• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced removal of phosphate from water by fabricating a novel dual metal MIL-101(Fe/Zr)

    2022-11-15 09:10:29JIAOZhen,MIAOZhijia,LIQing
    南水北調(diào)與水利科技 2022年3期

    Abstract:Metal-based compounds are promising adsorbents for phosphate.A novel dual metal-organic framework as an effective adsorbent for phosphate was synthesized by a solvothermal method.The structure analysis revealed that the as-prepared adsorbent (denoted as MIL-101(Fe/Zr)) possessed a porous polyhedral structure with a large specific surface area of 479.1 m2/g and a pore width of 3.4 nm.The X-ray diffraction pattern and Fourier transform infrared spectra suggested that the MIL-101(Fe/Zr) shared a similar structure with MIL-101(Fe),implying successful incorporation of Zr atoms as a second metal into the MIL-101(Fe) structure.Kinetic adsorption of PO43—by MIL-101(Fe/Zr) conformed to the pseudo-second-order model and intraparticle diffusion model,while adsorption isotherm fitted the Freundlich model well (R2=0.978 5).It is suggested that such an adsorption belonged to multiply-layer adsorption.The adsorption capacity of MIL-101(Fe/Zr) was to be 66.00 mg/g.MIL-101(Fe/Zr) performed well at a wide range of pH 2.0~10.0 and high ionic strength (0~40 mg/L NaCl).A structural analysis indicated that the complexation interaction was mainly responsible for PO43—adsorption.These findings can inspire preparation of other dual metal MOFs adsorbent for phosphate removal and recovery from water.

    Key words:MOFs;MIL-101(Fe);adsorption;phosphate;complexation interaction

    1 Introduction

    Phosphorus provides an essential nutrient for the growth of living life in aquatic ecosystem[1-2].When the environment accommodates excessive phosphate from agricultural runoff or industrial discharges,it would give rise in a eutrophication and thus deterioration of water quality[3].Noticeably,it also brings a big challenge to the survival of many aquatic life and the safety of drinking water supply[4-5].It is evaluated that a trace amount of phosphate (above 0.02 mg/L) is able to induce undesirable eutrophication.Therefore,removal of phosphate from water will be of great significance to prevent eutrophication[3].

    There have been reported a lot of methods for controlling phosphate,such as chemical methods,physical methods,and biological methods[6-7].Among them,the chemical methods aroused an extensive attention due to simple operation,low cost,and high efficiency[5,8].Adsorption,as a traditional method,plays an important role in removal of phosphate from water.Generally,adsorptive performance relied greatly on the structure and properties of adsorbents[9-10].Thus,development of novel and excellent adsorbents with fast adsorption kinetics and high adsorption capacity was always a big challenge.Up to date,many adsorbents to enhance phosphate elimination from aquatic environment have been reported by searchers[11].These could be roughly categorized into several types:carbonaceous materials,mineral substance,biomass-derived materials,and other novel synthetic materials[12-13].

    Particularly,metal-organic frameworks (MOFs),built from inorganic metal nodes bridged with organic ligands,emerging as novel and porous materials have drawn a lot of attentions[14-16].Such materials possess uniformly ordered pore size,large specific surface area,and good chemical stability[17-18].Recently,MOFs have been demonstrated as excellent adsorbents for phosphate[19-21].For instance,a cerium-doped MIL-101-NH2(Fe) was reported as superior adsorbent for simultaneous removal of phosphate and arsenate[22].Roles of defects and linker exchange in phosphate adsorption on UiO-66 type metal organic frameworks were also investigated[23].Another MOF-based heterostructure was developed to enhance phosphate removal from practical wastewater via a in situ engineered strategy[24].These suggested that MOFs have great promise in recovery and removal of phosphate from water,and meanwhile that adsorption performance of MOFs depends significantly on their structures and components[25].It is supposed that metal species (nodes of MOFs) may play important roles in adsorption of phosphate due to a high electronegative property of phosphate,and their strong coordination interactions with Lewis acid[26].

    Encouraged by previous literature,we assumed that introduction of a second metal into the classical MOFs may create a different topology structure,and thus bring some unique interfacial properties.This would be beneficial to phosphate adsorption.However,the relationship between the MOF structure formed by doped metal and adsorption property is still unclear.A novel dual metal-organic framework (MIL-101(Fe/Zr)) was synthesized by a solvothermal method.Its structure was characterized and pore properties were analyzed.Adsorption kinetics and isotherms of MIL-101(Fe/Zr) as well as effects of initial solution pH and ionic strength on adsorption of phosphate were fully investigated.The phosphate adsorption mechanisms were demonstrated by a microstructure analysis of MIL-101(Fe/Zr) before and after adsorption.

    2 Experimental section

    2.1 Materials and reagents

    Ferric chloride hexahydrate (FeCl3·6H2O),zirconium chloride (ZrCl4),sodium chloride (NaCl),sodium hydroxide (NaOH),concentrated hydrochloric acid (HCl,36%~38%) and terephthalic acid (H2BDC) were purchased from Sinopharm Chemical Reagent Co.,Ltd (Shanghai,China).N,N-dimethylformamide (DMF) was obtained from Aladdin reagent company (USA).All reagents were of analytical grade,and used directly when received.Phosphate stock solution was prepared by dissolving KH2PO4in deionized water.Deionized water with the conductivity of 18.2 MΩ/cm (DIW) was prepared by the water purification device (Kertone Water Treatment Co.,Ltd,China).

