• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Saturated super-twisting sliding mode missile guidance

    2022-11-13 07:29:52MinGONGDiZHOUXingungZOU
    CHINESE JOURNAL OF AERONAUTICS 2022年10期

    Min GONG, Di ZHOU,*, Xingung ZOU

    a School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

    b School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China

    KEYWORDS Highly maneuvering target;Input saturation;Missile guidance control;Robust control;Sliding mode control;Super-twisting algorithm

    Abstract This paper concentrates on developing a missile terminal guidance law against a highly maneuvering target whose maneuvering acceleration is very close to that of the missile or even exceeds the missile normal acceleration in a finite period of time. A new saturated super-twisting algorithm is proposed and applied to the design of missile guidance law. The proposed algorithm has the advantages of simple structure,easy parameter tuning rules and a full utilization of the limit control input.The designed saturated super-twisting sliding mode guidance law is then employed in a missile guidance system.Simulation and its superior performance against strong maneuvering targets is demonstrated.

    1. Introduction

    The terminal guidance law of missile is mainly for accurate interception, even in the presence of external environment interference, parameter uncertainty, or target maneuvering.Proportional Navigation (PN) guidance law is generally used due to its easy implementation.1Although PN guidance law has the ability to intercept relatively less maneuverable targets,it may lead to unacceptable miss distance when confronted with highly maneuvering targets.The augmented proportional navigation guidance law is capable of dealing with maneuvering target.However,it requires target acceleration information in real-time,which is often difficult to obtain in practical applications.In order to intercept maneuvering targets,some robust control and nonlinear control methods are applied to the design of guidance law. Sliding mode guidance law is one of the hot topics in research.2-7

    Sliding mode control is invariant to parameter variations and external disturbances. However, chattering with high frequency is a barrier for the application to the guidance law design. In order to alleviate the chattering, in Refs. 5 and 6,the high frequency switching control function is replaced with its continuous approximation function but resulting in a loss of robustness. To reduce the chattering but keep the robustness against the target maneuver, there are currently three kinds of methods in literature. The first kind of method is using high (second) order sliding mode control to develop guidance laws.6,7Moreover, Super-Twisting Algorithm(STA),a kind of Second-Order Sliding Mode(SOSM) control algorithms, was also applied in the design of guidance law.8,9Although the second-order sliding mode control methods can avoid chattering without losing robustness, it may exhibit a windup phenomenon due to integral implementation.The second broadly applied approach is to estimate the target acceleration and external and internal disturbance in real time using a disturbance observer. For example, some sliding mode guidance laws were designed with high-order disturbance observer,6,7,10extended state observer,11,12extended high-gain observer,13and so on. These observers can actively observe the target maneuvers and compensate them in the guidance law. However, from a practical point of view, these observers are sensitive to the sensor noise and time delay of measurements.More importantly,the observers cannot converge when the system input is saturated.The third method is applying an adaptive law to adjust the parameters according to the target acceleration to weaken the chattering phenomenon.14-16

    From a practical standpoint, in the above mentioned guidance laws,the saturation of guidance command may result in a loss of intercept accuracy,or even lead to the instability of the guidance system. Therefore, it is quite significant to study a missile guidance law considering saturated acceleration commands,especially for intercepting a highly maneuvering target whose normal acceleration is very close to that of a missile.For example,the maximum normal accelerations of some near space hypersonic vehicles are very close to the missile maximum normal acceleration. Considering this strict case, in this paper, a novel STA accounting for input saturation is proposed and used to resist the target maneuver. Super-twisting algorithm, initially proposed in Ref. 17, is one of the SOSM control algorithms. Recently, there has been rapidly growing interest in saturated STA to overcome the windup phenomenon such as Refs. 18-21. However, in Refs. 18 and 20,the modifications are based on switching from different conditions, leading to a discontinuity in the control signal or complexity in applications. Moreover, the capabilities of the saturated STAs in Refs. 18-21 are all limited in dealing with perturbations, and the parameter tuning rules for upper bounds of the perturbation are severely strict. This paper presents a modification for saturated STA to overcome these drawbacks. Using this approach, the designed guidance law can robustly enforce the interception for highly maneuvering targets while the acceleration command constraint is considered.

    The rest of this paper is arranged as follows. Section 2 is dedicated to a formulation of target-missile engagement. In Section 3,the saturated super-twisting control law is proposed.In Section 4, the design of saturated STA guidance laws is described. In Section 5, numerical simulations are carried out to demonstrate the effectiveness of the proposed saturated STA and guidance laws. Section 6 concludes the whole paper.

