• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling and Channel Estimation for Piezo-Acoustic Backscatter Assisted Underwater Acoustic Communications

    2022-11-18 07:59:18JunliangLinGongpuWangZijianZhengRuyiYeRuisiHeBoAi
    China Communications 2022年11期

    Junliang Lin,Gongpu Wang,*,Zijian Zheng,Ruyi Ye,Ruisi He,4,Bo Ai,4

    1 School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100091,China

    2 School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100091,China

    3 China National Institute of Standardization,Beijing 100088,China

    4 The State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100091,China

    Abstract: Relying on direct and converse piezoelectric effects,piezo-acoustic backscatter(PAB)technology reflects ambient acoustic signals to enable underwater backscatter communications at near-zero power,which was first realized through a prototype.In this paper,we propose a mathematical model of the PAB assisted underwater acoustic (UWA) communication,and address the sparse channel estimation problem.First,we present a five-stage backscatter process to derive the backscatter coefficient,and propose the channel model for the shallow-water communications.Then,we formulate the shallow-water acoustic channel estimation problem as a sparse vector recovery one according to the compressed sensing theory,and leverage the orthogonal matching pursuit(OMP)algorithm to obtain the channel estimator.Finally,simulation results are provided to corroborate our proposed studies.

    Keywords: channel estimation; compressed sensing;piezo-acoustic backscatter; underwater acoustic communications

    I.INTRODUCTION

    Past decades have witnessed a growing market of underwater exploitation of the Internet of Things(IoT).Underwater IoT has covered various fields,such as instrument monitoring,pollution control,climate recording,and marine life investigation [1].The distinct variety of applications promotes the underwater IoT industry and endows underwater communications with prominently strategic significance.

    However,one major bottleneck restricting underwater IoT development is the power consumption.For most existing systems,one IoT device has to generate and amplify the carrier acoustic signals to communicate with others,which consumes a few hundred watts even for low-power acoustic transmitters [2].Drastic power consumption is unaffordable for low-cost IoT devices with limited batteries.Thus,most of the underwater IoT systems are incapable of operating on the premise of power shortage.

    Seen as a promising solution,piezo-acoustic backscatter (PAB) technology is recently proposed to alleviate the power issue facing underwater IoT devices[3].The terminology piezo comes from ancient Greek,meaning pressure or stress.The advantage of introducing PAB lies in that the IoT device can communicate with others by simply modulating and reflecting the ambient acoustic signal,instead of sending carrier actively.Hence,passive transmissions through PAB save much energy,which differs from traditional active underwater acoustic(UWA)communications.

    The key enabler of PAB is the usage of direct and converse piezoelectric effects of piezoelectric materials[4],as shown in Figure 1 on the top of next page.In materials science,the direct piezoelectric effect describes the ability that a piezoelectric material transforms the mechanical strain into electrical charges,i.e.,the pressure (acoustic)-electric transition.The converse piezoelectric effect refers to the process of generating the mechanical strain in response to the applied voltage,i.e.,the electric-pressure(acoustic)transition.Relying on both effects,PAB enables UWA communications by reflecting the ambient acoustic signal at near-zero power consumption.

    In this paper,we investigate the PAB assisted UWA communication systems based on the first work [3].The contributions of our work are as follows:

    ? We present the fundamental model for UWA backscatter communications.In particular,we propose a five-stage backscatter procedure to derive the backscatter coefficient,and characterize the shallow-water(depths lower than 100 meters)acoustic channels.

    ? Based on the received signal model,We formulate the shallo-water acoustic channel estimation problem as an optimization problem exploiting channel sparsity and apply the compressed sensing(CS)-based sparse vector estimation algorithm to solve it.

    Notations:the lowercase,boldface lowercase,and boldface uppercase letter denote scaler (or constant),vector and matrix,respectively; the transpose,Hermitian,pseudo-inverse,modulus,0-norm,and 2-norm are denoted by (·)T,(·)H,(·)?,|·|,||·||0and||·||2,respectively; diagonal matrix is denoted by diag(·);Rm×nand Cm×nare the space ofm×nreal and complex matrices,respectively;Z denotes the space of integer; the inverse sine function,dirac delta function,the symbolic function and convolution operator are represented by arcsin(·),δ(·),sgn(·) and?,respectively;?2?1 is the imaginary unit.

    II.SYSTEM MODEL

    Figure 2(a)illustrates a system model of the PAB assisted UWA communication system,which consists of an acoustic source(S),an acoustic receiver(R),and a PAB node(N).Employing direct and converse piezoelectric effects,the PAB node harvests energy from signals transmitted from the source and communicates with the receiver by switched between reflective and unreflective states.In particular,it sends a symbol 1 in reflective state by reflecting the impinging acoustic signals,and a symbol 0 in unreflective state by absorbing the incoming energy[3].