    2.2 Synthesis of MIL-101(Fe/Zr),MIL-101(Fe) and UiO-66

    Typically,0.664 4 g of H2BDC,0.810 6 g of FeCl3·6H2O,and 0.233 0 g of ZrCl”4 were dissolved in 80 mL DMF.And then the mixture in a Teflon-lined stainless-steel autoclave (100 mL) was transferred to an electric oven to react at 150 ℃ for 15 h.After reaction,the precipitate was collected by centrifugation and washed by absolute ethanol and ultrapure water repeatedly.Finally,the product was dried overnight at 80 ℃ for further use.The product was denoted as MIL-101(Fe/Zr).

    For comparison,either FeCl3·6H2O or ZrCl4were added into the mixture to produce MIL-101(Fe) or UiO-66(Zr).Unless specific statement,other reaction conditions were kept the same to synthesis of MIL-101(Fe/Zr).

    2.3 Materials Characterization

    The microstructure and surface elements of the as-prepared adsorbents were observed on a Hitachi SU-8010 field emission scanning electron microscope (FESEM) equipped with an energy dispersive X-ray detector (EDX).Transmission electron microscope (TEM) images were observed on a Hitachi-7700 electron microscope.Powder X-ray diffraction (PXRD) patterns were recorded on an X′Pert PRO diffractor with monochromatizedKαradiation (λ=0.154 nm).Fourier transform infrared spectra (FT-IR) were collected on a Thermo Fisher Scientific Nicolet 6700 instrument.X-ray photoelectron spectroscopy (XPS) was measured on a PHI 5000C ESCA spectrometer with a monochromatized AlKαsource.The peaks were fitted using XPSPEAK41 software and the binding energy was corrected by a reference (284.5 eV of C 1s).Nitrogen adsorption-desorption isotherm was performed on a Quanta chrome Autosorb-1 chemisorption apparatus at 77 K.

    2.4 Adsorption experiments

    Adsorption experiments were conducted in a batch mode.The adsorption kinetics were determined by adding 5 mg adsorbent into 10 mL solution with initial mass concentrations of phosphate (PO43-) (5 mg/L).At predetermined time intervals,aliquots were withdrawn and filtered.Similarly,the adsorption isotherm experiments were performed in the mass concentration range of 5.0~50.0 mg/L.The adsorption experiments were allowed to proceed in a shaker (25 ℃) for 24 h to assure an adsorption equilibrium.

    The effect of solution pH on adsorption was examined within pH of 2.0~10.0 (The solution pH was adjusted by HCl or NaOH solution).The ionic strength tests were investigated by separately adding ions (NaCl) into phosphate solution (50.0 mg/L).The NaCl mass concentrations were approximately 10,20,30 and 40 mg/L,respectively.After adsorption,a small portion of sample solutions were withdrawn and filtered through 0.22 μm syringe filters,and analyzed by an ammonium molybdate spectrophotometric method at the wavelength of 700 nm on a UV-1780 spectrophotometer (Shimadzu Corporation,Japan) and reported as PO43—.Adsorption experiments were performed in duplicate and reported by average values.The removal efficiency (R,%),and adsorption amount (qt,mg/g) were calculated from Equations (1) and (2):

    (1)

    (2)

    WhereC0,CtandCe,mg/L are the initial mass concentration,the instant mass concentration at timetand the equilibrium concentration of phosphate in the solution,respectively.V,mL represents the volume of the phosphate solution,andm,g the mass of the adsorbent.

    3 Results and discussion

    3.1 Structural analysis of MIL-101(Fe/Zr)

    As shown in Fig.1,MIL-101(Fe),UiO-66,and MIL-101(Fe/Zr) possessed polyhedral structure,but they shared different morphology.MIL-101(Fe) showed irregular tetrahedrons while UiO-66 was of irregular octahedrons.Interestingly,MIL-101(Fe/Zr) exhibited a more similar structure to MIL-101(Fe) than those of UiO-66.This could be explained by that the formation of MIL-101(Fe) was dominated in the coordination process and zirconium atoms were doped into the former due to a small content.In spite of zirconium atoms in a small quantity,the stronger coordination tendency made themselves successfully dope into MIL-101(Fe) structure,thus forming a dual metal-organic framework.

    Fig.1 SEM images of MIL-101,UiO-66,fresh MIL-101(Fe/Zr) and used MIL-101(Fe/Zr)

    FT-IR spectra provide another evidence for MIL-101(Fe/Zr) formation.As shown in Fig.2,the spectrum of MIL-101(Fe/Zr) exhibited a similar character with MIL-101(Zr).A peak located at 500 cm-1could be assigned to the stretching vibration of Fe-O,while one located at 800 cm-1should be the stretching vibration of Zr-O.Those peaks were across 1 200 cm-1to 2 000 cm-1in three samples,suggesting the characteristic zone of benzene ring.These facts strongly proved a dual metal-organic framework was successfully formed under current synthetic conditions.