    2. Missile-target engagement equations

    In planar interception, as shown in Fig. 1, the scenario between the target and missile is mainly described in terms of relative distance R and the Line-of-Sight (LOS) angle q.22

    The relative motion equation can be described as follows

    where V denotes the velocity and denotes the flight path angle,the subscript ‘‘T” and ‘‘M” represent target and missile,respectively. Substituting VR= ˙R and Vq=R ˙q respectively into Eqs. (1) and (2), and differentiating VRand Vqwith respect to time produce

    where wRand uRare the target and missile acceleration along the LOS, respectively; wqand uqrespectively represent the components of target and missile acceleration perpendicular to the LOS.22Considering Eqs. (1) and (2), and substituting wR, uR, wqand uqinto Eqs. (3) and (4), the equations of missile-target engagement are obtained

    In the terminal guidance phase, uRshould guarantee that the target-missile relative velocity VRis negative, while uqshould guarantee the LOS stable. Usually, uRis not available in a practical terminal guidance process and the initial negative VRis ensured by the middle course guidance of the missile.22The following work will be concentrated on designing the control variable uqto send Vqto zero in Eq. (10), where wqis regarded as a disturbance variable.

    3. Saturated super-twisting control

    3.1. Saturated super-twisting controller design

    Consider the following first-order system with input saturation

    where W represents the upper bound of perturbation amplitude and L is the perturbation’s Lipschitz constant.21The control task is to design the input u for system (11) to send the sliding variable σ to zero in finite time.In practice,the control input must be stronger than the perturbation, and so it is reasonable to assume that

    where k1and k2are positive parameters. When the control input is saturated, the original STA has an integral element and hence may suffer from a so called ‘‘windup problem”.Inspired by the Variable-Structure PID (VSPID) method in Ref. 23, an additional saturation error feedback term is employed in this paper,to prevent the windup effect.However,unlike Ref. 23, the method proposed in this paper does not require conditional switching. The proposed saturated STA is obtained as

    Remark 1. The proposed saturated STA is easy to implement,because, compared with the VSPID method in Ref. 23 and recent Refs.20 and 18,no switching between different modes is required and only the sign function of the saturation error needs to be incorporated into the original STA. Fig. 2 depicts the block diagram of the original STA and that of the proposed STA.

    Remark 2. Maximum perturbation amplitude W of Ref. 21 should fulfill the following inequality

    3.2. Stability analysis

    When the system is not exceeding the control bound U, i.e.,u = satU(u), the controllers (17) and (18) are equivalent to the original STA. Introducing the abbreviation δ= ˙w, and the state variables

    Stability of this case is investigated in Refs. 24, 25 and 26.Herein, the Lyapunov based approach proposed in Ref. 26 is used in the following theorem.

    Proof. Given in Ref. 26, Section 2.□

    Remark 3. From the above analysis, it is found that the proposed saturated STA preserves the properties of the original STA. While the control laws in Ref. 19 will never behave like the original STA when the control input is not saturated.

    Theorem 1. Suppose w and ˙w satisfies Eq. (13). If the controller parameters k1, k2and k3in Eqs. (17) and (18) fulfill the following inequalities

    Therefore, the condition in Lemma 1 is fulfilled and so the system consisting of Eqs. (11), (17) and (18), or rather, the closed loop system (22) and (23), converges to zero in finite time.

    Case 2. If the amplitude of control input is exceeding the control bound U, we have

    there clearly exists such a T1, because v decreases faster than a negative constant rate until Eq. (28) eventually holds. If u <-U <0, similarly, it follows from Eq. (18)and (27) that

    It will be shown that there exists T >T1such that |u |<U.Consider the derivative of |u | with respect to time for t >T1:

    4. Saturated STA guidance law

    It is widely known that keeping the LOS angle constant can eventually lead to a successful interception. For the guidance system (10) we choose a sliding surface as

    Remark 4. The term -VRVq/R=-VR˙q obtained from the known dynamics is similar to a PN guidance term.The integral windup will not occur even if the acceleration bound is exceeded.