    2.1 Backscatter Coefficient

    Figure 2 (b) shows the backscatter model of the PAB node.Note that the backscatter process is depicted in red line,and each stage is marked with a stage number and its corresponding attenuation coefficient.Assume the piezoelectric ceramic immersed in shallow water is covered by the encapsulation polymer,we then present the detailed five-stage backscatter process as follows:

    1)Acoustic transmission: Incident acoustic signal transmits from water into piezoelectric ceramic through the encapsulation polymer.

    2)Pressure (acoustic)-electric transition: With direct piezoelectric effect,the transmitted acoustic signals apply on the piezoelectric ceramic and generate the electric signal.

    3)Electric reflection: When the PAB node is shorted,the associated electric signal is then reflected under the control of impedance matching circuit.

    4)Electric-pressure(acoustic)transition: Governed by the converse piezoelectric effect,the piezoelectric ceramic responds to the reflected electric signal and creates the acoustic signal.

    5)Acoustic transmission: The acoustic signal transmits from piezoelectric ceramic back into water through the encapsulation polymer.

    In view of this,we express the backscatter coefficient as

    where theτ1,j1andτ2,j2denote the path propagation delays that will be given in(4),andηj1,j2is the attenuation coefficient given by

    whereηj1denotes the energy flux transmission ratio when transmitting from water into piezoelectric ceramic and is determined by the incidence pathj1(related to the incidence angleθw) [5],κis the electromechanical coupling coefficient characterizing the conversion efficiency of piezoelectric ceramic [6],μrepresents the power wave reflection coefficient controlled by the switch of the electric impedance matching circuit [7],andηj2gives the energy flux transmission ratio when transmitting from piezoelectric ceramic back into water and is determined by the transmission pathj2(related to the transmission angleθ′w).

    Remark 2.When the power reflection coefficientμ=1,the compressed strain induced by the direct piezoelectric effect nullifies the elongated strain caused by the converse piezoelectric effect.In other words,the PAB node operates as a reflector by preventing it from being deformed[3].

    2.2 Shallow-water Acoustic Channel

    Figure 3 depicts the examples of shallow-water acoustic channels.The channels of S?R,S?N,and N?R links are denoted byh0,h1andh2,respectively.For tractability,we assume a quasi-static shallow-water environment and the channel amplitudes remain unchanged for one symbol duration[8].Since the acoustic signal in shallow water is propagated to a distance by repeated reflections from the surface and bottom[9],we model the shallow-water acoustic channel impulse responses(CIRs)hi(t),i=0,1,2,as

    where|ni|,|mi|,ni+mi,hi,ni+mi,andτi,ni+midenote the number of surface reflections,number of bottom reflections,path index,amplitude coefficient,and propagation delay of channeli,respectively.The bounds in (3) are specified asNmin0=?N0,N0max=N0,M0min(n0)=min{n0,n0?sgn(n0)},M0max(n0)=max{n0,n0?sgn(n0)},andNimin=0,Nimax=Ni,Mimin(ni)=ni?sgn(ni),Mimax(ni)=nifori=1,2,whereNidenotes the path control parameter.Here,ni >0 denotes the path with its first reflection on the surface,ni <0 characterizes the path with its first reflection on the bottom,andni=0 when the path does not touch any interfaces.The detailed discussions ofhi,ni+miandτi,ni+mirefer to[9,8].

    For simplicity,we denoteji=ni+mi ∈Z by the new path index of channeliand rewrite(3)as

    whereJimin=Nimin+Mimin(Nimin),Jimax=Nimax+Mimax(Nimax) are the lower and upper bounds ofji,andLi=Jmaxi?Jmini+1 denote the length of the associated channels.Note that bothJimaxandJiminare functions ofNi.

    Example 1.To provide a better understanding on how Ni controls the CIRs in(3)and(4),we take h0(t)as an example.

    Assume the path control parameter N0=1,wehave N0min=?N0=?1,N0max=N0=1,and?1≤n0≤1.We now discusses the value of m0as follows:

    and?2≤j0≤2.The above calculus is in line with the channel model present in Figure 3(a).

    III.CHANNEL ESTIMATION AT THE RECEIVER

    In this section,we investigate the sparse shallow-water acoustic channel estimation problem.In particular,we first introduce the signal model at the receiver.Based on the signal model,we then formulate the pilot based channel estimation problem exploiting channel sparsity and the CS theory.Finally,the OMP algorithm is leveraged to obtain the channel estimator.

    3.1 Received Signal

    To tackle the estimation problem,we first introduce the received signal model.Consider an orthogonal frequency division multiplexing (OFDM) based PAB system withNsubcarriers.The OFDM paradigm is used to restrain the serious inter-symbol interference induced by multipath propagation.Assume that the length of the cyclic prefix is larger than that of the longest channel response delay.