    Fig.2 FT-IR spectra of MIL-101(Fe),UiO-66(Zr),and MIL-101(Fe/Zr)

    PXRD patterns of MIL-101(Fe),UiO-66(Zr),and MIL-101(Fe/Zr) are displayed in Fig.3.Obviously,MIL-101(Fe/Zr) showed identical patterns with MIL-101(Fe) but it was very different from that of UiO-66.For instance,a typical peak at 2θ=7.3° belonged to MIL-101,whereas the peak at 2θ=12.5° may originate from UiO-66.As for MIL-101(Fe/Zr),it showed a diffraction peak at 2θ=7.3°,which suggested MIL-101(Fe/Zr) shared same topology structure with MIL-101(Fe).This fact was consistent with SEM observation and FT-IR analysis,strongly evidencing the formation of MIL-101(Fe/Zr).

    Fig.3 XRD patterns of MIL-101(Fe),UiO-66(Zr),and MIL-101(Fe/Zr)

    XPS can offer some important information of surface elements of materials.As shown in Fig.4,it can be easily found carbon,oxygen,iron,and zirconium elements in spectrum of MIL-101(Fe/Zr).This observation indicated zirconium atoms were introduced into the MOF structure,forming a new dual-metal organic framework.After adsorption,the peak of phosphorus looked remarkable,which further suggested that phosphate had been attached to the surface of MIL-101(Fe/Zr).

    Fig.4 XPS spectra of MIL-101(Fe/Zr) before and after adsorption

    The N2adsorption-desorption isotherm and pore size distribution are shown in Fig.5.Clearly,the isotherm belonged to a typical type II isotherm with a H3 hysteresis,implying that the structure of MIL-101(Fe/Zr) had mesoporous pores,and this would facilitate diffusion and adsorption of pollutants.As shown in Fig.5(b),the Brunauer-Emmett-Teller (BET) specific surface area is to be 479.13 m2/g.Calculated from the Barrett-Joyner-Halenda (BJH) model (the desorption branch),the pore size and pore volume is to be 3.412 nm and 0.183 cm3/g.This mesoporous structure may be beneficial for adsorption.

    Fig.5 N2 adsorption-desorption isotherm and pore size distribution of MIL-101(Fe/Zr)

    3.2 Adsorption performance of MIL-101(Fe/Zr)

    3.2.1Adsorptionkinetics

    The effects of contact time on instantaneous concentration of PO43—is shown in Fig.6(a).As the contact time oft(h) prolonged,the PO43—concentration dropped dramatically at initial stage and then reached a platform,no matter in UiO-66(Zr) or MIL-101(Fe/Zr) system.Noticeably,the dropped degree of mass concentrations was different.For UiO-66(Zr),the mass concentration changed from 10.10 to 6.98 mg/L.However,the mass concentration dropped instantly to 2.08 from 10.10 mg/L for MIL-101(Fe/Zr).It is obvious that MIL-101(Fe/Zr) showed an enhanced adsorption performance comparing to UiO-66(Zr).This may be because doping of a second metal creates unique structure and some defects of MIL-101(Fe/Zr),which facilitated removal and recovery of PO43-.

    For evaluation of adsorption kinetics,the pseudo-first-order model (PFO),the pseudo-second-order model (PSO),and the intraparticle diffusion model (IPD) were used to fit experimental data.The equations of adsorption kinetics are provided as follows[27-28]:

    Pseudo first-order model

    ln(qe-qt)=lnqe-k1t

    (3)

    Pseudo second-order model

    (4)

    Intra-particle diffusion model

    qt=kit0.5+Ci

    (5)

    Whereqtandqe,mg/g in Eqs.(3) and (4) represent the instantaneous adsorption amount of phosphate (t) and the equilibrium adsorption amount of phosphate (equilibrium time).Ci,mg/g in Eq.(5) depicts the effect of boundary layer.k1(min-1),k2[g/(mg·min)-1] andki[mg/(g·min-0.5)-1] are the rate constants of pseudo first-order,pseudo second-order and intraparticle diffusion in Eqs (3)、(4) and (5),respectively.

    The fitting curves and results are displayed in Fig.6(b-d).The correlation coefficients (R2) of PSO (0.997 8) and IPD (0.986 7 and 0.985 8 of the two stage) were similar to that of PFO (0.996 8).Moreover,theqeof PSD (16.10 mg/g) was much closer to the experimental value (16.06 mg/g) than that of PFO (13.86 mg/g) and IPD (7.30 mg/g).It can easily be found that PSO fitted better for kinetic data than PFO and IPD.This demonstrated that the adsorption process was jointly controlled by chemisorption and diffusion mechanism,which may be determined by the unique structure of MIL-101(Fe/Zr)[29].

    Fig.6 ffect of contact time on concentration of PO43—treated by

    Tab.1 Kinetics parameters of three kinetic models

    3.2.2Adsorptionisotherm

    The adsorption isotherm of phosphate by MIL-101(Fe/Zr) was analyzed by the Langmuir model,and Freundlich model (Fig.7).The fitting parameters are shown in Tab.2.As for the isotherm process,the adsorption amount gradually increased when the initial mass concentration increased.When the active sites were completely occupied by phosphate,a saturation adsorption platform can be achieved.According to theR2(0.978 5),it is obvious that the Freundlich model can fit best for adsorption,indicating this adsorption was a multi-layer heterogeneous adsorption[30].The unsatisfactoryR2suggested the adsorption did not comfort to the Langmuir model (R2=0.881 4).Calculated from the Langmuir model,the theoretically maximum adsorption capacity of MIL-101(Fe/Zr) (qm) was to be 66.00 mg/g.