    Though the initial value of Vqis taken into consideration,the maneuvering of the target may also cause the abrupt change of Vq. All the strategies are designed to avoid a large guidance command, i.e. the saturation, in the initial phase,but sacrificing the robustness of the guidance system. In our paper, the proposed saturated STA guidance law is able to work in a saturation status.Therefore,the robustness of guidance system will not be lessened because of the avoidance of saturation in the initial phase.

    5. Numerical results

    In order to illustrate the performance of the proposed Saturated STA Guidance (SSTAG) law, a three-dimensional interception problem is considered. This problem can be decoupled into two planar loops, i.e., the elevation loop and the azimuth loop, in the guidance law design,2because it was proven that planar guidance laws are able to ensure the convergence of angular rates as they are directly applied to the three-dimensional guidance environment.27,28

    An inertial reference coordinate system is defined as follows.The origin is at the launch site, and the X-axis is in the circle around the earth which contains the launch site and the targeting point and tangential to the circle,positively pointing to the targeting point. The Y-axis is also in the circle and vertical to the X-axis, positively pointing to the sky. The direction of the Z-axis is determined according to the right-hand rule.

    To demonstrate the effectiveness of the SSTAG,the Adaptive Sliding-Mode Guidance(ASMG)law in Ref.3 and a typical Second-Order Sliding Mode Guidance (SOSMG) law in Ref. 6 are introduced for comparison. The ASMG law has been verified to be effective to intercept maneuvering targets.3However, the performance remains to be tested when the target is highly maneuvering. The ASMG law is given by

    The parameters of the ASMG are set as N=4 and ε=160.The variable structure item sgn(˙q ) in ASMG can be replaced with an approximate function ˙q/|˙q |+δ2, where δ2is set as 0.05.

    Like STA, the SOSMG law increases robustness by introducing integral terms. However, the SOSMG law lacks antisaturation terms compared with SSTAG. The SOSMG law is given by

    with c0=0.1. In order to ensure the fairness of the comparative test,the parameters k1and k2in SOSMG law are the same as those in SSTAG. The advantages of the proposed guidance law are that it can work in saturated state and has high robustness.The advantage of SSTAG can only be seen when the target’s maneuvering ability is very strong or the handover error is very large to lead to saturation.Thus three scenarios will be investigated.

    5.1. Scenario 1

    In this scenario, we consider a near space interception problem. The initial states of the target and interceptor are listedin Table 1. It can be calculated from Table 1 that the initial target-missile relative range and velocity are R0=150 km and VR0= 6.2774 km/s. The initial LOS angles and its angular rate are qε=-0.1910。 and ˙qε=-0.0123。/s in pitch,qβ=0。 and ˙qβ=0。/s in yaw, respectively. In this scenario,target accelerations which are normal to LOS in the target translation coordinate system are chosen as constants aTy=C1g and aTz=C1g, where C1=2.5, 3.5, 4.5, respectively. It is observed that the maneuverability of the target is close to that of the interceptor as the value of C1increases.

    Table 1 Initial states of target and interceptor in Scenario 1.

    Table 2 Miss distances in Scenario 1.

    The final miss distances under the three guidance laws are respectively shown in Table 2. As is shown in Table 2, with the enhancement of target maneuvering ability, the miss distance under ASMG law increases gradually, i.e., 0.0012 m,55.7055 m and 1526.7834 m while SSTAG can maintain a very small miss distance. The ASMG law has been verified to be effective to intercept maneuvering targets.3But it requires the interceptor to have an absolute advantage in normal acceleration. The interceptor with SOSMG law can approach the target quickly. With a proper parameter c0=0.02 in the SOSMG law, the miss distance can be reduced to 0.0032 m,0.0032 m and 0.0052 m. As is shown in Fig. 4, when C1=4.5,the SSTAG law can guarantee a successful interception while the ASMG law cannot. The LOS angular rates and guidance commands when C1=4.5 under three guidance laws are plotted in Figs. 5 and 6. Fig. 5 illustrates that under the SOSMG and SSTAG,the LOS angular rates strictly remained around zero as compared with its counterparts.Fig.6 indicates that the transient responses of SOSMG and SSTAG’s acceleration commands are better than the ASMG in the initial phase. SSTAG’s acceleration commands do not saturate during the whole guidance process.The SOSMG’s acceleration command became saturated in the final stage while ASMG’s acceleration commands remain saturated after 10 s. As a result, ASMG yields a much larger miss distance.

