• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements

    2022-11-21 09:29:42HengcanZhao趙恒燦MengLyu呂孟JiahaoZhang張佳浩ShuaiZhang張帥andPeijieSun孫培杰
    Chinese Physics B 2022年11期
    關(guān)鍵詞:張帥

    Hengcan Zhao(趙恒燦) Meng Lyu(呂孟) Jiahao Zhang(張佳浩) Shuai Zhang(張帥) and Peijie Sun(孫培杰)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    CePdAl has been recently recognized as a frustrated antiferromagnetic heavy-fermion compound with a pressureor field-tuned, extended quantum critical phase at zero temperature. Identifying characteristic signatures of the emerging quantum critical phase, which are expected to be distinct from those near a quantum critical point, remains challenging.In this work, by performing ultrasonic and thermoelectric measurements down to very low temperatures in a 3He–4He dilution refrigerator in the presence of magnetic field, we are able to obtain some crucial thermodynamic and thermal transport features of the quantum critical phase,including a frustration-related elastic softening detected by ultrasound and a Fermi-surface change probed by thermoelectric effect.

    Keywords: quantum phase transition,ultrasound,elastic constant,thermoelectric power

    1. introduction

    Quantum phase transitions (QPTs) are those that are driven by quantum instead of thermal fluctuations at low enough temperatures.[1,2]They are at the forefront of current condensed matter physics, offering possibilities for a variety of quantum emergent phenomena in their vicinity including unconventional superconductivity and non-Fermi liquid.[3,4]Heavy-fermion materials are ideal systems for exploring QPTs due to the competition between the intersite Ruderman–Kittel–Kasuya–Yoshida (RKKY) interaction and the local Kondo effect. Prototypical examples are secondorder antiferromagnetic(AFM)QPTs which can be smoothly suppressed to absolute zero at a quantum critical point(QCP)by nonthermal tuning parameters like magnetic field and pressure, beyond which a heavy Fermi-liquid phase develops generically as depicted by the Doniach phase diagram.[5]

    Thus far, various low-temperature probes have been employed to detect potential QPTs in heavy-fermion materials.Among these,electrical resistivity provides probably the simplest approach through its temperature dependence that frequently deviates from the Fermi-liquid description. On the other hand, low-temperature Hall effect has emerged as a powerful measurement to identify the characteristic feature of Mott-type QPTs, where breakdown of the local Kondo effect occurs with a consequent change of Fermi-surface volume.[6]In addition, thermodynamic and magnetic responses such as the coefficients of electronic specific heat and thermal expansion, and the magnetic susceptibility usually show diverging behavior near a QCP.[2,4]These probes are nevertheless frequently insufficient in characterizing complicated QPTs in,for example,a geometrically frustrated Kondo lattice with enhanced quantum fluctuations and potential metallic spin-liquid phase.[7]

    Hexagonal CePdAl shows rich quantum states due to magnetic frustration associated with the distorted kagome lattice.[7,8]At ambient pressure and zero field, it undergoes an AFM transition atTN=2.7 K with only 2/3 of the Ce moments on the kagome lattice involved,[9]see Fig. 1(a) inset.The other 1/3 is Kondo screened, giving rise to the heavyfermion behavior with an electronic specific-heat coefficientγ=270 mJ/mol·K2(Ref.[10]).Applying magnetic field along the Ising moment(thecaxis)causes three AFM phases(a–c)in the low-field phase space that are terminated by three firstorder metamagnetic lines (Bab,Bbc, andBcp), see Fig. 1(a).Further increasing field leads to a quantum critical phase (p)before a Fermi-liquid phase(f)eventually settles down.Alternatively, the AFM phase can be smoothly suppressed to zero by hydrostatic pressure as well, with no metamagnetic transitions taking place. In this case, a much more extendedpphase can be identified by the linear-in-temperature resistivity,a hallmark of non-Fermi-liquid behavior.[7]At elevated temperaturesT >1 K,except for theTN(B)line which traces the smoothly reduced AFM transition,two additional linesBm(T)andB*(T) are also shown in Fig. 1(a).Bmis related to the onset of AFM short-range order andB*indicates the Motttype Fermi-surface crossover, which terminates at a Kondobreakdown QCP at zero temperature. As shown in Fig. 1(b),the three metamagnetic transitions can be simply identified by resistivity as a function of field,revealed as sharp anomalies in dρ/dB,where the existence of thepphase can be confirmed by a shallow shoulder.