    Equations of adsorption isotherms[31]

    (6)

    (7)

    WhereCe,mg/L andqe,mg/g are the equilibrium concentration of phosphate and its corresponding equilibrium adsorption capacity,respectively.KL,L/mg andKF,mg/g (L/mg)1/nrepresent the constant of the Langmuir model and Freundlich model,respectively.

    Fig.7 Adsorptive isotherm of MIL-101(Fe/Zr)

    Tab.2 Isotherm parameters of two isothermal models

    A comparison among recently reported adsorbents was made,as listed in Tab.3.Their adsorption capacity of PO43-is among 16.14~64.52 mg/g.The as-prepared MIL-101(Fe/Zr) displayed a comparable adsorption capacity (66.00 mg/g) to most of adsorbents listed[28,32].Considering the simple preparation and convenient separation,MIL-101(Fe/Zr) may be a potential adsorbent for phosphate removal.

    Tab.3 Comparison of PO43— adsorption capacity of newly reported adsorbents

    3.2.3EffectsofinitialsolutionpHandionicstrength

    The effect of initial solution pH on adsorption amount is shown in Fig.8(a).When pH ranging from 2.0 to 10.0,the adsorptive amount (qe) dropped to 53.3 from 73.9 mg/g.As pH increased to 10.0,qeunderwent a moderate decline to 53.3 mg/g.In weak acid system,the protons showed no obvious competitive influence on MIL-101(Fe/Zr).However,in an alkaline system,the reason of decreased adsorption activity was probably due to the reduction of active sites.As previously reported,plenty of OH-may induce degradation of a fraction of MIL-101(Fe/Zr)[33].Totally,MIL-101(Fe/Zr) exhibited an excellent removal performance towards phosphate in an acidic solution,however,it was not favored in a neutral or an alkaline condition[34].

    Fig.8 Effects of initial solution pH and on PO43— adsorption

    Likewise,the effect of ionic strength on adsorption amount was also investigated (Fig.8(b)).In a mixed system,the adsorptive amount showed negligible fluctuation although the mass concentration of NaCl increased to 40 mg/L.This suggested that MIL-101(Fe/Zr) could tolerate a high saline solution,and may hold good potential in removal of PO43—from water.

    3.3 Adsorption mechanism

    As shown in Fig.9,the XRD patterns of MIL-101(Fe/Zr) before and after adsorption had no obvious differences,but the diffraction intensity became a little weaker after adsorption.In the patterns,the lattice planes of (111) and (224) could be still clearly observed.This evidence suggested that phosphate had been attached to the surface of MIL-101(Fe/Zr) by the coordination interactions rather than the precipitation reactions.It is obvious that the phosphate species (PO43—) strongly interacted with Fe-or Zr-containing active sites[33].This could be explained why MIL-101(Fe/Zr) exhibited satisfactory adsorption performance.

    Fig.9 XRD patterns of MIL-101(Fe/Zr) before and after adsorption of PO43—

    Besides,a fine observation of SEM images before and after adsorption,and determination of element species of MIL-101(Fe/Zr) after adsorption further verified the occurrence of adsorption behavior.In Fig.10,the SEM image of MIL-101 (Fe/Zr) possessed a clear nanostructure before adsorption.When adsorbing phosphate,the surface became scaly.It can be inferred that PO43—adsorption induced generation of this unique morphology in the interface.EDX spectra suggested the occurrence of the phosphorus element on the surface of used MIL-101(Fe/Zr),and it proved an adsorption behavior on the interface of MIL-101(Fe/Zr) and the solution[35].

    Fig.10 SEM images of MIL-101(Fe/Zr) before and after adsorption of PO43—and EDX spectrum of MIL-101(Fe/Zr) after adsorption

    XPS spectra were used to identify the active sites of MIL-101(Fe/Zr),as shown in Fig.11.A survey investigation and a high-resolution spectrum of P 2p clearly suggested the fact of successful attachment of PO43—to the surface of MIL-101(Fe/Zr) (Fig.11(a) and (b)).XPS elementary analysis agreed well with the EDX determination.Generally,oxygen species could be deconvoluted into three types:lattice oxygen (O2—),hydroxyl oxygen (HO—),and water oxygen (H2O).Fig.11(c) and (d) shows the change of oxygen species of MIL-101(Fe/Zr).The content of water oxygen almost kept unchanged with a fluctuation of 19.30% to 20.55%.The content of hydroxyl oxygen rose from 52.63% to 56.16%,while those of lattice oxygen diminished to 23.29% from 28.07%.These findings suggested that hydroxyl oxygen and lattice oxygen took part in adsorption reactions as active sites for phosphate species[36-37].

    Moreover,the roles of metal elements in MIL-101(Fe/Zr) were also investigated.As displayed in Fig.11(e) and (f),one can easily find that two characteristic peaks of Fe 2p moved to a high binding energy of 725.6 and 711.9 eV from 724.5 and 711.6 eV,respectively.For Zr 3d,one typical peak of Zr 3d exhibited a small shift to the high binding energy while the other one kept in the same site (Fig.11(g) and (h)).These findings indicated that Fe-and Zr-based functional groups both served as active sites in adsorption of phosphate,and that the former might be dominated in the reaction[38].