    Mathematically,the signal received by the PAB node can be expressed as

    wherea(t)is the transmitted signal.

    The signal backscattered by the PAB node is given by

    whereb ∈{0,1}denotes the on-off keying modulated data sent by the PAB node.Note that the noise is typically negligible since PAB node circuit consists only of passive components and takes few signal processing operations[10].Hence,the passband signal at the acoustic receiver takes the structure

    wherew(t)denotes the noise at receiver.

    Remark 3.In unreflective state(b=0),the PAB node acts as a standard piezoelectric transducer absorbingthe impinging acoustic signal.The receiver could only receive the signal coming directly from the source.When the PAB node is in reflective state (b=1),the received signal appears as a superposition of the signal coming directly from the source and the signal backscattered by the PAB node.

    Expanding(11),we sample the passband signal as

    wherea(k) is the modulated OFDM symbol via inverse fast fourier transform (IFFT),w(k) denotes the discrete-time noise,andTsdenotes the sampling period that is small enough to yield the channel length

    For brevity,we define two discrete-time CIRs,named direct CIRh(k)and combined CIRg(k),as

    and

    respectively.Here,hkhandgkgdenote the attenuation coefficients ofh(k) andg(k),respectively,withkhandkgbeing the associated path indices.

    Remark 4.Recall that the original channel length is Li=Jmaxi?Jmini+1.It can be found from(13)and(14)that the K-length CIRs h(k)and g(k)contain only Lh (Lh=L0) and Lg (Lg ≤L1L2) nonzero elements,with K?Lh and K?Lg zero elements in the remaining positions,respectively(Lg ?K,Lh ?K).In other words,the discrete-time CIRs h(k)and g(k)are sparse with sparsity Lg and Lh,respectively.The reason for Lg ≤L1L2lies that,as mentioned inRemark 1,some of the backscattering coefficients may become zero due to the dissatisfaction of critical angle conditions.

    In view of two discrete-time CIRs defined in (13)and(14),we simplify(12)as

    Taking fast fourier transform(FFT)of the received signal(15),we have

    and

    3.2 Problem Formulation

    Based on the signal model in (16),we then formulate the channel estimation problem.Denoteby the CFRs on totalNsubcarriers,the received signal(16)in matrix-form is expressed as

    To estimate the composed CFR,we specify a pilot subcarrier position setPand denoteS ∈RNp×Nby the pilot subcarrier selection matrix with positionP.Then,signal is received by inserting pilots at corresponding position:

    whereyp=S∈CNp×1are the received signals,Ap=SST∈CNp×Npis the transmitted pilot matrix,xp=S∈CNp×1denote the composed CFR at pilot position,andwp=S∈CNp×1represents the frequency-domain noise.According to (20),we estimate the composed CFR by considering

    Nevertheless,the CS theory enables us to estimate the discrete-time CIR exploiting channel sparsity mentioned in Remark 4.Note that the CS theory refers to the technique that finds the sparse solution for underdetermined linear system.In other word,we can first estimate the composed discrete-time CIR and then transform it into composed CFR using truncated FFT.To this end,we denoteh=[h(1),h(2),··· ,h(K)]Tandg=[g(1),g(2),··· ,g(K)]Tby the discrete-time CIRs and rewrite(20),according to the CS theory,as

    whereFp=SF ∈CNp×Kis the FFT matrix at pilot position withF ∈CN×Kbeing the truncatedK-order FFT matrix,ΦA(chǔ)pFp∈CNp×Krepresents the equivalent pilot matrix indicating (22) is an underdetermined linear system asNp< K,andx=h+bg ∈RK×1is the composed discrete-time CIR with sparsityL=Lh+bLg.Based on(22),the estimation problem can be formulated as

    whereεis the noise tolerance.As discussed,we can reconstruct the composed CFR after estimating the composed discrete-time CIR,i.e.,

    which is the solution of(21).

    3.3 Channel Estimation Algorithm

    To obtain an sparse and accurate estimate ofxin(23),an appropriate algorithm is essential.Existing sparse vector estimation algorithms are grouped into two categories,i.e.,convex optimization and greedy pursuit.Convex optimization algorithm play important roles addressing the problems in various fields.However,their computational complexities are typically burdensome for many real applications.

    As cost-effective alternatives,greedy pursuit has been attached significant importance in recent years.Greedy pursuit aims at reconstructing the signal through serial iterations based on the idea of matching pursuit [11].Within each step,it expands or refines the constructed signal greedily until the halting condition is met.The algorithms in greedy pursuit category include orthogonal matching pursuit (OMP) [12],together with the successors[13–16].