    Fig. 1. (a) Field–temperature phase diagram of CePdAl adapted from Ref. [8]. See text for definition of the symbols used in this figure. Inset illustrates the in-plane magnetic structure determined by neutron powder diffraction.[9] (b) Isothermal resistivity ρ and the derivative dρ/dB as a function of field measured at 0.08 K, from which all the low-temperature phase boundaries can be identified(see vertical lines). Different to the sharp anomalies at the three metamagnetic transitions, the Mott-type transition at B*≈4.6 T behaves as a shallow shoulder in dρ/dB.

    This work aims to demonstrate some distinctive features of the quantum critical phase and the related Fermi-surface change in CePdAl by low-temperature ultrasonic and thermoelectric measurement,both of which have so far received much less attention in studying QPTs. Ultrasound can probe magnetic, electronic and lattice instability sensitively because of the spin-lattice and electron–phonon coupling.Heavy-fermion materials are particularly suited for such measurement due to their strongly volume-dependent hybridization effect between the localizedfelectrons and the conduction bands that is described by a strong electron–phonon coupling.[11,12]Likewise,thermoelectric effect measures particle–hole asymmetric band structure at the Fermi level and is therefore suited for detecting Mott-type QPTs where a Fermi-surface change takes place.As will be shown below,the two measurements have revealed characteristic and unique features in support of the occurrence of a frustration-assisted intermediate quantum critical phase and a Fermi-surface change in CePdAl.

    2. Experimental details

    The ultrasound measurements were performed by using phase comparison technique[13]—a well-established method for probing weak elastic change of solid materials by comparing the input and output ultrasound pulse. High-frequency ultrasound of typically 5 MHz–100 MHz is generated and detected by LiNiO3piezoelectric transducers that are bonded onto two parallel end faces of the sample to be studied, see the inset of Fig. 2. Thiokol liquid polymer is used as bond material between the transducers and the sample. The relative ultrasound velocity changeδυ/υduring a temperature or field scan is proportional to the sum of three parts: the frequency changeδ f/fand the phase shiftδψ/ψo(hù)f the input and output ultrasound waves, and the sample length changeδL/L, which is however negligible in most cases compared to the former two terms. In this technique the frequency of the input ultrasound wave is continuously adjusted in order to maintain a constant phase of a given output echo (δψ=0),one can therefore probeδυ/υsimply by monitoringδ f/f.Elastic constantCcan be calculated from the sound velocity,C=dυ2, withdbeing the sample density. To ensure a sufficient thermal conductance for achieving temperatures down to below 50 mK,the transducers were bonded on one side by silver paste to the cooper plate that is thermally coupled to the cold finger of a3He–4He dilution refrigerator. The typical sample thickness for ultrasound measurement is 1 mm–3 mm and a single crystal has to be used in order to probe multiple independent elastic modes of the elastic constant tensor.[13]

    The thermoelectric effect was measured with a standard setting of thermal-transport measurement by using two thermometers and one heater.A sample of a typical size 0.3 mm×0.5 mm×3.0 mm was used and mounted onto a silver block by silver paste that is directly screwed to the sample holder.[14]The thermometers and heater are,on one hand,suspended by fine nylon wires in a vespel frame in order to be thermally decoupled from their surroundings,and on the other hand,thermally coupled to the sample by using 50-μm gold wires in order to build and measure the temperature gradientδT,which is typically 2%–5%of the base temperature. We use RuO2bare resistive chip sensor (Lake Shore Cryotronics) as thermometer,and 1-kΩ chip resistor as heater. For electrical leads in the sample holder superconducting NbTi wires(φ=25 μm)were used. The measurement was performed in a dilution refrigerator down to approximately 50 mK.

