| 日韩一区二区视频免费看| 国产欧美另类精品又又久久亚洲欧美| 亚洲天堂国产精品一区在线| 菩萨蛮人人尽说江南好唐韦庄| 精品99又大又爽又粗少妇毛片| av国产免费在线观看| 欧美3d第一页| 日韩中字成人| 午夜精品国产一区二区电影 | 久久久久国产精品人妻一区二区| 亚洲av国产av综合av卡| 国产精品一二三区在线看| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 22中文网久久字幕| 狂野欧美激情性bbbbbb| 日韩av在线免费看完整版不卡| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| freevideosex欧美| 欧美丝袜亚洲另类| 欧美日韩在线观看h| 欧美丝袜亚洲另类| 日本午夜av视频| 国产精品久久久久久精品古装| 中文欧美无线码| 欧美3d第一页| 少妇丰满av| 晚上一个人看的免费电影| 亚洲成人中文字幕在线播放| 蜜桃久久精品国产亚洲av| 男女下面进入的视频免费午夜| 欧美极品一区二区三区四区| 精品一区二区免费观看| 国产精品麻豆人妻色哟哟久久| 七月丁香在线播放| 成人综合一区亚洲| 久久久精品94久久精品| 国产精品不卡视频一区二区| 久久久久久久精品精品| 亚洲经典国产精华液单| 美女cb高潮喷水在线观看| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频 | 国产精品嫩草影院av在线观看| 99久久九九国产精品国产免费| 亚洲国产精品成人综合色| av在线亚洲专区| 有码 亚洲区| 亚洲人成网站在线播| 国产黄片美女视频| 99久久九九国产精品国产免费| 日日撸夜夜添| a级毛色黄片| 国产成人精品久久久久久| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 国产伦精品一区二区三区视频9| 最近的中文字幕免费完整| 久久鲁丝午夜福利片| 中国三级夫妇交换| 精品人妻熟女av久视频| 国产高清不卡午夜福利| 国产高清国产精品国产三级 | 亚洲精品成人av观看孕妇| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久 | 男女下面进入的视频免费午夜| 一级毛片电影观看| 一区二区三区免费毛片| 尾随美女入室| 国产黄a三级三级三级人| 精品亚洲乱码少妇综合久久| 国产精品无大码| 午夜爱爱视频在线播放| 亚洲经典国产精华液单| 校园人妻丝袜中文字幕| 伦理电影大哥的女人| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 亚洲成人一二三区av| 久久精品久久久久久噜噜老黄| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 国产精品.久久久| 午夜老司机福利剧场| 亚洲av日韩在线播放| 最近的中文字幕免费完整| 日本与韩国留学比较| 中文字幕亚洲精品专区| 色吧在线观看| 赤兔流量卡办理| 天美传媒精品一区二区| 成人亚洲欧美一区二区av| 亚洲综合精品二区| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久久性| 日韩伦理黄色片| 亚洲av在线观看美女高潮| 我的女老师完整版在线观看| 午夜免费观看性视频| 久久人人爽av亚洲精品天堂 | 日韩一本色道免费dvd| 99热这里只有是精品在线观看| 五月伊人婷婷丁香| 久久久a久久爽久久v久久| 九色成人免费人妻av| 亚洲欧美成人精品一区二区| 丝袜美腿在线中文| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的 | 永久网站在线| 日韩av不卡免费在线播放| 精品一区二区三区视频在线| 亚洲真实伦在线观看| 亚洲精品国产av蜜桃| 亚洲精品乱久久久久久| 欧美高清成人免费视频www| 最近中文字幕高清免费大全6| 夫妻性生交免费视频一级片| 国产精品一区www在线观看| 中文欧美无线码| 别揉我奶头 嗯啊视频| 国产亚洲91精品色在线| 亚洲,欧美,日韩| 国产免费一区二区三区四区乱码| 午夜福利高清视频| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 中文资源天堂在线| 六月丁香七月| 在线观看av片永久免费下载| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 