    Fig.11 XPS spectra of MIL-101(Fe/Zr) and MIL-101(Fe/Zr)-PO43—:survey,P 2p,O 1s,Fe 2p,and Zr 3d

    Totally,in one hand,phosphate may exist in H3PO4,H2PO4—,HPO42—,and PO43—(negligible) in weak acidic solution.In the other hand,the unsaturated metal sites of MIL-101(Fe/Zr) tended to form surface hydroxyls and then these hydroxyls would strongly interact with phosphate species.By ligand exchange reactions,the monodentate mononuclear or bidentate binuclear complex eventually formed in the surface of MIL-101(Fe/Zr) (Fig.12)[39].

    Fig.12 Adsorption mechanism of PO43—by MIL-101(Fe/Zr)

    4 Conclusions

    In summary,one novel type of bimetal-organic framework composite (denoted as MIL-101(Fe/Zr)) was prepared as an effective adsorbent for phosphate by a solvothermal method.This nanostructure shared a similar structure with MIL-101(Fe),implying the Zr atoms as a second metal were incorporated into the MIL-101(Fe) structure.The adsorption of PO43—by MIL-101(Fe/Zr) conformed to the pseudo-second-order model and intraparticle diffusion model,and the Freundlich model well,suggesting a multiply-layer adsorption.It is suggested that such an adsorption belonged to multiply-layer adsorption.The adsorption capacity of MIL-101(Fe/Zr) was to be 66.00 mg/g,which is higher than those of other similar adsorbents.MIL-101(Fe/Zr) performed well at a wide range of pH 2.0~10.0 and high ionic strength (0~40 mg/L NaCl).A characterization analysis indicated that PO43—removal can be attributable to the complexation interaction between phosphate species and the adsorbent.Our findings may offer an alternative adsorbent for PO43—recovery,and inspire design of other metal-based adsorbents.