    5.2. Scenario 2

    In the second scenario, the initial conditions of the target and interceptor are listed in Table 3. The initial relative range and velocity are calculated as R0=150 km and VR0= 6.2774 km/s. In this scenario, the target flies without maneuvering. But the handover error from the midcourseguidance process to the terminal guidance process is relatively large. The initial LOS angular rates in pitch and yaw are the following three initial conditions: Condition 1.˙qε=-0.1262。/s, ˙qβ=-0.1289。/s, Condition 2.˙qε=-0.1917。/s, ˙qβ=-0.1955。/s, Condition 3.˙qε=-0.2446。/s, ˙qβ=-0.2604。/s, respectively. As is shown in Table 4, in scenario 2 the ASMG law and the SSTAG law can guarantee successful interceptions under three conditions while the SOSMG law leads to a much larger miss distance as the initial error increases i.e., 0.1094 m, 18.1313 m, and 391.2587 m. Figs. 7, 8 and 9 show the engagement trajectory,LOS angular rate and guidance commands under condition(3)). Fig. 8 illustrates that the LOS angular rates are well remained around zero under the ASMG law and the SSTAG law while that under the SOSMG law diverges fast.Fig.9 indicates that the guidance commands under the SOSMG law cannot recover from saturation due to the lack of anti-saturation term, resulting in a large miss distance.

    Table 3 Initial states of target and interceptor in Scenario 2.

    Table 4 Miss distances in Scenario 2.

    5.3. Scenario 3

    Next, we consider an exo-atmospheric interception problem.The initial conditions of the target and interceptor are listed in Table 5. The initial relative range and velocity between the target and the interceptor can be calculated as R0=230.4886 km and VR0=10.7958 km/s. The initial LOS angles and its angular rate are qε=3.7314。 and ˙qε=-0.0130。/s in pitch,qβ=0。 and ˙qβ=0。/s in yaw,respectively. In this scenario, the target begins a maneuver with aTy=C2g and aTz=C2g at t=3 s and lasts for t=12 s,

    Table 5 Initial states of target and interceptor in Scenario 3.

    where C2=6, 7, 8, respectively. After t=12 s, the target accelerations are chosen as constants aTy=-2g and aTz=-2g. Obviously, the target acceleration has overpassed the maximum acceleration of the interceptor from 3 s to 12 s.From Table 6, when C2=8, only the SSTAG law achieves a successful interception with the smallest miss distance(0.0033 m). The engagement trajectories of the interceptor under different guidance laws and the trajectory of target when C2=8 can be clearly seen in Fig.10.Moreover,it is illustrated in Fig.11 that under the SSTAG,when C2=8,the LOS angular rates are strictly remained around zero while that under ASMG and SOSMG cannot be nullified. From Fig. 12, it is seen that when the target changes its direction of maneuvering,the SSTAG can quickly recover while ASMG law cannot respond in time.Therefore,large miss distance is yielded under ASMG law (see Table 6). Moreover, due to the lack of antisaturation term,the SOSMG law cannot work over a long period of saturation.As a consequence,much larger miss distance is also yielded under the SOSMG law when C2increases (see Table 6).

    Table 6 Miss distances in Scenario 3.

    6. Conclusions

    For intercepting a highly maneuvering target with the maximum normal acceleration close to that of the missile, the designed guidance law is required to work in a saturation state and have strong robustness. To solve this problem,first, a new saturated super-twisting algorithm has been proposed. The proposed algorithm has the advantages of simple structure, easy parameter tuning rules, and a full utilization of the limit control input. By using this algorithm, a saturated super-twisting sliding mode guidance law with strong robustness to a maneuvering target is designed for the terminal guidance of missile. Three simulation scenarios demonstrate the superior performance of the proposed guidance law.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China (No. 61773142).