    Considering the typicality and effectiveness,we leverage OMP algorithm to estimate the composed discrete-time CIRxby iteratively identifying the support set Γ consisting of the indices of the columns of sensing matrix Φ.The estimation process is then briefly demonstrated as follows:

    1) Attth iteration,OMP selects an indexγtbased on a maximal correlation test(line 3).

    2) The single candidate indexγtis added into the current support set Γt(line 4).

    3) The channel is recovered by addressing the following problem,i.e.,=arg min||yp?ΦΓtx||22where ΦΓtis a submatrix whose columns are extracted from the sensing matrix with support set indices(line 5).

    Algorithm 1.OMP based channel estimation algorithm.Require: Φ,yp,L;Ensure: ?x,Γ;1: Initialize r0=yp,Ψ0=?,Γ0=?,t=1;2: while t ≤L do 3: γt={index corresponding to the largest elements of||ΦHrt?1||};4: Γt=Γt?1 ∪γt;5: ?xt=Φ?Γtyp;6: rt=yp?ΦΓtΦ?Γtyp;7: t=t+1;8: end while

    4) The residualrtis updated by subtracting the observationypfrom its orthogonal projection onto the subspace spanned by the columns in the support set Γt(line 6).

    5) Iteration halts when theLindices are identified(line 2).

    The pseudo-code of OMP based channel estimation is described in Algorithm 1.

    IV.NUMERICAL RESULTS

    The goals of this subsection are two-fold:(i)depicting the profile of the composed discrete-time CIRx; (ii)investigating the performance of the OMP algorithm for estimatingx.In particular,two algorithms are considered for comparisons: (i)least square(LS);(ii)sparse bayesian learning (SBL) [17]with maximum iterations being 20.The parameters are summarized in Table 1.Simulation results are averaged over 103independent Monte Carlo simulations.The evaluation metric,i.e.,mean squared error (MSE),is defined as MSE=E(||xp?vp||22).

    Table 1.Simulation parameters.

    4.1 Channel Profiles

    In Figure 4,the channel profiles are depicted under various PAB node states.The coordinates (x,y) (in meter)are as follows: S(0,4),N(5,0),R(8,2),surfacey=6,and bottomy=0.AssumingN0=1,N1=1 andN2=2,we calculate the theoretical path number(sparsity)of composed discrete-time CIR asL=L0+bL1L2=5 + (3×5)b.However,Figure 4 shows that the actual path number isL=Lh+bLg=5 + (1×4)b.In addition,from a physical point of view,it can be seen that reflective state results in a more harsh and severe propagation environment than unreflective state.

    Figure 5 shows the CIRs.Compare Figure 5(a)and(b),we can see that the combined channel poses another four impulses on direct channel with relatively small amplitudes.This is due to the double attenuations of S?N,N?R links and severe attenuation in PAB node.It also worths noticed that the actual path number (sparsity) is far less than the theoretical one.The reason is twofold.First,the incident/transmission angles of certain paths(j1=0,1 andj2=0)are too large to meet the critical angle condition,making the signal impossible to get into the node.As mentioned in Remark 4,the backscatter coefficients related to these paths become zero and the number of effective paths decreases.For example,the effective path with non-zero backscattering coefficient consists ofj1=2 andj2=1,2,3,4 in Figure 4 (b).Second,the paths with identical distance(hence the delay)are combined into a single one.For example,pathsj0=±1 in Figure 4(a)are merged to form the second pulse in composed CIR in Figure 5.

    4.2 Algorithm Performance

    Figure 6 shows MSE versus signal-to-noise ratio(SNR)under distinct PAB node states.As can be seen from Figure 6 that the each MSE curve declines with the increase of SNR and both LS cases provide worse performance in contrast with OMP,which verifies the inadequacy of LS to solve an underdetermined equation.For LS and SBL algorithms,the curves onb=0 andb=1 show relatively small gaps,illustrating that channel sparsity has almost no effect on LS and SBL performances.However,an obvious gap occurs for OMP based algorithm.With the increase of channel sparsity,the percentage of path being estimated correctly decreases.This coordinates with the observation in[14].

    Figure 7 shows the MSE versus the SNR.We assumeb=0 and different numbers of pilots are uniformly inserted into subcarriers.As the number of pilots increases,MSE decreases for all three algorithms.It is worth noting that the OMP algorithm achieves,in general,a better MSE performance than LS and SBL for the same number of pilots.In other words,for the same MSE level,the OMP algorithm uses fewer pilots than the competitors.