    岛国在线观看网站| 亚洲精品美女久久久久99蜜臀| 亚洲色图av天堂| 91麻豆av在线| 亚洲欧美日韩卡通动漫| 国产三级在线视频| 午夜两性在线视频| 中文字幕高清在线视频| 蜜桃久久精品国产亚洲av| 真人一进一出gif抽搐免费| 叶爱在线成人免费视频播放| 国产欧美日韩一区二区三| 国产伦精品一区二区三区视频9 | 99热这里只有是精品50| 操出白浆在线播放| 最近最新中文字幕大全免费视频| 十八禁网站免费在线| 97碰自拍视频| 一个人看的www免费观看视频| 欧美+日韩+精品| 国产精品野战在线观看| 亚洲在线观看片| 欧美成人免费av一区二区三区| 老司机午夜十八禁免费视频| 熟女人妻精品中文字幕| 一区二区三区免费毛片| 18禁美女被吸乳视频| 欧美黄色片欧美黄色片| 亚洲美女视频黄频| 2021天堂中文幕一二区在线观| 日本免费一区二区三区高清不卡| 日韩精品中文字幕看吧| 香蕉久久夜色| 成人精品一区二区免费| 亚洲avbb在线观看| 国产单亲对白刺激| 中文字幕精品亚洲无线码一区| 欧美成人a在线观看| 中文字幕人妻丝袜一区二区| 男人舔奶头视频| 夜夜看夜夜爽夜夜摸| 国产精品一区二区三区四区免费观看 | 国内精品一区二区在线观看| 免费人成在线观看视频色| 级片在线观看| 在线看三级毛片| 欧美乱妇无乱码| 欧美成人一区二区免费高清观看| 国产一区二区三区在线臀色熟女| 国产av不卡久久| 一进一出好大好爽视频| 国产成人系列免费观看| 日韩人妻高清精品专区| 国产精品亚洲美女久久久| 日韩欧美在线乱码| 黑人欧美特级aaaaaa片| 亚洲国产中文字幕在线视频| 欧美日韩一级在线毛片| 欧美日韩乱码在线| 精品久久久久久久毛片微露脸| 国产精品日韩av在线免费观看| 两个人的视频大全免费| 91在线观看av| 91九色精品人成在线观看| 99精品在免费线老司机午夜| 啦啦啦观看免费观看视频高清| 内地一区二区视频在线| 两人在一起打扑克的视频| 国产美女午夜福利| 18禁在线播放成人免费| 少妇裸体淫交视频免费看高清| 日韩 欧美 亚洲 中文字幕| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 久久精品91蜜桃| 一个人看视频在线观看www免费 | 亚洲欧美日韩无卡精品| 又紧又爽又黄一区二区| 欧美精品啪啪一区二区三区| 久久精品国产综合久久久| 9191精品国产免费久久| 窝窝影院91人妻| 国产综合懂色| 亚洲一区高清亚洲精品| av片东京热男人的天堂| 麻豆成人午夜福利视频| 男人和女人高潮做爰伦理| 午夜精品在线福利| 亚洲精品久久国产高清桃花| 中亚洲国语对白在线视频| 18美女黄网站色大片免费观看| 性色avwww在线观看| 天美传媒精品一区二区| 国产精品爽爽va在线观看网站| www.999成人在线观看| 欧美午夜高清在线| avwww免费| 99国产极品粉嫩在线观看| 12—13女人毛片做爰片一| 大型黄色视频在线免费观看| 男人舔奶头视频| 亚洲专区中文字幕在线| av在线蜜桃| 亚洲人成网站在线播放欧美日韩| 三级男女做爰猛烈吃奶摸视频| 欧美不卡视频在线免费观看| 手机成人av网站| 日本成人三级电影网站| 国产精品1区2区在线观看.| 在线观看66精品国产| 国产精品99久久99久久久不卡| 国产黄片美女视频| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 国内少妇人妻偷人精品xxx网站| 日韩欧美 国产精品| 不卡一级毛片| 国产乱人视频| 日韩精品青青久久久久久| 国产高潮美女av| av在线蜜桃| 悠悠久久av| 在线观看av片永久免费下载| 国产三级在线视频| 亚洲激情在线av| 波多野结衣高清作品| 国产精品日韩av在线免费观看| 最近视频中文字幕2019在线8| 欧美成人性av电影在线观看| 一夜夜www| 女人十人毛片免费观看3o分钟| www.www免费av| 午夜福利视频1000在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲人成伊人成综合网2020| 国产日本99.免费观看| 少妇人妻精品综合一区二区 | 美女被艹到高潮喷水动态| 国产av麻豆久久久久久久| 国产成人av激情在线播放| 男女那种视频在线观看| 欧美最黄视频在线播放免费| 久久久久久久久中文| 欧美+日韩+精品| 婷婷精品国产亚洲av| 日韩精品中文字幕看吧| 免费看光身美女| 婷婷亚洲欧美| 黄色日韩在线| 亚洲国产高清在线一区二区三| 国产精品1区2区在线观看.| 岛国在线观看网站| 两个人的视频大全免费| 一个人看的www免费观看视频| 91在线观看av| 亚洲欧美日韩东京热| 欧美乱码精品一区二区三区| www日本在线高清视频| 免费看光身美女| 99视频精品全部免费 在线| 不卡一级毛片| 人人妻人人澡欧美一区二区| 最新中文字幕久久久久| 欧美bdsm另类| 国产一区在线观看成人免费| 久久人人精品亚洲av| av天堂在线播放| 成人av一区二区三区在线看| 亚洲精品亚洲一区二区| 国产野战对白在线观看| 精华霜和精华液先用哪个| 亚洲成人精品中文字幕电影| 久久久成人免费电影| 国产成人福利小说| 欧美一区二区国产精品久久精品| 两个人视频免费观看高清| 国模一区二区三区四区视频| 久久久久九九精品影院| 免费在线观看亚洲国产| 夜夜夜夜夜久久久久| 久久伊人香网站| 国产伦精品一区二区三区四那| 搞女人的毛片| 成年女人看的毛片在线观看| 国产av在哪里看| 搡老岳熟女国产| 久久久久久久久久黄片| 中文字幕熟女人妻在线| 亚洲精品影视一区二区三区av| 国产亚洲av嫩草精品影院| 99久久精品国产亚洲精品| 婷婷丁香在线五月| www.熟女人妻精品国产| 国产探花在线观看一区二区| 婷婷亚洲欧美| 动漫黄色视频在线观看| 亚洲国产精品sss在线观看| 久久99热这里只有精品18| 最近最新中文字幕大全电影3| 国内久久婷婷六月综合欲色啪| 人人妻人人看人人澡| 成人国产综合亚洲| 一区二区三区高清视频在线| 亚洲欧美日韩无卡精品| 欧美午夜高清在线| 国产av不卡久久| 俄罗斯特黄特色一大片| 欧美性猛交黑人性爽| 一个人免费在线观看电影| 亚洲黑人精品在线| 母亲3免费完整高清在线观看| а√天堂www在线а√下载| 亚洲欧美日韩卡通动漫| 最近最新免费中文字幕在线| 毛片女人毛片| 国产淫片久久久久久久久 | 日韩中文字幕欧美一区二区| 精品人妻偷拍中文字幕| av中文乱码字幕在线| 日韩 欧美 亚洲 中文字幕| 婷婷六月久久综合丁香| 国产一区二区亚洲精品在线观看| 18禁在线播放成人免费| 欧美黑人巨大hd| 性色avwww在线观看| 无人区码免费观看不卡| 日本黄色片子视频| 熟女少妇亚洲综合色aaa.