    亚洲精品久久国产高清桃花| 此物有八面人人有两片| 深夜精品福利| 欧美成狂野欧美在线观看| www国产在线视频色| 国产伦精品一区二区三区四那| h日本视频在线播放| 欧美日本亚洲视频在线播放| a级毛片a级免费在线| 久9热在线精品视频| 99久久成人亚洲精品观看| 成人国产综合亚洲| 国产免费av片在线观看野外av| а√天堂www在线а√下载| bbb黄色大片| 看免费av毛片| 国产高清视频在线播放一区| 少妇的逼好多水| 国模一区二区三区四区视频| 真实男女啪啪啪动态图| 欧美高清成人免费视频www| 又紧又爽又黄一区二区| 中文字幕人成人乱码亚洲影| 久久亚洲真实| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 黄色女人牲交| 禁无遮挡网站| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 色吧在线观看| 久9热在线精品视频| 亚洲av成人精品一区久久| 少妇高潮的动态图| 国产精品av视频在线免费观看| 亚洲七黄色美女视频| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 一区福利在线观看| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 国产精品一区二区三区四区免费观看 | 亚洲 国产 在线| 波多野结衣高清作品| 久久性视频一级片| 99久久精品一区二区三区| 亚洲成人久久性| 十八禁网站免费在线| 午夜福利视频1000在线观看| 99久久精品一区二区三区| 欧美一区二区精品小视频在线| 长腿黑丝高跟| 亚洲人成电影免费在线| 看黄色毛片网站| 亚洲专区中文字幕在线| 深爱激情五月婷婷| 欧美日韩亚洲国产一区二区在线观看| 变态另类成人亚洲欧美熟女| 国产免费av片在线观看野外av| 中国美女看黄片| 99久久成人亚洲精品观看| 日本成人三级电影网站| 亚洲国产欧洲综合997久久,| 51国产日韩欧美| 日韩大尺度精品在线看网址| 好男人电影高清在线观看| 国产亚洲欧美在线一区二区| 亚洲一区高清亚洲精品| 老熟妇乱子伦视频在线观看| 99热只有精品国产| 1024手机看黄色片| 亚洲午夜理论影院| 亚洲精品成人久久久久久| 亚洲欧美一区二区三区黑人| 在线播放国产精品三级| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 老司机福利观看| 757午夜福利合集在线观看| 五月伊人婷婷丁香| a在线观看视频网站| 国产高清三级在线| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频| 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看 | 欧美区成人在线视频| 国产91精品成人一区二区三区| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 中文字幕av成人在线电影| 色综合站精品国产| 欧美色欧美亚洲另类二区| 搡老熟女国产l中国老女人| 亚洲美女黄片视频| 美女高潮喷水抽搐中文字幕| 国产中年淑女户外野战色| 99久久99久久久精品蜜桃| 欧美日本亚洲视频在线播放| 日本 欧美在线| 精品午夜福利视频在线观看一区| 女同久久另类99精品国产91| 国产三级黄色录像| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 波多野结衣高清作品| 久99久视频精品免费| 麻豆一二三区av精品| 嫩草影视91久久| 国产一区二区亚洲精品在线观看| 99久国产av精品| 国产乱人伦免费视频| 黄片小视频在线播放| 久久午夜亚洲精品久久| 好看av亚洲va欧美ⅴa在| 国产真人三级小视频在线观看| 国产精品 国内视频| 中文在线观看免费www的网站| 午夜福利在线观看免费完整高清在 | 九九热线精品视视频播放| 两人在一起打扑克的视频| 天天一区二区日本电影三级| 91麻豆精品激情在线观看国产| 久久九九热精品免费| 脱女人内裤的视频| 亚洲精品在线观看二区| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 狠狠狠狠99中文字幕| 午夜久久久久精精品| 亚洲成人久久性| 欧美性猛交╳xxx乱大交人| 精品日产1卡2卡| av福利片在线观看| 嫩草影院精品99| 老司机福利观看| 国产精品久久久久久久电影 | 国产成+人综合+亚洲专区| 午夜福利欧美成人| 精品一区二区三区视频在线 | 亚洲五月天丁香| 久久久久久久亚洲中文字幕 | 淫秽高清视频在线观看| 久久草成人影院| 国产精品1区2区在线观看.