    3. Results and discussion

    Figure 2 shows relative change of the elastic constantsC11andC33measured at 80 mK in the presence of a sweeping magnetic field(B‖c). They both are longitudinal elastic mode,measured with the ultrasound wave propagating/polarizing along theaandcaxis (Fig. 2 inset), respectively. Upon increasing field, the two elastic constants soften smoothly due to enhanced spin fluctuations, and the first-order metamagnetic transitions atBabandBbcmanifest themselves as a drastic drop. The field variation of elasticity is similar forδC11/C11(B) andδC33/C33(B) up to slightly belowBcp ≈4.2 T, conforming to the low-temperature coefficient of magnetostriction, where sharp peaks indicative of significant lattice-parameter change are observed at the metamagnetic transitions.[15]Further increase of magnetic field results in the most fascinatingpphase in this material, whereδC11/C11(B) andδC33/C33(B) behave totally differently: at the phase boundary between the magnetic phasecand the quantum criticalpphase,Bcp, the former elastic mode reveals a strong softening,whereas the latter turns harder drastically. Consequently,a significant elastic softening is observed in onlyC11(B)in the emerging quantum criticalpphase, see the shaded region in Fig. 2. This distinctive feature offers a piece of compelling evidence for the existence of thepphase.Furthermore,the contrasting elastic behavior between the two elastic modes within the quantum critical phase provides a straightforward and strong implication on the microscopic origin of this phase. Considering thatC11measures the response of the compressional ultrasound wave within theabplane that is composed of distorted kagome lattice, whereasC33measures along thecaxis, one can naturally infer that the additional elastic softening in thepphase observed solely inC11is caused by the in-plane magnetic frustration. On the other hand,the smooth hardening in the heavy Fermi-liquid regime reflects, at least partially, the increased energy scale of the Fermi-liquid phase(TFL(B),Fig.1(a))and the therefore modified electron–phonon coupling.[12]

    Fig.2. Relative changes of the isothermal elastic constants C11 and C33 measured by longitudinal ultrasound propagating along the a and c axes,respectively, as a function of field (B‖c) at T = 80 mK. Note that δC11/C11 is multiplied by a factor of 3 for better comparison. The three dashed lines indicate the positions of the metamagnetic critical fields Bab,Bbc,and Bcp. The shaded region marks the field window where the quantum critical p phase takes place,see Fig.1(a). Inset: a sketch of the sample setting for ultrasound measurement, where the directions of propagation k and polarization u are parallel to each other when longitudinal ultrasound is used.

    We now turn to the thermoelectric effect, which is also unique in characterizing QPTs for its sensitivity to Fermisurface change. It has been previously studied in the canonical heavy-fermion compound YbRh2Si2,[16]yielding strong evidence for an abrupt Fermi-surface change at the QCP. In Fig.3,we show the isothermal thermoelectric coefficientS(B)measured at various temperatures for CePdAl. A pronounced maximum arising from magnetic scattering is observed in the field window where the sequence of the metamagnetic transitions takes place. While the position of the maximum,marked by downward arrow,traces roughly the metamagneticBcpline(see Fig. 1(a)), unfortunately one cannot clearly identify any of the three metamagnetic transitions. Markedly,at high fieldB >BFL(upward arrow), the value ofS(B) remains approximately constant, as expected from a heavy Fermi-liquid with a large Fermi-surface volume that incorporates both the local moments and the conduction electrons. Note that, there appears a valley between the broad maximum and the flatS(B)atB >BFL, which falls into the extended intermediate phase space between the AFM and the heavy Fermi-liquid phase.This feature cannot be simply related to thepphase, but is most likely a signature of the thermally-broadened, small-tolarge Fermi-surface crossover as indicated by theB*line.

    Though the metamagnetic transitions cannot be identified due to the low signal-to-noise ratio, theS(B) curves can provide a strong evidence for the Fermi-surface change. Comparing the weakly field-dependentS(B) atB <2 T in the AFM phase and the nearly constantS(B) atB >BFLin the heavy Fermi-liquid phase, one immediately recognizes a change of their absolute values that is attributable to the Fermi-surface change across the Mott-type(Kondo-breakdown)lineB*.This feature becomes actually more apparent at higher temperatures simply because the absolute value of thermoelectric power increases substantially with temperature, see Fig. 3 main panel and inset. To lend further support to this inference, in Fig. 4 we compare the isothermalS(B)and the Hall resistivityρH(B)measured at 0.3 K(Ref.[8]). Significantly,the differentS(B)behaviors at low and high fields, as mentioned above, match well with theB-linearρH(B)of slightly different slope in the two field intervals; see the two dashed lines on top of theρH(B) data. As has been discussed previously, the large-tosmall slope change ofρH(B)is a distinct feature of the smallto-large Fermi-surface change across the Mott-type crossover lineB*(Ref. [8]). Likewise, the afore-mentioned change ofS(B) between low and high field is believed to be a hallmark of the Fermi-surface change, too. The feature that the lowfieldS(B) in the AFM phase with a small Fermi-surface is more susceptible toBin comparison to its high-field counterpart shares strong similarities with the field dependence ofρ(B)(Ref.[8]),and can be ascribed to the enhanced electron scattering from spin fluctuations in the ordered phase.