| 美女被艹到高潮喷水动态| 国产毛片a区久久久久| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 国产一区二区亚洲精品在线观看| 一个人观看的视频www高清免费观看| 久99久视频精品免费| 久久久久精品国产欧美久久久| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 国产欧美日韩一区二区三| 搡老妇女老女人老熟妇| 亚洲国产色片| 欧美成人免费av一区二区三区| 在线播放无遮挡| 动漫黄色视频在线观看| 亚洲成人中文字幕在线播放| 欧美一区二区国产精品久久精品| 日韩高清综合在线| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| 一级黄色大片毛片| 搡老岳熟女国产| 久久精品综合一区二区三区| 日韩亚洲欧美综合| 丰满人妻熟妇乱又伦精品不卡| 欧美日本视频| 精品一区二区三区视频在线观看免费| 最好的美女福利视频网| 免费电影在线观看免费观看| 久久久国产精品麻豆| 日韩av在线大香蕉| 老司机午夜十八禁免费视频| netflix在线观看网站| 午夜福利高清视频| 久久精品夜夜夜夜夜久久蜜豆| 19禁男女啪啪无遮挡网站| 国模一区二区三区四区视频| 日本撒尿小便嘘嘘汇集6| www国产在线视频色| 精品久久久久久久久久久久久| 欧美日本视频| av天堂中文字幕网| 亚洲精品成人久久久久久| 国产精品免费一区二区三区在线| 欧美zozozo另类| 首页视频小说图片口味搜索| 一级毛片高清免费大全| av福利片在线观看| 97人妻精品一区二区三区麻豆| 精品久久久久久久毛片微露脸| 青草久久国产| 成熟少妇高潮喷水视频| 熟妇人妻久久中文字幕3abv| 1000部很黄的大片| 18禁国产床啪视频网站| 亚洲av第一区精品v没综合| 免费观看的影片在线观看| 亚洲avbb在线观看| 中文字幕高清在线视频| 成年女人看的毛片在线观看| 丰满的人妻完整版| 中国美女看黄片| 日本在线视频免费播放| 又黄又爽又免费观看的视频| 无遮挡黄片免费观看| 欧美性感艳星| 一级黄片播放器| 亚洲中文日韩欧美视频| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 最新中文字幕久久久久| 啪啪无遮挡十八禁网站| 熟女少妇亚洲综合色aaa.| 欧美乱色亚洲激情| 97人妻精品一区二区三区麻豆| 我要搜黄色片| 美女 人体艺术 gogo| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 宅男免费午夜| 99riav亚洲国产免费| 观看免费一级毛片| 中文亚洲av片在线观看爽| 可以在线观看的亚洲视频| 99久久成人亚洲精品观看| 黄色成人免费大全| 久久99热这里只有精品18| 在线观看午夜福利视频| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 久久精品人妻少妇| 天天添夜夜摸| xxxwww97欧美| 一区二区三区国产精品乱码| 悠悠久久av| 国产精品三级大全| 精品一区二区三区视频在线 | 精品人妻1区二区| 精品久久久久久久毛片微露脸| 久99久视频精品免费| 亚洲在线观看片| 三级国产精品欧美在线观看| 国产欧美日韩一区二区三| 亚洲精品久久国产高清桃花| 黄色丝袜av网址大全| 亚洲 欧美 日韩 在线 免费| 91麻豆精品激情在线观看国产| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 久久国产精品影院| 18禁国产床啪视频网站| 久99久视频精品免费| 18+在线观看网站| 亚洲乱码一区二区免费版| 俄罗斯特黄特色一大片| 国产美女午夜福利| 亚洲天堂国产精品一区在线| 在线天堂最新版资源| 亚洲,欧美精品.| 黄片大片在线免费观看| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 在线免费观看的www视频| 久久午夜亚洲精品久久| 日本在线视频免费播放| 久久国产精品影院| 黄片小视频在线播放| 欧美日韩一级在线毛片| 看片在线看免费视频| av中文乱码字幕在线| av视频在线观看入口| www.熟女人妻精品国产| 精品不卡国产一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲成a人片在线一区二区| 在线播放无遮挡| 无遮挡黄片免费观看| 日本a在线网址| 欧美国产日韩亚洲一区| 亚洲中文字幕一区二区三区有码在线看| 天堂动漫精品| 免费在线观看亚洲国产| 久久久久国产精品人妻aⅴ院| 亚洲美女视频黄频| 久久精品91无色码中文字幕| 中文字幕久久专区| 欧美一区二区精品小视频在线| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 精品一区二区三区人妻视频| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| a级毛片a级免费在线| 久久草成人影院| 欧美日韩综合久久久久久 | 天美传媒精品一区二区| 男女那种视频在线观看| 国产99白浆流出| 综合色av麻豆| 精品日产1卡2卡| 欧美三级亚洲精品| 露出奶头的视频| 蜜桃久久精品国产亚洲av| 不卡一级毛片| 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 久久香蕉精品热| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 日本成人三级电影网站| 色综合站精品国产| 特大巨黑吊av在线直播| 亚洲 欧美 日韩 在线 免费| 亚洲无线在线观看| svipshipincom国产片| 99久久久亚洲精品蜜臀av| 性色av乱码一区二区三区2| 亚洲国产精品久久男人天堂| 日韩欧美国产一区二区入口| 国产精品久久久久久人妻精品电影| 午夜久久久久精精品| 成人国产一区最新在线观看| 母亲3免费完整高清在线观看| 