    Figure 8 plots the CIR estimation performance in the unreflective state under the assumption ofb=0 and SNR=18 dB.The composed discrete-time CIR of LS approach is calculated asLS=(Fp)?.As can be seen from Figure 8 that,though recovery errors occur in two low-amplitude paths,the sparsity associated with the OMP algorithm shows highest similarity with original CIR,and the rest of the paths remain almost zero.However,the composed discretetime CIRs recovered by LS and SBL methods show remarkable differences from the original one.Most of the paths are constructed with small non-zero amplitudes.This demonstrates the limitation of LS approach on addressing the underdetermined equation.To sum up,the OMP based channel estimation algorithm outperforms the LS and SBL based channel estimation algorithms.

    Figure 9 displays the running time for estimating CFR based on LS,OMP and SBL algorithms.It can be seen that the OMP time complexity intermediated between LS and SBL method,but gains from highest estimation accuracy.The reason is that OMP algorithm selects one index by solving one LS problem at a time,and the totalLindices need to be identified through subsequent iterations.For the extreme case of 1-sparse channel,OMP algorithm may offer comparable time complexity compared with LS approach.While SBL algorithm tries to estimate the channel blindly until reaching finite maximum iterations.In other words,SBL algorithm may provide the best performance without considering the time cost in some cases.

    V.CONCLUSION

    In this paper,we have provided a theoretical framework of the PAB assisted UWA communication systems for the first time.Based on this framework,we addressed the channel estimation problem employing the CS theory.More concretely,we presented the five-stage backscatter process and derived the corresponding backscatter coefficient.The parameters to be estimated were then developed following the description of shallow-water acoustic channels.We next formulated the shallow-water acoustic channel estimation problem as a sparse vector recovery problem and leveraged the OMP algorithm to solve it.Numerical results demonstrated that the proposed OMP algorithm outperforms the LS and SBL competitors in estimation accuracy and complexity,respectively.

    ACKNOWLEDGEMENT

    This work was supported by National Key Research and Development Program of China(2020YFB1806604,2021YFB3901302) and National Natural Science Foundation of China (No.61871026).