| 国产91精品成人一区二区三区| 欧美日韩福利视频一区二区| 国产伦在线观看视频一区| 国产高清激情床上av| 国产亚洲精品久久久com| 日日摸夜夜添夜夜添小说| 精品久久久久久,| 国产精品久久视频播放| 18+在线观看网站| 国产一区在线观看成人免费| 给我免费播放毛片高清在线观看| 国产精品亚洲美女久久久| 日韩欧美一区二区三区在线观看| xxxwww97欧美| 全区人妻精品视频| 69人妻影院| 国产色爽女视频免费观看| 日韩人妻高清精品专区| 欧美成人a在线观看| 中文字幕久久专区| 久久精品国产自在天天线| 青草久久国产| 天天一区二区日本电影三级| 色综合站精品国产| 最新美女视频免费是黄的| 亚洲 国产 在线| 99国产精品一区二区蜜桃av| 真人做人爱边吃奶动态| www.色视频.com| 精品熟女少妇八av免费久了| 特级一级黄色大片| 九色成人免费人妻av| 女人被狂操c到高潮| 九九在线视频观看精品| 超碰av人人做人人爽久久 | 中文字幕人成人乱码亚洲影| 三级毛片av免费| 亚洲av五月六月丁香网| 天堂√8在线中文| 成人鲁丝片一二三区免费| 在线观看66精品国产| 琪琪午夜伦伦电影理论片6080| 老司机福利观看| 免费在线观看影片大全网站| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 一本一本综合久久| 亚洲专区国产一区二区| 观看美女的网站| 日本一本二区三区精品| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| 国产精品1区2区在线观看.| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播| 国内少妇人妻偷人精品xxx网站| 岛国在线免费视频观看| 欧美高清成人免费视频www| 精品国产美女av久久久久小说| 国产美女午夜福利| 欧美三级亚洲精品| 天天躁日日操中文字幕| 亚洲国产日韩欧美精品在线观看 | 国产精品野战在线观看| 97超视频在线观看视频| 最新在线观看一区二区三区| 一区二区三区激情视频| 国产精品久久久久久人妻精品电影| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 欧美中文日本在线观看视频| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 免费观看精品视频网站| 欧美午夜高清在线| 亚洲av不卡在线观看| 国产精品综合久久久久久久免费| 俺也久久电影网| 国产成+人综合+亚洲专区| www.999成人在线观看| 两人在一起打扑克的视频| 亚洲精品在线美女| 欧美成人一区二区免费高清观看| 欧美精品啪啪一区二区三区| 俄罗斯特黄特色一大片| 人妻丰满熟妇av一区二区三区| 国产一区二区在线观看日韩 | 日本黄大片高清| 超碰av人人做人人爽久久 | 国产高清视频在线观看网站| 精品日产1卡2卡| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 免费无遮挡裸体视频| 亚洲内射少妇av| 蜜桃久久精品国产亚洲av| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 内射极品少妇av片p| 国产成人福利小说| 黑人欧美特级aaaaaa片| 午夜a级毛片| 免费在线观看亚洲国产| 中文字幕av成人在线电影| 久久久久九九精品影院| 亚洲av二区三区四区| 亚洲性夜色夜夜综合| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一进一出好大好爽视频| 精品99又大又爽又粗少妇毛片 | 免费在线观看影片大全网站| 青草久久国产| 熟女电影av网| 日韩av在线大香蕉| 国产探花极品一区二区| 日韩欧美免费精品| 99久久99久久久精品蜜桃| 波多野结衣高清作品| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 国产中年淑女户外野战色| 欧美日韩黄片免| 69av精品久久久久久| 欧美日本视频| 国产黄a三级三级三级人| 一本精品99久久精品77| 国产精品香港三级国产av潘金莲| 蜜桃亚洲精品一区二区三区| 村上凉子中文字幕在线| 很黄的视频免费| 12—13女人毛片做爰片一| 丝袜美腿在线中文| 日本一本二区三区精品| 日韩免费av在线播放| 色综合站精品国产| 欧美色欧美亚洲另类二区| 特级一级黄色大片| avwww免费| 久久久久国内视频| 怎么达到女性高潮| av中文乱码字幕在线| 国产高清有码在线观看视频| 亚洲第一电影网av| 身体一侧抽搐| 超碰av人人做人人爽久久 | 小说图片视频综合网站| 