    Fig. 3. Isothermal thermoelectric coefficient S(B) measured at various temperatures is shown with proper offset for clarify. Inset: temperaturedependent thermoelectric coefficient S(T)measured in zero field. For these measurements, the temperature gradient is applied within the ab plane and the magnetic field along the c axis. The downward arrows mark the maximums of the S(B) curves, which trace roughly the metamagnetic Bcp line(Fig. 1(a)). The upward arrows indicate the characteristic field BFL above which S(B)tends to be constant, signalling onset of the heavy Fermi-liquid phase.

    Fig.4.The thermoelectric coefficient as a function of field is compared to the Hall resistivity[8] measured at the same temperature,T =0.3 K.The shaded region indicates the field window where the sequence of metamagentic transitions and the p phase take place. The dashed lines on top of the ρH(B)data indicate the linear variation expected for Fermi liquid,and those for S(B)data are guides to the eyes.

    4. Conclusion

    To conclude,we have shown that the metamagnetic transitions, the quantum critical phase and the Fermi-surface change across a Mott-type transition/crossover in CePdAl can be probed by ultrasonic and thermoelectric measurements at very low temperatures. In particular, the quantum critical phase can be captured by the in-plane elastic constantC11rather than the out-of-planeC33mode, offering a strong evidence for its existence as well as a strong implication on its origin that is most likely related to the in-plane frustration;the thermoelectric effect can probe the Fermi-surface change,complementary to the Hall-effect measurement.Though much less attention has been paid to these measurements so far,their capability to reveal distinct features on frustration-related fluctuations and Fermi-surface change promises an important role for them in characterizing complicated quantum phases.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303100),the National Natural Science Foundation of China (Grant Nos. 12141002, 52088101, and 11974389), the Fund of the Chinese Academy of Sciences through the Scientific Instrument Developing Project (Grant No. ZDKYYQ20210003), the Strategic Priority Research Program(Grant No. XDB33000000), and by China Postdoctoral Science Foundation(Grant No.2020TQ0349).