    久久精品久久久久久久性| 尾随美女入室| 国产精品久久久久成人av| 色视频在线一区二区三区| 欧美 亚洲 国产 日韩一| 日韩一区二区三区影片| 国产高清三级在线| 制服丝袜香蕉在线| 午夜激情久久久久久久| 国产精品嫩草影院av在线观看| 一边摸一边做爽爽视频免费| 少妇猛男粗大的猛烈进出视频| 午夜免费男女啪啪视频观看| 飞空精品影院首页| 韩国av在线不卡| 如何舔出高潮| 成人免费观看视频高清| 日本wwww免费看| 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 亚洲精品国产色婷婷电影| 精品一区二区三区视频在线| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 亚洲国产av新网站| 国产在视频线精品| 夜夜爽夜夜爽视频| 亚洲精品视频女| 男女边吃奶边做爰视频| 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看| 国产精品偷伦视频观看了| 日韩强制内射视频| 在线 av 中文字幕| 80岁老熟妇乱子伦牲交| 亚洲精品亚洲一区二区| 夫妻午夜视频| 51国产日韩欧美| 成年女人在线观看亚洲视频| 久久99蜜桃精品久久| 久久影院123| 亚洲精品第二区| 99久久精品一区二区三区| 纵有疾风起免费观看全集完整版| 狂野欧美激情性xxxx在线观看| 水蜜桃什么品种好| 国产精品不卡视频一区二区| 最黄视频免费看| 日本av手机在线免费观看| 国产无遮挡羞羞视频在线观看| 亚洲性久久影院| av在线观看视频网站免费| 成人影院久久| 秋霞在线观看毛片| 熟女av电影| 免费高清在线观看视频在线观看| 久久久久人妻精品一区果冻| 亚洲国产欧美日韩在线播放| 成人亚洲欧美一区二区av| 日韩制服骚丝袜av| 日韩亚洲欧美综合| 免费人成在线观看视频色| 国产女主播在线喷水免费视频网站| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 亚洲精品日韩av片在线观看| 亚洲欧美日韩卡通动漫| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 99热网站在线观看| 亚洲国产精品成人久久小说| 一级毛片aaaaaa免费看小| 男的添女的下面高潮视频| 午夜激情久久久久久久| 午夜免费鲁丝| 日韩精品免费视频一区二区三区 | 99热国产这里只有精品6| 久久久久久伊人网av| av免费在线看不卡| 日韩成人av中文字幕在线观看| 51国产日韩欧美| 美女中出高潮动态图| 中文字幕久久专区| 另类亚洲欧美激情| 国产成人一区二区在线| 成人亚洲精品一区在线观看| 一级,二级,三级黄色视频| 一区二区av电影网| 久久ye,这里只有精品| 中文字幕精品免费在线观看视频 | 飞空精品影院首页| www.av在线官网国产| 国产高清有码在线观看视频| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 黄片播放在线免费| 97在线人人人人妻| 精品国产露脸久久av麻豆| 黑人高潮一二区| 老司机影院成人| h视频一区二区三区| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 国产视频首页在线观看| 久久99热6这里只有精品| 一级爰片在线观看| av在线观看视频网站免费| 免费观看性生交大片5| 国产成人a∨麻豆精品| av黄色大香蕉| 国产精品国产三级专区第一集| 99九九线精品视频在线观看视频| 国产乱人偷精品视频| 在线天堂最新版资源| 在线观看三级黄色| 成人二区视频| 精品熟女少妇av免费看| 国产精品女同一区二区软件| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 一级a做视频免费观看| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜| 97超视频在线观看视频| 超碰97精品在线观看| 成人免费观看视频高清| 久久久精品94久久精品| 老熟女久久久| 视频在线观看一区二区三区| 亚洲,一卡二卡三卡| 老熟女久久久| 天天躁夜夜躁狠狠久久av| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 久久久国产精品麻豆| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 久久久久久久久久人人人人人人| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 精品一区二区免费观看| 精品一区二区三区视频在线| 人人妻人人爽人人添夜夜欢视频| 久久久久视频综合| 日本黄色片子视频| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 伊人亚洲综合成人网| 人人澡人人妻人| 热re99久久精品国产66热6| 日韩熟女老妇一区二区性免费视频| 亚洲精品乱久久久久久| 婷婷色av中文字幕| 色94色欧美一区二区| 七月丁香在线播放| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 高清av免费在线| 建设人人有责人人尽责人人享有的| 久久久久久久久久久免费av| 激情五月婷婷亚洲| 中文字幕亚洲精品专区| 午夜福利网站1000一区二区三区| 久久97久久精品| tube8黄色片| 亚洲精品视频女| 国产免费视频播放在线视频| 日韩欧美一区视频在线观看| 国产成人91sexporn| 曰老女人黄片| 亚洲av二区三区四区| av又黄又爽大尺度在线免费看| 97精品久久久久久久久久精品| 亚洲国产日韩一区二区| 亚洲av福利一区| 亚洲成人一二三区av| 久久久久久久久久人人人人人人| 人人澡人人妻人| 乱码一卡2卡4卡精品| 这个男人来自地球电影免费观看 | 成人免费观看视频高清| 美女国产视频在线观看| 成人二区视频| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 午夜影院在线不卡| 婷婷色综合大香蕉| 97精品久久久久久久久久精品| 成人免费观看视频高清| 欧美国产精品一级二级三级| 精品人妻一区二区三区麻豆| 日本av免费视频播放| 亚洲精品国产av成人精品| 尾随美女入室| 国产一区亚洲一区在线观看| 