真实男女啪啪啪动态图| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清| 男女那种视频在线观看| 女人高潮潮喷娇喘18禁视频| 在线观看午夜福利视频| 免费在线观看日本一区| 男人舔奶头视频| 有码 亚洲区| 成人午夜高清在线视频| 亚洲av一区综合| 淫秽高清视频在线观看| 久久中文看片网| 99精品欧美一区二区三区四区| 一个人免费在线观看电影| 亚洲精品乱码久久久v下载方式 | 69av精品久久久久久| 国内精品久久久久精免费| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久com| 在线十欧美十亚洲十日本专区| 99在线人妻在线中文字幕| 99久国产av精品| 成人av一区二区三区在线看| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 国内精品久久久久久久电影| 亚洲中文字幕日韩| 我要搜黄色片| 日日夜夜操网爽| www.色视频.com| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 麻豆一二三区av精品| 久久久久久久亚洲中文字幕 | 欧美一区二区亚洲| 国产不卡一卡二| 久久久久性生活片| 国产午夜福利久久久久久| 岛国在线免费视频观看| 一级毛片高清免费大全| 国产私拍福利视频在线观看| www国产在线视频色| 91久久精品电影网| 精品久久久久久久末码| 91在线观看av| АⅤ资源中文在线天堂| 99久久成人亚洲精品观看| 国产野战对白在线观看| 好男人在线观看高清免费视频| 老熟妇乱子伦视频在线观看| 听说在线观看完整版免费高清| 黑人欧美特级aaaaaa片| 最新中文字幕久久久久| 国产日本99.免费观看| 全区人妻精品视频| 亚洲av熟女| 99久久99久久久精品蜜桃| 国产欧美日韩精品亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 99国产极品粉嫩在线观看| 久9热在线精品视频| 在线观看免费视频日本深夜| 国产黄色小视频在线观看| 一级毛片女人18水好多| 中文字幕人成人乱码亚洲影| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 欧美zozozo另类| 日韩国内少妇激情av| 国产精品三级大全| 国产成人av激情在线播放| 搡女人真爽免费视频火全软件 | www.www免费av| 日韩国内少妇激情av| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 精华霜和精华液先用哪个| 日韩有码中文字幕| 夜夜看夜夜爽夜夜摸| 欧美在线一区亚洲| a级一级毛片免费在线观看| 婷婷六月久久综合丁香| 欧美色欧美亚洲另类二区| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 精品福利观看| 免费大片18禁| 少妇的逼水好多| 天堂动漫精品| 国产精品永久免费网站| 亚洲真实伦在线观看| 欧美日韩一级在线毛片| 国产乱人伦免费视频| 在线观看美女被高潮喷水网站 | 成人性生交大片免费视频hd| 午夜两性在线视频| 91久久精品国产一区二区成人 | 国产成人系列免费观看| 少妇人妻精品综合一区二区 | 91久久精品国产一区二区成人 | 午夜福利高清视频| 真人一进一出gif抽搐免费| 亚洲色图av天堂| 国产精品三级大全| 中文在线观看免费www的网站| 亚洲自拍偷在线| 精品无人区乱码1区二区| 国产高潮美女av| 黄片大片在线免费观看| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯| 一级毛片高清免费大全| 床上黄色一级片| 精品久久久久久久久久免费视频| 热99在线观看视频| 两人在一起打扑克的视频| 97碰自拍视频| 在线观看免费午夜福利视频| 九九在线视频观看精品| 男女视频在线观看网站免费| 欧美精品啪啪一区二区三区| 天美传媒精品一区二区| 亚洲无线观看免费| 嫩草影院精品99| 小蜜桃在线观看免费完整版高清| 亚洲精品粉嫩美女一区| 国产又黄又爽又无遮挡在线| 久久中文看片网| 日本一本二区三区精品| 久久久久久久久久黄片| 黑人欧美特级aaaaaa片| 高清日韩中文字幕在线| 制服人妻中文乱码| 91麻豆精品激情在线观看国产| av黄色大香蕉| 91麻豆精品激情在线观看国产| 久久久久精品国产欧美久久久| 搡女人真爽免费视频火全软件 | 美女 人体艺术 gogo| 中文字幕av成人在线电影| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 97碰自拍视频| 色视频www国产| 搡老岳熟女国产| 亚洲avbb在线观看| 九九久久精品国产亚洲av麻豆| 法律面前人人平等表现在哪些方面| 亚洲片人在线观看| 黄色丝袜av网址大全| 国产精品久久久人人做人人爽| 高清在线国产一区| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| 他把我摸到了高潮在线观看| 国产综合懂色| 国产成年人精品一区二区| 99热精品在线国产| 淫秽高清视频在线观看| 国产亚洲精品综合一区在线观看| 国产精品精品国产色婷婷| 日本熟妇午夜| 老鸭窝网址在线观看| 麻豆成人av在线观看| 亚洲最大成人手机在线| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器| 嫩草影视91久久| 亚洲一区高清亚洲精品| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 88av欧美| a级一级毛片免费在线观看| 欧美性猛交黑人性爽| 欧美日韩国产亚洲二区| 国产黄色小视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品影视一区二区三区av| 一级黄色大片毛片| 久久午夜亚洲精品久久| 成人国产一区最新在线观看| 国产亚洲欧美98| 国产真人三级小视频在线观看| 久久久久性生活片| 国产黄片美女视频| 桃红色精品国产亚洲av| 91久久精品电影网| aaaaa片日本免费| 欧美av亚洲av综合av国产av| 亚洲人成网站在线播| 精品国产三级普通话版| 夜夜躁狠狠躁天天躁| 综合色av麻豆| 两性午夜刺激爽爽歪歪视频在线观看| 69人妻影院|