    猜你喜歡
    張帥
    《錢(qián)學(xué)森》 張建設(shè) 張帥 張秋麗
    火花(2022年6期)2022-06-16 09:02:52
    Correlation mechanism between force chains and friction mechanism during powder compaction
    Special issue on selected papers from HVDP 2020
    Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge
    青年演員張帥
    歌海(2021年6期)2021-02-01 11:27:18
    給“調(diào)皮鬼”換座位
    給“調(diào)皮鬼”換座位
    遼寧教育(2020年8期)2020-03-03 23:27:33
    Talking about the Design Concept of "People-oriented" in Visual Communication Desig
    青年生活(2019年3期)2019-09-10 16:57:14
    張帥作品
    張帥手繪效果圖
    人妻丰满熟妇av一区二区三区| 国产亚洲欧美精品永久| a级毛片在线看网站| 香蕉丝袜av| 91av网站免费观看| 一个人免费在线观看的高清视频| 免费在线观看完整版高清| 欧美午夜高清在线| 88av欧美| 中文字幕人成人乱码亚洲影| 91成人精品电影| 亚洲成人久久性| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 久久久国产精品麻豆| 亚洲成av人片免费观看| 久久伊人香网站| 亚洲国产精品合色在线| 国产一区在线观看成人免费| 日本免费a在线| 一级作爱视频免费观看| 久久国产亚洲av麻豆专区| 精品不卡国产一区二区三区| 1024香蕉在线观看| a级毛片在线看网站| 色av中文字幕| 国产精品免费视频内射| 久久婷婷人人爽人人干人人爱| 男女之事视频高清在线观看| 人妻久久中文字幕网| 美国免费a级毛片| 自线自在国产av| 一二三四社区在线视频社区8| 亚洲五月天丁香| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕精品免费在线观看视频| 国产真人三级小视频在线观看| 制服丝袜大香蕉在线| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 成年版毛片免费区| 少妇熟女aⅴ在线视频| 国产精品精品国产色婷婷| 国内毛片毛片毛片毛片毛片| 两性夫妻黄色片| 18禁美女被吸乳视频| 欧美在线一区亚洲| 亚洲av电影在线进入| 久久久久久国产a免费观看| 99在线人妻在线中文字幕| АⅤ资源中文在线天堂| 少妇被粗大的猛进出69影院| 88av欧美| 91成年电影在线观看| 精品免费久久久久久久清纯| 欧美黑人巨大hd| 两性夫妻黄色片| 成人三级做爰电影| 久热爱精品视频在线9| 男女下面进入的视频免费午夜 | 青草久久国产| 国产精品一区二区免费欧美| 亚洲中文字幕一区二区三区有码在线看 | 久久久久久久久久黄片| 精品久久蜜臀av无| 最新在线观看一区二区三区| 特大巨黑吊av在线直播 | 久热这里只有精品99| 一级黄色大片毛片| 成人亚洲精品av一区二区| 午夜久久久在线观看| 中文字幕最新亚洲高清| 亚洲 欧美一区二区三区| 搡老熟女国产l中国老女人| 成人欧美大片| 啦啦啦韩国在线观看视频| 国产99久久九九免费精品| 波多野结衣巨乳人妻| 久久久久免费精品人妻一区二区 | www日本黄色视频网| 1024香蕉在线观看| 午夜精品在线福利| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 亚洲av熟女| 午夜福利成人在线免费观看| 欧美日韩精品网址| 亚洲第一av免费看| 大香蕉久久成人网| 精品久久久久久成人av| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 人人澡人人妻人| 久久久久久久久中文| 午夜激情av网站| 国产亚洲av高清不卡| 亚洲五月色婷婷综合| 午夜福利在线观看吧| 禁无遮挡网站| 两人在一起打扑克的视频| 国产激情久久老熟女| 国产成人av激情在线播放| 国产亚洲精品一区二区www| 欧美激情久久久久久爽电影| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 免费电影在线观看免费观看| 亚洲精品久久国产高清桃花| 正在播放国产对白刺激| 亚洲精品在线美女| 亚洲av成人av| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 99久久综合精品五月天人人| 亚洲精品在线美女| 搡老妇女老女人老熟妇| 91大片在线观看| 久久精品91蜜桃| 日韩欧美三级三区| 亚洲欧美激情综合另类| 一级a爱视频在线免费观看| 国产成人欧美| 美女扒开内裤让男人捅视频| 亚洲男人的天堂狠狠| 窝窝影院91人妻| 