国产黄a三级三级三级人| 国产成人欧美在线观看| 精品福利观看| 日韩欧美一区二区三区在线观看| 精品一区二区三区视频在线 | 观看美女的网站| 一级毛片高清免费大全| 成年女人永久免费观看视频| 国产av麻豆久久久久久久| 亚洲精品色激情综合| 日本在线视频免费播放| 国产精品久久久人人做人人爽| 人妻久久中文字幕网| 国产野战对白在线观看| 一边摸一边抽搐一进一小说| 亚洲不卡免费看| 最新在线观看一区二区三区| 内射极品少妇av片p| 国产伦精品一区二区三区视频9 | 日本黄色片子视频| 国产视频一区二区在线看| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲电影在线观看av| 极品教师在线免费播放| 日韩欧美国产在线观看| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 高潮久久久久久久久久久不卡| 亚洲精品一区av在线观看| 欧美xxxx黑人xx丫x性爽| 丁香六月欧美| 国产高清激情床上av| 黄色片一级片一级黄色片| 身体一侧抽搐| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 热99re8久久精品国产| 日本免费一区二区三区高清不卡| 成人av在线播放网站| 免费在线观看影片大全网站| 熟女人妻精品中文字幕| 国产三级中文精品| e午夜精品久久久久久久| 嫩草影视91久久| 亚洲人与动物交配视频| 99国产极品粉嫩在线观看| 操出白浆在线播放| 好男人电影高清在线观看| 给我免费播放毛片高清在线观看| 日本熟妇午夜| 91麻豆精品激情在线观看国产| 国产精品,欧美在线| 99精品久久久久人妻精品| 搞女人的毛片| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 内射极品少妇av片p| 长腿黑丝高跟| 日韩欧美在线二视频| 欧美又色又爽又黄视频| 一边摸一边抽搐一进一小说| 亚洲无线观看免费| 深夜精品福利| 人妻久久中文字幕网| 亚洲 国产 在线| 日韩高清综合在线| 亚洲欧美日韩东京热| 天堂√8在线中文| 久久伊人香网站| 久久久久亚洲av毛片大全| 亚洲五月婷婷丁香| 在线十欧美十亚洲十日本专区| 久久久久久久久久黄片| 午夜激情福利司机影院| 在线a可以看的网站| 亚洲内射少妇av| 国产成人啪精品午夜网站| 男女午夜视频在线观看| 日韩高清综合在线| 亚洲av电影不卡..在线观看| 欧美日韩亚洲国产一区二区在线观看| 三级国产精品欧美在线观看| 国内毛片毛片毛片毛片毛片| 亚洲不卡免费看| 国产乱人视频| 一个人免费在线观看电影| 国产精品电影一区二区三区| 18禁国产床啪视频网站| 国产精华一区二区三区| 免费大片18禁| 九色国产91popny在线| 1000部很黄的大片| 国产高清有码在线观看视频| 日本一本二区三区精品| 深夜精品福利| 成人精品一区二区免费| 我要搜黄色片| 搞女人的毛片| 露出奶头的视频| 国产单亲对白刺激| 欧美一级毛片孕妇| 国产一区二区三区视频了| 国产精品日韩av在线免费观看| 中亚洲国语对白在线视频| 国产午夜精品论理片| 成人特级av手机在线观看| 中文字幕精品亚洲无线码一区| 每晚都被弄得嗷嗷叫到高潮| 桃红色精品国产亚洲av| 全区人妻精品视频| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看| 深夜精品福利| 99久久成人亚洲精品观看| av天堂在线播放| 两个人视频免费观看高清| 国产 一区 欧美 日韩| 久久国产乱子伦精品免费另类| 亚洲五月婷婷丁香| 天堂网av新在线| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 国产午夜精品久久久久久一区二区三区 | 亚洲成人久久性| 91久久精品国产一区二区成人 | 此物有八面人人有两片| 男人和女人高潮做爰伦理| av天堂中文字幕网| 搡老妇女老女人老熟妇| 搡老熟女国产l中国老女人| 国产三级黄色录像| 中文字幕久久专区| 国产欧美日韩一区二区三| 欧美日韩亚洲国产一区二区在线观看| 村上凉子中文字幕在线| 国产麻豆成人av免费视频| 精品一区二区三区视频在线观看免费| 女人十人毛片免费观看3o分钟| 好看av亚洲va欧美ⅴa在| 欧美一区二区国产精品久久精品| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 2021天堂中文幕一二区在线观| 美女 人体艺术 gogo| 波多野结衣高清无吗| 国产精品亚洲av一区麻豆| 午夜福利欧美成人| 国产高清三级在线| 亚洲无线在线观看| 欧美激情久久久久久爽电影| 午夜福利视频1000在线观看| 久久欧美精品欧美久久欧美| 