丰满饥渴人妻一区二区三| 人人妻人人澡人人爽人人夜夜| √禁漫天堂资源中文www| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 黑人猛操日本美女一级片| 午夜精品国产一区二区电影| 91久久精品电影网| 丝袜美足系列| 少妇的逼水好多| 精品一区二区免费观看| 香蕉精品网在线| 久久99一区二区三区| 天美传媒精品一区二区| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 国产亚洲一区二区精品| 中文字幕人妻丝袜制服| 国产片内射在线| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 王馨瑶露胸无遮挡在线观看| 伦精品一区二区三区| 黑人高潮一二区| 国产精品久久久久久久久免| 欧美亚洲 丝袜 人妻 在线| 国模一区二区三区四区视频| 久久久久国产网址| 国产高清国产精品国产三级| 97在线人人人人妻| 精品国产露脸久久av麻豆| 国产成人午夜福利电影在线观看| videos熟女内射| 欧美97在线视频| 成年人免费黄色播放视频| 黄片无遮挡物在线观看| 夫妻午夜视频| 最近2019中文字幕mv第一页| 久久久久久久久久久丰满| 国产精品一区二区在线观看99| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 狂野欧美激情性bbbbbb| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 人妻一区二区av| 免费不卡的大黄色大毛片视频在线观看| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 精品少妇内射三级| 国产探花极品一区二区| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 中文天堂在线官网| 亚洲av免费高清在线观看| 国产在线免费精品| 久久综合国产亚洲精品| kizo精华| 久久久精品94久久精品| 久久婷婷青草| 亚州av有码| 99热这里只有精品一区| av在线观看视频网站免费| 久久久久网色| 制服丝袜香蕉在线| 夜夜骑夜夜射夜夜干| 国产成人freesex在线| 国产亚洲午夜精品一区二区久久| 精品亚洲乱码少妇综合久久| 国产欧美日韩综合在线一区二区| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 久久综合国产亚洲精品| 欧美老熟妇乱子伦牲交| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 成人国产麻豆网| 性色av一级| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 新久久久久国产一级毛片| 最黄视频免费看| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 97在线视频观看| 久久久久久久亚洲中文字幕| 97超视频在线观看视频| 久久久国产欧美日韩av| 我的女老师完整版在线观看| 国产日韩欧美亚洲二区| 久久久久久久久大av| 飞空精品影院首页| 欧美人与性动交α欧美精品济南到 | 免费少妇av软件| 日韩不卡一区二区三区视频在线| 中文字幕制服av| 亚洲精品,欧美精品| 国产精品99久久99久久久不卡 | 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 久久久久网色| 纵有疾风起免费观看全集完整版| 亚洲综合精品二区| 国产精品久久久久久久电影| 成人无遮挡网站| 精品酒店卫生间| 国产综合精华液| 亚洲精华国产精华液的使用体验| 日韩强制内射视频| 熟女av电影| 国产片内射在线| 精品一品国产午夜福利视频| 一本—道久久a久久精品蜜桃钙片| 丝瓜视频免费看黄片| 免费观看a级毛片全部| 韩国av在线不卡| 久久久亚洲精品成人影院| av不卡在线播放| 在线天堂最新版资源| 亚洲精品av麻豆狂野| 嘟嘟电影网在线观看| 亚洲第一区二区三区不卡| √禁漫天堂资源中文www| 国产视频内射| videosex国产| 99热网站在线观看| 51国产日韩欧美| 久久av网站| 国产伦精品一区二区三区视频9| 99久久综合免费| 国产高清三级在线| 国产黄频视频在线观看| 美女内射精品一级片tv| 大又大粗又爽又黄少妇毛片口| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 中文字幕久久专区| 蜜臀久久99精品久久宅男| 嫩草影院入口| 午夜免费男女啪啪视频观看| 国产精品秋霞免费鲁丝片| a级毛片黄视频| 看十八女毛片水多多多| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图 | 亚洲av福利一区| 亚洲av成人精品一区久久| 一本—道久久a久久精品蜜桃钙片| 涩涩av久久男人的天堂| 黑人高潮一二区| 亚洲欧美色中文字幕在线| 爱豆传媒免费全集在线观看| 亚洲第一av免费看| 久久久国产一区二区| 欧美一级a爱片免费观看看| 一本色道久久久久久精品综合| 国产日韩欧美亚洲二区| 大码成人一级视频| 成年女人在线观看亚洲视频| 国产亚洲最大av| 国产av一区二区精品久久| 亚洲欧洲日产国产| 久久毛片免费看一区二区三区| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产永久视频网站| 狂野欧美白嫩少妇大欣赏| 男女边摸边吃奶| 99热全是精品| 国产一区二区三区av在线| 国产无遮挡羞羞视频在线观看| 午夜av观看不卡| 另类精品久久| 少妇丰满av| 免费黄网站久久成人精品| 国产欧美日韩综合在线一区二区| 十八禁高潮呻吟视频| 亚洲av.av天堂| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 欧美国产精品一级二级三级| 午夜福利,免费看| 日韩成人av中文字幕在线观看| 免费看光身美女| 久久97久久精品| 色94色欧美一区二区| 丰满少妇做爰视频| 日本黄大片高清| 在线 av 中文字幕| 18在线观看网站| 国产精品一二三区在线看| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 成人国产麻豆网| 新久久久久国产一级毛片| 