亚洲成人免费电影在线观看| 好男人电影高清在线观看| 国语自产精品视频在线第100页| 亚洲精品在线美女| 18禁观看日本| 亚洲精品一区av在线观看| 波多野结衣av一区二区av| 欧美激情 高清一区二区三区| 91成年电影在线观看| 国产成人影院久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合久久99| 脱女人内裤的视频| 麻豆成人av在线观看| 在线观看66精品国产| 午夜福利高清视频| 国产午夜精品久久久久久| 美女 人体艺术 gogo| 国产亚洲精品一区二区www| 一a级毛片在线观看| 18美女黄网站色大片免费观看| 精品一区二区三区av网在线观看| 午夜福利在线在线| 老鸭窝网址在线观看| 观看免费一级毛片| 久久久久久九九精品二区国产 | 免费看十八禁软件| 亚洲第一电影网av| 久久精品91蜜桃| 色综合站精品国产| 亚洲国产中文字幕在线视频| 精品一区二区三区视频在线观看免费| 亚洲精品粉嫩美女一区| 老司机福利观看| 精品少妇一区二区三区视频日本电影| 色综合站精品国产| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 听说在线观看完整版免费高清| 国产单亲对白刺激| 色哟哟哟哟哟哟| 日韩欧美三级三区| 久久久久九九精品影院| 国产麻豆成人av免费视频| 久久这里只有精品19| 亚洲欧美精品综合久久99| 看免费av毛片| 黄网站色视频无遮挡免费观看| 日韩成人在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 日韩大码丰满熟妇| 精品久久久久久成人av| 搞女人的毛片| 亚洲精品一区av在线观看| 国产精品九九99| 一级片免费观看大全| www国产在线视频色| 国产亚洲精品综合一区在线观看 | www.自偷自拍.com| 一二三四社区在线视频社区8| 99riav亚洲国产免费| 老司机福利观看| 免费在线观看日本一区| 亚洲一码二码三码区别大吗| 亚洲成av人片免费观看| 国产视频内射| 一级毛片高清免费大全| 黄色 视频免费看| 草草在线视频免费看| 国产伦人伦偷精品视频| 亚洲成人久久爱视频| 人人妻人人看人人澡| 日韩欧美国产一区二区入口| 亚洲久久久国产精品| 老鸭窝网址在线观看| 亚洲欧美精品综合久久99| 超碰成人久久| 美女免费视频网站| 免费观看人在逋| 国产成人av教育| 啦啦啦观看免费观看视频高清| 亚洲人成网站在线播放欧美日韩| 国产91精品成人一区二区三区| 久久久久九九精品影院| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 欧美在线黄色| 久久精品国产亚洲av高清一级| 午夜a级毛片| 两个人免费观看高清视频| 精品国产亚洲在线| 欧美av亚洲av综合av国产av| 大香蕉久久成人网| 十分钟在线观看高清视频www| 成人一区二区视频在线观看| 亚洲三区欧美一区| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| e午夜精品久久久久久久| 亚洲专区字幕在线| 色在线成人网| 亚洲九九香蕉| 色精品久久人妻99蜜桃| 久久久久精品国产欧美久久久| 亚洲国产精品合色在线| 巨乳人妻的诱惑在线观看| 视频区欧美日本亚洲| 三级毛片av免费| 欧美乱码精品一区二区三区| 18禁黄网站禁片免费观看直播| 国产成人精品无人区| 日本三级黄在线观看| 久久国产精品影院| 一区二区日韩欧美中文字幕| 国产成人精品久久二区二区91| 国产片内射在线| 妹子高潮喷水视频| 久久香蕉国产精品| 欧美成人一区二区免费高清观看 | 国产三级黄色录像| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 精品不卡国产一区二区三区| 男人舔女人的私密视频| 人人妻,人人澡人人爽秒播| 久久久久久国产a免费观看| 黄色片一级片一级黄色片| 啦啦啦韩国在线观看视频| 精品国产超薄肉色丝袜足j| 午夜福利一区二区在线看| 成人午夜高清在线视频 | 亚洲国产精品999在线| 成在线人永久免费视频| 久99久视频精品免费| 亚洲av片天天在线观看| 男女午夜视频在线观看| 日本免费a在线| 亚洲av电影不卡..在线观看| 亚洲av五月六月丁香网| 精品久久久久久,| 男女之事视频高清在线观看| 亚洲国产欧美网| 在线免费观看的www视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品第一综合不卡| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 精品免费久久久久久久清纯| 欧美日本视频| av有码第一页| 啦啦啦韩国在线观看视频| 久久精品国产亚洲av香蕉五月| 欧美日韩一级在线毛片| 国产精品1区2区在线观看.