夜夜夜夜夜久久久久| 国产爱豆传媒在线观看| 毛片女人毛片| 91九色精品人成在线观看| 搞女人的毛片| 丰满乱子伦码专区| 黑人欧美特级aaaaaa片| 免费av不卡在线播放| 国产乱人视频| 在线观看午夜福利视频| 伊人久久精品亚洲午夜| 国产三级黄色录像| 中文字幕人妻熟人妻熟丝袜美 | 久久九九热精品免费| 国产精品一区二区三区四区免费观看 | 麻豆国产97在线/欧美| 国产在线精品亚洲第一网站| 高清日韩中文字幕在线| 亚洲国产精品久久男人天堂| 男女下面进入的视频免费午夜| 免费看日本二区| 亚洲国产精品sss在线观看| 色视频www国产| 最好的美女福利视频网| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 欧美丝袜亚洲另类 | 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 老熟妇乱子伦视频在线观看| 午夜精品久久久久久毛片777| 国产男靠女视频免费网站| 最新在线观看一区二区三区| 国产野战对白在线观看| 日本 av在线| 丝袜美腿在线中文| 一个人看视频在线观看www免费 | 99久久综合精品五月天人人| 亚洲欧美日韩无卡精品| 一进一出抽搐动态| 亚洲精品亚洲一区二区| 夜夜夜夜夜久久久久| 91av网一区二区| 婷婷丁香在线五月| 午夜福利在线在线| 国产精品美女特级片免费视频播放器| 亚洲国产高清在线一区二区三| 欧美黑人巨大hd| 三级男女做爰猛烈吃奶摸视频| 中亚洲国语对白在线视频| 黄色日韩在线| 欧美xxxx黑人xx丫x性爽| 精品不卡国产一区二区三区| 最近最新免费中文字幕在线| 国产乱人伦免费视频| 日本 欧美在线| av福利片在线观看| 99riav亚洲国产免费| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 欧美区成人在线视频| 国产精华一区二区三区| 国产极品精品免费视频能看的| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 色精品久久人妻99蜜桃| 在线天堂最新版资源| 麻豆国产av国片精品| 此物有八面人人有两片| 美女高潮的动态| 美女免费视频网站| 内地一区二区视频在线| 久久久成人免费电影| 国产单亲对白刺激| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 看片在线看免费视频| 18禁国产床啪视频网站| 午夜久久久久精精品| 88av欧美| 夜夜躁狠狠躁天天躁| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 搡老熟女国产l中国老女人| 一夜夜www| 又黄又爽又免费观看的视频| 最近最新中文字幕大全免费视频| 精品福利观看| 午夜免费激情av| 亚洲成人久久性| 国产中年淑女户外野战色| 国产av在哪里看| 国产精品久久久久久久久免 | 手机成人av网站| 18禁裸乳无遮挡免费网站照片| 又黄又爽又免费观看的视频| 舔av片在线| 伊人久久精品亚洲午夜| 国产精品 国内视频| 三级男女做爰猛烈吃奶摸视频| 高清毛片免费观看视频网站| 国产99白浆流出| 美女cb高潮喷水在线观看| 国产极品精品免费视频能看的| 熟女人妻精品中文字幕| 午夜免费成人在线视频| 两人在一起打扑克的视频| 色噜噜av男人的天堂激情| 国产又黄又爽又无遮挡在线| 19禁男女啪啪无遮挡网站| 国产精品99久久久久久久久| 国产淫片久久久久久久久 | 国产成人福利小说| 成年版毛片免费区| 久久久久性生活片| 国产成年人精品一区二区| 又黄又爽又免费观看的视频| 美女 人体艺术 gogo| 国产私拍福利视频在线观看| 伊人久久精品亚洲午夜| 熟女人妻精品中文字幕| 91麻豆精品激情在线观看国产| 内射极品少妇av片p| 在线观看免费午夜福利视频| 国产欧美日韩一区二区三| 内射极品少妇av片p| 成人性生交大片免费视频hd| 日韩欧美一区二区三区在线观看| 国产伦在线观看视频一区| 午夜精品久久久久久毛片777| 黄色女人牲交| 欧美日韩国产亚洲二区| 最近在线观看免费完整版| 国产伦精品一区二区三区视频9 | 久久久国产精品麻豆| 变态另类成人亚洲欧美熟女| 首页视频小说图片口味搜索| 麻豆国产97在线/欧美| 国产精品亚洲一级av第二区| 免费看日本二区| 丰满乱子伦码专区| 亚洲精品在线美女| 亚洲国产中文字幕在线视频| 18禁在线播放成人免费| 国产高清视频在线播放一区| 中文字幕人妻熟人妻熟丝袜美 | 身体一侧抽搐| 色尼玛亚洲综合影院| 天美传媒精品一区二区| 久久精品人妻少妇| 99热这里只有是精品50| 日韩av在线大香蕉| 午夜免费成人在线视频| 啦啦啦韩国在线观看视频|