青春草视频在线免费观看| 美女xxoo啪啪120秒动态图| 亚洲经典国产精华液单| 国产人妻一区二区三区在| 亚洲欧美精品专区久久| 亚洲天堂国产精品一区在线| 日韩强制内射视频| 波野结衣二区三区在线| 国产成人aa在线观看| 亚洲成人中文字幕在线播放| 在线观看一区二区三区激情| 一级毛片久久久久久久久女| 人体艺术视频欧美日本| 狂野欧美激情性bbbbbb| 少妇丰满av| 夜夜爽夜夜爽视频| 日韩成人av中文字幕在线观看| 欧美日韩综合久久久久久| 狂野欧美白嫩少妇大欣赏| 精品国产乱码久久久久久小说| 国产 一区 欧美 日韩| 国产亚洲最大av| 网址你懂的国产日韩在线| 在现免费观看毛片| 久久国产乱子免费精品| 国产一区有黄有色的免费视频| 我要看日韩黄色一级片| 亚洲经典国产精华液单| 亚洲欧美一区二区三区国产| 在线观看一区二区三区| 日韩电影二区| 欧美zozozo另类| 我的老师免费观看完整版| 亚洲精品中文字幕在线视频 | 亚洲av日韩在线播放| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 99热全是精品| 九九久久精品国产亚洲av麻豆| 国产欧美日韩精品一区二区| 91久久精品国产一区二区三区| 另类亚洲欧美激情| 最近中文字幕高清免费大全6| 永久网站在线| 国产v大片淫在线免费观看| 大码成人一级视频| 免费看光身美女| 日韩亚洲欧美综合| 精品久久久久久久久亚洲| 国产色婷婷99| 欧美激情在线99| 人妻夜夜爽99麻豆av| 晚上一个人看的免费电影| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品人妻久久久久久| 性插视频无遮挡在线免费观看| 在线观看av片永久免费下载| 亚洲精品乱码久久久v下载方式| 国产一区二区亚洲精品在线观看| 三级经典国产精品| 亚洲成人久久爱视频| 亚洲美女视频黄频| 久热这里只有精品99| 69av精品久久久久久| 国产永久视频网站| 99久久人妻综合| 嫩草影院精品99| 国产av码专区亚洲av| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 日本熟妇午夜| av女优亚洲男人天堂| 26uuu在线亚洲综合色| 大又大粗又爽又黄少妇毛片口| 国产av国产精品国产| 成人毛片a级毛片在线播放| 极品教师在线视频| 精品久久国产蜜桃| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的 | 亚洲真实伦在线观看| 观看免费一级毛片| 午夜免费鲁丝| 中文天堂在线官网| 亚洲av在线观看美女高潮| 青春草亚洲视频在线观看| av.在线天堂| 国产v大片淫在线免费观看| 亚洲精品乱久久久久久| 成人欧美大片| 亚洲国产欧美在线一区| 一区二区三区四区激情视频| 看黄色毛片网站| 国产精品女同一区二区软件| 久久鲁丝午夜福利片| 国产高清有码在线观看视频| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 中文字幕制服av| 七月丁香在线播放| 欧美潮喷喷水| 超碰av人人做人人爽久久| 伦理电影大哥的女人| 国产在视频线精品| 91久久精品电影网| 狂野欧美白嫩少妇大欣赏| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品古装| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲91精品色在线| 人人妻人人看人人澡| 免费观看性生交大片5| 久久久久久久久久人人人人人人| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 建设人人有责人人尽责人人享有的 | 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 干丝袜人妻中文字幕| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看| 久久精品熟女亚洲av麻豆精品| 欧美一区二区亚洲| 亚洲经典国产精华液单| 国产精品嫩草影院av在线观看| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 亚洲av成人精品一二三区| 观看免费一级毛片| 欧美国产精品一级二级三级 | 男人和女人高潮做爰伦理| 久久精品国产自在天天线| kizo精华|