| 日韩视频一区二区在线观看| 久久久久久久久中文| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 午夜福利18| 后天国语完整版免费观看| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 亚洲欧美日韩高清在线视频| 亚洲第一青青草原| 国产高清videossex| 91成人精品电影| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 亚洲五月天丁香| 欧美绝顶高潮抽搐喷水| a级毛片a级免费在线| 亚洲在线自拍视频| 国产精品久久久久久精品电影 | 久久精品国产清高在天天线| 国产激情久久老熟女| 男女午夜视频在线观看| 欧美成狂野欧美在线观看| 色婷婷久久久亚洲欧美| 久久人妻福利社区极品人妻图片| 国产亚洲精品综合一区在线观看 | 一本久久中文字幕| 国产精品电影一区二区三区| 亚洲国产高清在线一区二区三 | 99热这里只有精品一区 | 一a级毛片在线观看| 国产成人精品无人区| 中文字幕最新亚洲高清| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 国产精品永久免费网站| 夜夜看夜夜爽夜夜摸| 国产av不卡久久| 国产日本99.免费观看| 日本熟妇午夜| 久久狼人影院| 夜夜爽天天搞| 欧美一级毛片孕妇| 午夜激情av网站| 久久精品国产清高在天天线| 在线观看免费午夜福利视频| 久久精品国产综合久久久| 亚洲久久久国产精品| 最近最新中文字幕大全电影3 | av片东京热男人的天堂| 嫩草影视91久久| 成年人黄色毛片网站| av免费在线观看网站| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 视频区欧美日本亚洲| 国产99久久九九免费精品| 久久久久久久久久黄片| 91老司机精品| 十八禁网站免费在线| 日本一本二区三区精品| 午夜福利一区二区在线看| 成人亚洲精品av一区二区| 色在线成人网| 成年女人毛片免费观看观看9| 国产三级在线视频| 亚洲免费av在线视频| 神马国产精品三级电影在线观看 | 精品国内亚洲2022精品成人| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 久热这里只有精品99| 精品欧美一区二区三区在线| 国产成人系列免费观看| 精品久久蜜臀av无| 国产又爽黄色视频| www国产在线视频色| 999久久久国产精品视频| 国产成人精品无人区| 亚洲 欧美一区二区三区| 人人妻,人人澡人人爽秒播| 黄色视频不卡| 国产精品电影一区二区三区| 啦啦啦 在线观看视频| 淫妇啪啪啪对白视频| 日韩欧美一区二区三区在线观看| 精品午夜福利视频在线观看一区| 国产在线观看jvid| 成年女人毛片免费观看观看9| 久久欧美精品欧美久久欧美| 99久久精品国产亚洲精品| 日韩免费av在线播放| 成人手机av| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 日韩国内少妇激情av| 亚洲狠狠婷婷综合久久图片| 亚洲精品av麻豆狂野| 深夜精品福利| 午夜免费鲁丝| 天堂√8在线中文| 91老司机精品| 啦啦啦 在线观看视频| 国产又黄又爽又无遮挡在线| 国产91精品成人一区二区三区| 久久伊人香网站| 两个人免费观看高清视频| 亚洲男人的天堂狠狠| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| 国产主播在线观看一区二区| 国内久久婷婷六月综合欲色啪| 国产又色又爽无遮挡免费看| 成人18禁在线播放| 精品久久久久久,| 午夜精品在线福利| 又黄又粗又硬又大视频| 999久久久精品免费观看国产| 国产主播在线观看一区二区| 久久九九热精品免费| 脱女人内裤的视频| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 亚洲成人久久性| 黄片大片在线免费观看| 国产精品国产高清国产av| 久久久精品欧美日韩精品| 欧美中文日本在线观看视频| 欧美一区二区精品小视频在线| 一边摸一边抽搐一进一小说| 淫妇啪啪啪对白视频| 亚洲欧美日韩无卡精品| 一级作爱视频免费观看| 欧美日本视频| 精品国产超薄肉色丝袜足j| 夜夜爽天天搞| 欧美最黄视频在线播放免费| 久久狼人影院| bbb黄色大片| 在线观看66精品国产| 国产伦人伦偷精品视频| 精品高清国产在线一区| 免费电影在线观看免费观看| 亚洲欧美精品综合久久99| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩乱码在线| 一区二区三区国产精品乱码| 国产av不卡久久| 国产精品 欧美亚洲| 村上凉子中文字幕在线| 久久久久国内视频| 久久久久免费精品人妻一区二区 | а√天堂www在线а√下载| 亚洲精品av麻豆狂野| 国产91精品成人一区二区三区| 99久久综合精品五月天人人| 大型黄色视频在线免费观看| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| 久久久久久大精品| 男女那种视频在线观看| 亚洲成人精品中文字幕电影| 久久九九热精品免费| av免费在线观看网站| 欧美激情高清一区二区三区| 在线国产一区二区在线| 亚洲成av片中文字幕在线观看| 国产成人啪精品午夜网站| 91成人精品电影| 