亚洲精品乱久久久久久| 一区二区日韩欧美中文字幕 | 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 精品国产国语对白av| 国产av码专区亚洲av| 中文字幕精品免费在线观看视频 | 精品久久国产蜜桃| 亚洲性久久影院| 国精品久久久久久国模美| 七月丁香在线播放| 免费人成在线观看视频色| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 91在线精品国自产拍蜜月| 亚洲经典国产精华液单| 2021少妇久久久久久久久久久| 亚洲国产精品一区二区三区在线| 一级黄片播放器| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 午夜av观看不卡| 成年av动漫网址| av免费在线看不卡| 久热这里只有精品99| 中文字幕最新亚洲高清| 色5月婷婷丁香| 免费观看无遮挡的男女| 你懂的网址亚洲精品在线观看| 成年人午夜在线观看视频| 视频在线观看一区二区三区| 国产精品蜜桃在线观看| 亚洲国产精品专区欧美| 国产色婷婷99| 日韩av免费高清视频| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 日本免费在线观看一区| 欧美精品亚洲一区二区| 一区在线观看完整版| 国产在线一区二区三区精| 大码成人一级视频| 精品一品国产午夜福利视频| 人人澡人人妻人| 色94色欧美一区二区| 大香蕉97超碰在线| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 七月丁香在线播放| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生| 久久女婷五月综合色啪小说| 亚洲精品日韩在线中文字幕| 人妻系列 视频| 看非洲黑人一级黄片| 老女人水多毛片| 夫妻午夜视频| 免费大片黄手机在线观看| 精品久久久精品久久久| 一级,二级,三级黄色视频| 999精品在线视频| 一区二区av电影网| 日韩电影二区| 精品少妇久久久久久888优播| 老司机影院毛片| 久久久久精品性色| 男人操女人黄网站| av在线老鸭窝| 国产精品一区二区在线不卡| 色94色欧美一区二区| 老司机影院成人| 久久免费观看电影| 狠狠精品人妻久久久久久综合| 日日撸夜夜添| 亚洲精华国产精华液的使用体验| 国产精品久久久久久av不卡| 午夜福利在线观看免费完整高清在| 亚洲欧美日韩另类电影网站| 日韩不卡一区二区三区视频在线| 日韩精品免费视频一区二区三区 | 春色校园在线视频观看| 久久久午夜欧美精品| 纯流量卡能插随身wifi吗| 爱豆传媒免费全集在线观看| 久久亚洲国产成人精品v| 国产成人a∨麻豆精品| 我的老师免费观看完整版| 性色av一级| 久久久久久久久大av| 久久久精品免费免费高清| 亚洲色图综合在线观看| 在线看a的网站| 妹子高潮喷水视频| 十分钟在线观看高清视频www| 另类亚洲欧美激情| 亚洲成人手机| 男女啪啪激烈高潮av片| 亚洲美女搞黄在线观看| 日韩av免费高清视频| 精品人妻熟女毛片av久久网站| 亚洲精品国产av成人精品| 最新的欧美精品一区二区| 久久精品国产亚洲av天美| 一边亲一边摸免费视频| 看免费成人av毛片| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| av在线app专区| 亚洲精品国产色婷婷电影| 亚洲成色77777| a级毛片黄视频| 69精品国产乱码久久久| 日本欧美视频一区| xxxhd国产人妻xxx| 在线看a的网站| 美女视频免费永久观看网站| 爱豆传媒免费全集在线观看| 国产精品99久久久久久久久| 欧美 亚洲 国产 日韩一| 街头女战士在线观看网站| 日本91视频免费播放| 国产日韩一区二区三区精品不卡 | 成人18禁高潮啪啪吃奶动态图 | 亚洲精品色激情综合| 考比视频在线观看| 校园人妻丝袜中文字幕| 国产有黄有色有爽视频| a级毛色黄片| 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 亚洲欧美清纯卡通| 日本av免费视频播放| 午夜影院在线不卡| 国产综合精华液| 成年美女黄网站色视频大全免费 | 少妇人妻久久综合中文| 欧美老熟妇乱子伦牲交| 日韩欧美精品免费久久| 街头女战士在线观看网站| 少妇精品久久久久久久| 欧美日韩视频高清一区二区三区二| 免费观看在线日韩| 丝袜在线中文字幕| 九色成人免费人妻av| 看免费成人av毛片| 午夜激情av网站| 国产伦精品一区二区三区视频9| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 一级二级三级毛片免费看| 免费观看在线日韩| 18禁动态无遮挡网站| 午夜久久久在线观看| 精品酒店卫生间| 狂野欧美激情性bbbbbb| 亚洲综合色惰| 伦精品一区二区三区| 五月天丁香电影| 最新中文字幕久久久久| 两个人免费观看高清视频| videossex国产| 久久99蜜桃精品久久| 久久国产精品男人的天堂亚洲 | 丝瓜视频免费看黄片| 成人影院久久| av.在线天堂| 特大巨黑吊av在线直播| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花| 建设人人有责人人尽责人人享有的| 黑人高潮一二区| 岛国毛片在线播放| 少妇人妻精品综合一区二区| 亚洲一级一片aⅴ在线观看| 日本黄色日本黄色录像| 日韩 亚洲 欧美在线| 七月丁香在线播放| 不卡视频在线观看欧美| 精品人妻熟女av久视频| 七月丁香在线播放| 考比视频在线观看| 亚洲欧美日韩卡通动漫| 婷婷色麻豆天堂久久| 午夜福利视频在线观看免费| 午夜免费鲁丝| 精品人妻偷拍中文字幕| 精品亚洲成国产av| av在线播放精品| 日韩人妻高清精品专区| 91成人精品电影| 一区二区三区四区激情视频| 午夜日本视频在线| tube8黄色片| 一二三四中文在线观看免费高清| 最新的欧美精品一区二区| 天天影视国产精品| 啦啦啦视频在线资源免费观看| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 啦啦啦视频在线资源免费观看| 国产精品国产三级专区第一集| 国产免费又黄又爽又色| 99久久综合免费| 制服诱惑二区| 欧美变态另类bdsm刘玥| 美女cb高潮喷水在线观看| 少妇被粗大猛烈的视频| 国产不卡av网站在线观看|