久久这里只有精品19| 午夜两性在线视频| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡| 丝袜在线中文字幕| 天堂动漫精品| 国产精品 国内视频| 91在线观看av| 岛国视频午夜一区免费看| 亚洲成a人片在线一区二区| 亚洲中文字幕一区二区三区有码在线看 | 在线观看日韩欧美| 日本成人三级电影网站| 精品免费久久久久久久清纯| 9191精品国产免费久久| 国产精品日韩av在线免费观看| 精品久久久久久久久久久久久 | av超薄肉色丝袜交足视频| 美国免费a级毛片| 国产亚洲欧美在线一区二区| 久久国产精品人妻蜜桃| 国产精品香港三级国产av潘金莲| xxxwww97欧美| 日韩欧美国产一区二区入口| 黄色片一级片一级黄色片| 丝袜在线中文字幕| 制服诱惑二区| 在线观看www视频免费| 久久精品成人免费网站| 手机成人av网站| 亚洲精品中文字幕一二三四区| av免费在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一区av在线观看| 国产亚洲欧美精品永久| 国产成年人精品一区二区| 久久久久久久久中文| 日韩av在线大香蕉| 国产黄片美女视频| 大型av网站在线播放| netflix在线观看网站| 国产黄片美女视频| 国产精品av久久久久免费| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| 精品日产1卡2卡| av天堂在线播放| 国产麻豆成人av免费视频| 久久久久久人人人人人| 欧美色视频一区免费| 久久婷婷成人综合色麻豆| 在线观看免费日韩欧美大片| 动漫黄色视频在线观看| 又大又爽又粗| 又紧又爽又黄一区二区| 亚洲七黄色美女视频| 又黄又爽又免费观看的视频| 性色av乱码一区二区三区2| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 国产熟女xx| a级毛片a级免费在线| 99久久99久久久精品蜜桃| 久久久国产精品麻豆| 在线观看舔阴道视频| 国产精品精品国产色婷婷| 男人舔女人下体高潮全视频| 午夜免费鲁丝| 国产高清有码在线观看视频 | 女同久久另类99精品国产91| 久久久精品国产亚洲av高清涩受| 久久精品国产亚洲av香蕉五月| 日日夜夜操网爽| 满18在线观看网站| ponron亚洲| 色av中文字幕| 国产三级黄色录像| 国产精品1区2区在线观看.| 精品熟女少妇八av免费久了| 亚洲精品久久成人aⅴ小说| 一级毛片女人18水好多| 99国产精品一区二区蜜桃av| 老熟妇仑乱视频hdxx| 精品日产1卡2卡| 国产黄a三级三级三级人| 欧美不卡视频在线免费观看 | 国产激情偷乱视频一区二区| 俄罗斯特黄特色一大片| 亚洲电影在线观看av| 黄色片一级片一级黄色片| 久久99热这里只有精品18| 成人精品一区二区免费| 最近最新免费中文字幕在线| 午夜免费成人在线视频| 两个人看的免费小视频| 欧美激情高清一区二区三区| 身体一侧抽搐| 国产精品久久电影中文字幕| 美女高潮到喷水免费观看| 亚洲精品一卡2卡三卡4卡5卡| x7x7x7水蜜桃| 91麻豆精品激情在线观看国产| 国产亚洲精品一区二区www| 国产色视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大尺度精品在线看网址| 性色av乱码一区二区三区2| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 亚洲专区国产一区二区| 成年免费大片在线观看| 欧美黄色片欧美黄色片| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 欧美黑人精品巨大| 亚洲午夜理论影院| 亚洲成av人片免费观看| 国产又爽黄色视频| 真人做人爱边吃奶动态| a在线观看视频网站| 午夜福利18| 脱女人内裤的视频| 精品久久久久久久末码| 国产av在哪里看| 欧美一级a爱片免费观看看 | 中文在线观看免费www的网站 | 国产97色在线日韩免费| 日韩欧美一区视频在线观看| 久久伊人香网站| www.999成人在线观看| 少妇的丰满在线观看| 婷婷精品国产亚洲av| 桃红色精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 中文字幕精品亚洲无线码一区 | 美女高潮喷水抽搐中文字幕| 男女那种视频在线观看| 99国产综合亚洲精品| 在线观看66精品国产| 女警被强在线播放| 国产主播在线观看一区二区| 中文字幕av电影在线播放| 黄色视频,在线免费观看| 午夜激情av网站| 香蕉国产在线看| 亚洲国产精品sss在线观看| 亚洲五月色婷婷综合| 亚洲精品一卡2卡三卡4卡5卡| 色播在线永久视频| 麻豆久久精品国产亚洲av| 久久香蕉国产精品| 一本久久中文字幕| 久久精品国产99精品国产亚洲性色| 亚洲专区国产一区二区| 丝袜在线中文字幕| 精品国产乱子伦一区二区三区| 女同久久另类99精品国产91| 亚洲精品在线美女| 搡老岳熟女国产| 久久性视频一级片| 日本熟妇午夜| 久久狼人影院| 精品熟女少妇八av免费久了| 淫妇啪啪啪对白视频|